Browse Topic: Hydrocarbons
Engineers at NASAs Stennis Space Center have developed the HYdrocarbon Propellants Enabling Reproduction of Flows in Rocket Engines (HYPERFIRE), a sub-scale, non-reacting flow test system. HYPERFIRE uses heated ethane to enable physical simulation of rocket engines powered by a broad range of propellants in an inexpensive, accurate, and simple fashion
Natural gas furnaces not only heat your home, they also produce a lot of pollution. Even modern high-efficiency condensing furnaces produce significant amounts of corrosive acidic condensation and unhealthy levels of nitrogen oxides, carbon monoxide, hydrocarbons, and methane. These emissions are typically vented into the atmosphere and end up polluting our soil, water, and air
An investigation into emissions differences and their correlations with differing combustion characteristics between F24 and Jet-A was conducted. Raw emissions data was taken from a single stage jet engine by a FTIR gas analyzer. Measurements of H2O, CO2, CO, NOx, and total hydrocarbon emissions (THC) were taken at 60K, 65K, and 70K RPM. At 70K RPM Jet-A and F-24 the emissions were similar at approx.: 4% H2O, 3% CO2, 970 PPM CO, 28 PPM NOx. Jet-A THC emissions were approx.: 1200 PPM THC, F24 THC emissions were lower by over 60%. The significantly lower amount of THC emissions for F24 suggests more complete combustion compared to Jet-A
After-treatment sensors are used in the ECU feedback control to calibrate the engine operating parameters. Due to their contact with exhaust gases, especially NOx sensors are prone to soot deposition with a consequent decay of their performance. Several phenomena occur at the same time leading to sensor contamination: thermophoresis, unburnt hydrocarbons condensation and eddy diffusion of submicron particles. Conversely, soot combustion and shear forces may act in reducing soot deposition. This study proposes a predictive 3D-CFD model for the analysis of the development of soot deposition layer on the sensor surfaces. Alongside with the implementation of deposit and removal mechanisms, the effects on both thermal properties and shape of the surfaces are taken in account. The latter leads to obtain a more accurate and complete modelling of the phenomenon influencing the sensor overall performance. The evolution of the fouling thickness is evaluated by means of the implementation of a
On-board diagnostics (OBD) systems support the protection of the environment against harmful pollutants such as carbon monoxide (CO), nitrogen oxide (NOx), hydrocarbons (HC) and particulate matters (PM) emitted by combustion engines. OBD regulations require passenger cars and light-, medium- and heavy-duty trucks to support a minimum set of diagnostic information to external (off-board) “generic” test equipment. For the purpose of communication, both the test equipment and the vehicle must support the same communication protocol stack. The communication protocol SAE J1979, also known as ISO 15031, that has been in use for decades will be replaced by SAE J1979-2 for vehicles with combustion engines and by SAE J1979-3 for zero-emission-vehicle (ZEV) propulsion systems
This SAE Aerospace Recommended Practice (ARP) describes the continuous sampling and analysis of gaseous emissions from aircraft gas turbine engines. The measured gas species include carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), nitrogen dioxide (NO2), hydrocarbons (HC), and water vapor (H2O). This ARP excludes engine operating procedures and test modes, and is not intended for in-flight testing, nor does it apply to engines operating in the afterburning mode. It is recognized that there will probably be major advances in the gas analysis measurement technology. It is not the intent of this ARP to exclude other analysis techniques, but to form the basis of the minimum amount of conventional instruments (those in common industry usage over the last fifteen years) required for the analysis of aircraft engine exhaust. It is the responsibility of the analyst to demonstrate the alternative measurement technology has comparable (or better) performance than the techniques
Diesel oxidation catalyst (DOC) is one of the critical catalyst components in modern diesel aftertreatment systems. It mainly converts unburned hydrocarbon (HC) and CO to CO2 and H2O before they are released to the environment. In addition, it also oxidizes a portion of NO to NO2, which improves the NOx conversion efficiency via fast SCR over the downstream selective catalytic reduction (SCR) catalyst. HC light-off tests, with or without the presence of NOx, has been typically used for DOC evaluation in laboratory. In this work, we aim to understand the influences of DOC light-off experimental conditions, such as initial temperature, initial holding time, HC species, with or without the presence of NOx, on the DOC HC light-off behavior. The results indicate that light-off test with lower initial temperature and longer initial holding time (at its initial temperature) leads to higher DOC light-off temperature. Depending on the types of HC used, the presence of NOx can also influence HC
Items per page:
50
1 – 50 of 2971