Browse Topic: Diesel exhaust emissions
In Diesel engine exhaust after treatment system (ATS), Nitrogen Oxides (NOx) emissions control is achieved via Selective Catalytic Reduction (SCR) in which AdBlue or Diesel Exhaust Fluid (DEF) plays vital role. But AdBlue freezes below -11°C due to which in cold climate conditions system performance becomes critical as it affects efficiency as well as overall performance leading to safety and compliance with emission standards issue. So, it is essential to have a probabilistic thermal model which can predict the AdBlue temperature as per ambient temperature conditions. The present paper focuses on developing Bayesian Network (BN) based algorithm for AdBlue system by modelling probability of key factors influencing on its performance including AdBlue temperature, Ambient temperature, Coolant temperature, Coolant flow, Vehicle operating conditions etc. The BN Model predicts and ensures continuous learning and improvement of the system, based on operational data. Methodology proposed in
Cu/zeolite selective catalytic reduction (SCR) catalysts are used globally to reduce NOx emissions from diesel engines. These catalysts can achieve high NOx conversion efficiency, and they are hydrothermally durable under real world diesel exhaust environments. However, Cu/zeolite catalysts are susceptible to sulfur poisoning and require some type of sulfur management even when used with ultra-low sulfur diesel (ULSD). In the present study, the authors seek to better illuminate the chemical processes responsible for ammonium sulfate formation and decomposition occurring in Cu/zeolite SCR catalysts. Reactor-based experiments are first conducted with a real-world concentration of SO2 (0.5 ppmv) and a typical diesel exhaust water vapor concentration (7 vol.%) to quantify progressive effects of ammonium sulfate formation. A second group of experiments probe the chemical decomposition of ammonium sulfate via NO titration. The “movement” of sulfate species during this process is monitored
This paper investigates heated and cold Diesel Exhaust Fluid (DEF) sprays with the aim of establishing the effect of temperature on the resulting spray characteristics. The work is motivated by the need to optimize active Selective Catalytic Reduction (SCR) systems to meet more stringent nitrogen oxide (NOx) emission regulations for internal combustion engines. Pre-heating DEF has the potential to improve evaporation of the injected fluid, increasing the NOx conversion efficiency of the SCR at low exhaust temperatures. Experiments are carried out using the MAHLE SmartHeat fluid heater and mounted atop a DEF injector, with an incorporated thermocouple for fluid temperature. The fluid temperature established by the heater in this configuration was about 130 °C. The fluid is injected into an atmospheric environment and Schlieren imaging is used to visualize the spray evolution. CFD simulations are also carried out to validate the experimental observations and further shed light on the
Upcoming, stricter diesel exhaust emissions standards will likely require aftertreatment architectures with multiple diesel exhaust fluid (DEF) introduction locations. Managing NH3 slip with technologies such as an ammonia slip catalyst (ASC) will continue to be critical in these future aftertreatment systems. In this study, we evaluate the impact of SO2 exposure on a state-of-the-art commercially available ASC. SO2 is co-fed at 0.5 or 3 ppmv to either approximate or accelerate a real-world exhaust SO2 impact. ASC performance during sulfur co-feeding is measured under a wide variety of simulated real-world conditions. Results indicate that the loss of NO conversion during SCR is dependent on the cumulative SO2 exposure, regardless of the inlet SO2 concentration. Meanwhile, N2O formation under SCR conditions is nonlinearly affected by SO2 exposure, with formation increasing during 0.5 ppmv SO2 exposure but decreasing in the presence of 3 ppmv SO2. TPO experiments reveal the formation of
Exhaust Gas Recirculation (EGR) coolers are widely used on diesel engines to reduce in-cylinder NOx formation. A common problem is the accumulation of a fouling layer inside the heat exchanger, mainly due to thermophoresis that leads to deposition of particulate matter (PM), and condensation of hydrocarbons (HC) from the diesel exhaust. From a recent investigation of deposits from field samples of EGR coolers, it was confirmed that the densities of their deposits were much higher than reported in previous studies. In this study, the experiments were conducted in order to verify hypotheses about deposit growth, especially densification. An experimental set up which included a custom-made shell and tube type heat exchanger with six surrogate tubes was designed to control flow rate independently, and was installed on a 1.9 L L-4 common rail turbo diesel engine. The test cycle and conditions were higher PM/ lower HC with 75°C coolant temperature for 1.5h, then lower PM/ higher HC with 75°C
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of “branches” that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray, and different thicknesses of the holes that the clip is inserted into. Clips are typically inserted into sheet or rolled metal
Heavy Duty Vehicle (HDV) Diesel emission regulations are set to be tightened in the future. The introduction of PN PEMS testing for Euro VI-e, and the expected tightening of PM/NOx targets set to be introduced by CARB in the US beyond 2024 are expected to create challenging tailpipe PN conditions for OEMs. Additionally, warranty and the useful life period will be extended from current levels. Improved fuel efficiency (reduction of CO2) also remains an important performance criteria. Furthermore, future non-road diesel emission regulations may follow tighten HDV diesel emission regulations contents, and non-road cycles evaluation needs to be considered as well for future. In response to the above tightened regulation, for Diesel Particulate Filter (DPF) technologies will require higher PN filtration performance, lower pressure drop, higher ash capacity and better pressure drop hysteresis for improved soot detectability. Additionally, thermal management of aftertreatment system has
The urea-selective catalyst reduction system implemented in commercial vehicles facilitates ensuring compliance with the NOx regulation limit. A significant challenge in urea injection is to comprehend its decomposition chemistry that often leads to the formation of unfavorable deposits in the exhaust system unit. Due to the complex interaction of the multiphase fluid flow and transport processes, a significant degree of uncertainty is associated with the identification of the interacting factors that control the deposit initiation and their growth. A systematic investigation was conducted through numerous experiments to study the factors controlling the urea deposit that guide innovation for new product development. For the first time, the effect of pressure on urea deposits was investigated by heating an aqueous urea solution in a closed system maintained between 30 and 200 psi. Chemical characterization procedure was conducted using liquid chromatography-multiple reaction monitoring
Conventional methods of physicochemical models require various experts and a high measurement demand to achieve the required model accuracy. With an additional request for faster development time for diagnostic algorithms, this method has reached the limits of economic feasibility. Machine learning algorithms are getting more popular in order to achieve a high model accuracy with an appropriate economical effort and allow to describe complex problems using statistical methods. An important point is the independence from other modelled variables and the exclusive use of sensor data and actuator settings. The concept has already been successfully proven in the field of modelling for exhaust gas aftertreatment sensors. An engine-out nitrogen oxide (NOX) emission sensor model based on polynomial regression was developed, trained, and transferred onto a conventional automotive electronic control unit (ECU) and also proves real-time capability. Within this study several approaches are
To avoid frequent regeneration intervals leading to expeditious ageing of the catalyst and substantial fuel penalty for the owner, it is always desired to estimate the soot coming from diesel exhaust emission, the soot accumulated and burnt in the Diesel Particulate Filter (DPF). Certain applications and vehicle duty cycles cannot make use of the differential pressure sensor for estimating the soot loading in the DPF because of the limitations of the sensor tolerance and measurement accuracy. The physical soot model is always active and hence a precise and more accurate model is preferred to calibrate & optimize the regeneration interval. This paper presents the approach to estimate the engine-out soot and the accumulated soot in the DPF using a graphical calculation tool (AVL Concerto CalcGraf™). The tool reduces the efforts of driving different duty cycles multiple times on the testbed and recurrent vehicle trips for data collection while calibrating the soot models, hence saving
This paper discusses the development of an all speed governed diesel-natural gas dual fuel engine for agricultural farm tractor. A 45 hp, 2.9 liters diesel-natural gas dual fuel engine with a novel closed loop secondary fuel injection system was developed. A frugal approach without any modification of the base mechanical diesel fuel injection system was followed. This approach helped to minimize the cost impact, while meeting performance and emissions at par with neat diesel operation. Additional cost on gas injection system is redeemed by cost savings on diesel fuel. The dual fuel technology developed by Mahindra & Mahindra Ltd., substitutes on an average approximately 40% of diesel with compressed natural gas, meeting the TREM III A emission norms for dual fuel while meeting all application requirements. The governing performance of the tractor was found to be superior than base diesel tractor. A prototype dual fuel tractor was tested for all field applications including puddling
Commercial vehicles are moving in the direction of improving brake thermal efficiency while also meeting future diesel emission requirements. This study is focused on improving efficiency by replacing the variable geometry turbine (VGT) turbocharger with a high-efficiency fixed geometry turbocharger. Engine-out (EO) NOX emissions are maintained by providing the required amount of exhaust gas recirculation (EGR) using a 48 V motor driven EGR pump downstream of the EGR cooler. This engine is also equipped with cylinder deactivation (CDA) hardware such that the engine can be optimized at low load operation using the combination of the high-efficiency turbocharger, EGR pump and CDA. The exhaust aftertreatment system has been shown to meet 2027 emissions using the baseline engine hardware as it includes a close coupled light-off SCR followed by a downstream SCR system. A parametric analysis for improving engine efficiency is provided using the high-efficiency turbocharger, EGR pump and CDA
Items per page:
50
1 – 50 of 889