Browse Topic: Nitrogen oxides

Items (5,058)
This paper is to introduce a new catalyst family in gasoline aftertreatment. The very well-known three-way catalysts effectively reduce the main emission components resulting from the combustion process in the engine, namely THC, CO, and NOx. The reduction of these harmful emissions is the main goal of emission legislation such as Bharat VI to increase air quality significantly, especially in urban areas. Indeed, it has been shown that under certain operating conditions, three-way catalysts may produce toxic NH3 and the greenhouse gas N2O, which are both very unwanted emissions. In a self-committed approach, OEMs could want to minimize these noxious pollutants, especially if this can be done with no architecture change, namely without additional underfloor catalyst. In most Bharat VI gasoline aftertreatment system architectures, significant amounts of NH3 occur in two phases of vehicle driving: situations with the catalyst temperature below light-off, which appear after cold start or
Kuhn, SebastianMagar, AvinashKogel, JuliusLahousse, Christophe
Environmental pollution is one of the growing concerns of our society. As vehicle emissions are a major contributor to air pollution, emission control is a primary goal of the Automotive industry. Vehicle emissions are higher due to improper combustion, which leads to toxic gases being generated from the exhaust system. Unburnt fuel is one of the leading causes of toxic pollutants such as Carbon Monoxide, Nitric Oxides (NOx) and Hydrocarbons. The catalytic converter converts these gases into less toxic substances such as Carbon Dioxide, Nitrogen, and water vapor. The catalytic converter performs efficiently after reaching its “Light Off” temperature, after which the catalyst becomes active. Hence, elevated temperature of the exhaust gases aids in efficient conversion. Presently, the gases from the exhaust system are approximately at a temperature of 300°C-600°C. This paper outlines the concept of a Peltier (Thermoelectric) Module - based system, which helps maintain the high
Venkateshwaran, AishwaryaSoodlu, ShashikiranM, Mathaiyan
The study emphasizes on development of Diesel Exhaust Fluid (DEF) dosing system specifically used in Selective Catalytic Reduction (SCR) of diesel engine for emission control, where a low pressure pumpless DEF dosing system is developed, utilizing compressed air for pressurizing the DEF tank and discharging DEF through air assisted DEF injection nozzle. SCR systems utilize Diesel Exhaust Fluid (DEF) to convert harmful NOx emissions from diesel engines into harmless nitrogen and water vapor. Factors such as improper storage, handling, or refilling practices can lead to DEF contamination which pose significant operational challenges for SCR systems. Traditional piston-type, diaphragm-type, or gear-type pumps in DEF dosing systems are prone to mechanical failures leading to frequent maintenance, repairs, and costly downtimes for vehicles. To overcome the existing challenges and to create a more reliable and simple DEF delivery mechanism the pumpless DEF Dosing system is developed. The
M, HareniGiridharan, JyothivelA.l, SureshV, YuvarajRajan, Bharath
Addressing climate issues is a key aspect of good global governance today. A key aspect of managing the threats caused to the environment around is to ensure a sustainable transportation system so that humans exist in peace with nature. According to sources, in 2020 alone, cars accounted for approximately 23% of global CO2 emissions. In addition, they also emit dangerous pollutants thus damaging the ecosystem. To keep pollutants in check there are emission level testing strategies in place in each country. However, we can do better for a sustainable future. On one hand, the huge volume of vehicles around the world makes it an excellent choice and source for a vast emission level dataset comprising of input features as well as the target variable representing the emission band of the vehicle. In addition to the big data available as mentioned above, major advancements in the machine learning algorithms are done today. The advent of algorithms such as Artificial Neural Networks (ANN) has
Sridhar, SriramAswani, Shelendra
Air pollution from vehicle exhaust emissions is a growing issue in major cities around the world. Hydrogen is a clean and carbon-free fuel that presents a promising alternative to the fossil fuels. However, despite its environmental advantages, hydrogen internal combustion engines still produce some nitrogen oxides as a by-product due to high combustion temperatures. This study investigates the effectiveness of current exhaust after-treatment technologies designed to reduce NOx emissions in hydrogen-powered engines. A comparative analysis is conducted between the conventional urea-based selective catalytic reduction used in diesel engines and emerging hydrogen-based selective catalytic reduction technologies for hydrogen engines. The analysis is performed using CFD simulation in ANSYS Fluent, focusing on NOx reduction efficiency and other operational parameters. The results provide valuable insights into the feasibility and effectiveness of hydrogen SCR in achieving reduced NOx
Kashyap, KeshavKhandagale, AnupPetale, Mahendra
To address the imperative for decarbonizing the heavy-duty transport sector and advancing sustainable energy solutions, this paper presents a novel lean-boosted Direct Injection (DI) Hydrogen Internal Combustion Engine (H2 ICE) combustion system. This system is developed to retrofit existing flat-deck Diesel engines, offering a viable pathway towards drastically reduced emissions. Building on consolidated expertise from prior production-oriented Port Fuel Injection H2 engine development (DUMAREY 6.6ℓ V8), this research focuses on leveraging the distinct advantages of DI for hydrogen. An experimental assessment, supported by 1D and 3D-CFD analyses, demonstrates the system's capability to achieve highly efficient operation in Spark Ignition (SI) mode under ultra-lean and EGR-diluted conditions. The study confirms the elimination of combustion anomalies such as backfiring, pre-ignition, and knock, while achieving ultra-low engine-out NOx emissions and near-zero CO2, HC, CO, and PM. The
Gessaroli, DavideGolisano, RobertoPesce, FrancescoBoretto, GianmarcoAccurso, Francesco
After the implementation of BS-VI emission standards, effective exhaust after-treatment has become critical in minimizing harmful emissions from diesel engines. One significant challenge is the accumulation of hydrocarbons (HC) in the Diesel Oxidation Catalyst (DOC). Certain hydrocarbons may adsorb onto the catalyst surface yet remain unreactive, leading to potential operational inefficiencies. This phenomenon necessitates the desorption of unreactive hydrocarbons to allow space for more reactive species, thereby enhancing oxidation efficiency and overall catalyst performance. The process of desorption (DeSorb) is vital to maintaining the balance of reactive hydrocarbons within the DOC. When a vehicle is idling, unburnt fuel produces hydrocarbons that accumulate in the DOC. Upon acceleration, these hydrocarbons can lead to an uncontrolled rise in temperature, resulting in DOC push-out, catalyst damage, and downstream impacts on the Diesel Particulate Filter (DPF). To mitigate these
K, SabareeswaranK K, Uthira Ramya BalaRaju, ManikandanK J, RamkumarYS, Ananthkumar
Transportation industry is facing a growing challenge to reduce its carbon footprint and utilize the carbon neutral, more environmentally sustainable fuels to comply with the goal of carbon neutrality. Implementation of carbon free fuels such as Hydrogen, Ammonia and low carbon fuels such as Methanol, Ethanol can significantly reduce the greenhouse gas emissions, but these fuels are suitable for SI engine architecture due to their high-octane ratings. Hydrotreated Vegetable Oil (HVO) is one of the few fuel solutions available today with a high Cetane rating (70-80), that can be used as a drop-in fuel in the existing CI engines, with minimal modifications. The main constituent of HVO is pure alkane and it can be produced from feedstocks such as vegetable oils, animal fats, various wastes and by-products. A closed cycle 3-D CFD combustion simulation using a detailed chemistry-based solver has been conducted with the HVO, on a three cylinder, naturally aspirated water-cooled CI engine at
Tripathi, AyushMukherjee, NaliniNene, Devendra
In CPCB-IV+ Emissions regulations NOx & PM are reduced by 90% from CPCB-II limits in the power band 56 < kW ≤ 560. Obvious technology approach adopted by industry to meet this requirement is the introduction of CRDI fuel injection system & DOC+SCR+ASC aftertreatment technology, leading to substantial modifications at both engine & genset level. This result into huge development expenditure, high incremental product cost, timelines and increased total cost of ownership. This paper describes the frugal technology approach to keep development cost, product cost, development time to the minimum using electronically governed, high pressure mechanical fuel injection equipment, with DOC+SCR+ASC without any external thermal management strategy while comfortably achieving target CPCB-IV+ emission levels. This integrated approach also helped in completing the entire development in < 12 months. 1D-thermodynamic & 3D-combustion simulation approach was adopted to predict the engine out emissions
Arde, VasundharaJuttu, SimachalamKadam, AtitGothekar, SanjeevKarthick, KVandana, SuryanarayanaThipse, SKendre, Mahadev
The Bharat TREM V regulations in the off-highway segment mandates the use of Diesel Oxidation Catalyst (DOC) to reduce gaseous emissions and Diesel Particulate Filters (DPF) to trap solid particulates from engine exhaust. DPFs undergo regeneration, where trapped soot is burned, converting it into CO2 with ash as main byproduct. Regeneration can be active, using late post fuel injections to raise temperatures above 550°C, or passive, relying on NO2 formation at 300-400°C. Passive regeneration is preferred as a safer mode for both DPF health and longevity as well as reduction in fuel penalty and oil dilution. This paper highlights the selection and optimization of combustion hardware and Exhaust Aftertreatment System to achieve the desired NO2 formation which is suitable for passive regeneration. Key considerations in engine hardware selection include the design of piston bowl, injector hole configuration to increase heat release rate and combustion temperature resulting in higher NOx
Gautam, AmanRawat, SaurabhDogra, DaljitSinghSingh, SachleenRanjan, Piyush
Ammonia has emerged as a promising alternative fuel for transportation because of its high energy density (NH3 has more hydrogen than propane in a similar size tank), simple and carbon-free combustion, and potential to produce sustainably. This paper investigates the feasibility of using ammonia as fuel for internal combustion engines (ICE) and fuel cells in automotive applications. In many ways, ammonia captures these benefits by being produced from renewable energies and having the potential to reduce reliance on fossil fuels. There are significant drawbacks of ammonia however, such as its decreased energy content per unit volume, NOx emissions potential, and necessary engine adaptations. This paper discusses the combustion characteristics of ammonia and how it functions in typical ICE's as well as new fuel cell technology, and the necessary infrastructure to produce, store, and distribute ammonia for automotive applications. The study compares operations to conventional fuels
Jadhav, AjinkyaBandyopadhyay, DebjyotiSutar, Prasanna SSonawane, Shailesh BalkrishnaRairikar, Sandeep DThipse, Sukrut S
Hydrogen is a zero-carbon fuel suitable for the de-carbonization of power generation and the industrial sector. Green hydrogen produced via the electrolysis of water is the most sustainable fuel to achieve a net-zero carbon economy. Oxy-hydrogen (hydrogen and oxygen) generated onsite from the electrolyzer can be fed to engine with the intake air to enhance power and combustion efficiency with near-zero exhaust emissions. In this study, a 15 kVA two-cylinder natural gas spark-ignition generator set was used. The engine was retrofitted to operate on an oxy-hydrogen-air mixture. A maximum of 43% of rated engine load was achieved during the preliminary experiments. GT-Power software was used to calibrate the 1D model using experiment data and generate the burn profile of oxy-hydrogen-air mixture. The calibrated and validated 1D model was used for further predictive simulations. The power limiting factors were identified via simulations for flow and power improvement. The simulations
Marwaha, AksheyTule, ShubhamMishrikotkar, PrasadAghav, Yogesh
Hydrogen combustion in internal combustion engines offers numerous advantages, such as zero CO2 emissions and high flame speed, which make it a promising alternative fuel for green vehicle solutions. In order to maximize the engine performance with hydrogen, however, meticulous calibration of the air-fuel mixture must be performed, particularly when lean and stoichiometric combustion conditions are considered. Lean burning, i.e., excess air, offers better thermal efficiency and lower NOx emissions but can cause lower engine power and combustion instability. Stoichiometric combustion, however, ensures complete combustion of the fuel-air mixture, but at the cost of higher combustion temperatures and consequently, high NOx emissions. Calibration strategies for hydrogen engines are presented in this paper by comparing the lean and stoichiometric strategies and their implications on engine power output, efficiency, and emissions. Test data from several hydrogen engine configurations
Jadhav, AjinkyaBandyopadhyay, DebjyotiSutar, Prasanna SSonawane, Shailesh BalkrishnaRairikar, Sandeep DThipse, Sukrut S
Emission Regulations for NRMM in India have evolved significantly over past two decades. India has progressively adopted stricter standards to align with best practices carried out globally for curbing air pollution. The latest regulations have introduced stringent caps on nitrogen oxides (NOx), and other emission pollutants, ensuring compliance with environmental sustainability goals. Future legislative frameworks are expected to impose even more rigorous emission limits, while incorporating real-world emission monitoring. This will require powertrain manufacturers to integrate advanced after-treatment systems and adopt cleaner combustion technologies to meet compliance standards. To validate compliance with these stringent limits, rigorous testing methodologies are employed. Portable Emission Measurement Systems (PEMS) have become a crucial tool for real-world emission assessment. PEMS technology allows for on-road and field testing of NRMM under actual operating conditions
Rastogi, AadharGarg, VarunRagot, Nicolas
This paper compares carbon dioxide, carbon monoxide, methane, and oxides of nitrogen emissions from medium and heavy-duty buses using diesel, diesel-hybrid, and CNG powertrains. Comparisons are made using results from chassis dynamometer-based tests with driving cycles intended to simulate a wide range of operating conditions. Tail pipe emissions are measured by diluting the vehicle’s exhaust in a full-scale dilution tunnel by mixing with conditioned air. Samples are drawn through probes of raw exhaust, diluted exhaust and measured using laboratory grade emission analyzers. Fuel consumption of diesel is measured using a weighing scale, while a gas flow meter is used for measuring CNG consumption. Experimental data from 19 buses tested on a chassis dynamometer over the last 8 years has been analyzed and a comparison of results from similar buses with the differently fueled powertrains is presented. Based on these test results, it is shown that replacing diesel engines with CNG engines
Iyer, Suresh
In line with global peers (EU, Japan, etc.), the Automotive Industry Standard (AIS) Committee in India has decided to adopt “World harmonized Light vehicle Test Procedure (WLTP)” for M2 and N1 category vehicles not exceeding 3500 kg and for all M1 category vehicles. As a result, “World harmonized Light-duty vehicles Test Cycle (WLTC)” is set to replace currently applicable “Modified Indian Drive Cycle (MIDC)” in the next couple of years. The draft Corporate Average Fuel Economy (CAFE) III & CAFE IV norms for CO2 emission limits, which are set to be implemented in year 2027 and 2032 respectively refer to a shift to WLTP from MIDC. The latest draft of Central Motor Vehicle Rules (CMVR) for BS-VI emissions is also being revised to use WLTC as test cycle. This migration to WLTC is in sync with the demand for test procedures to replicate real driving conditions more appropriately. Further, the move to WLTC along with stricter emission norms is a major step towards realizing India’s COP26
Pawar, BhushanEhrly, MarkusSandhu, RoubleEmran, AshrafBerry, Sushil
The Exhaust Emission Control is a vital part of automotive development aimed at ensuring effective control of pollutants such as NOx, CO, and HC. The traditional method of calibrating emission control strategies is a highly time-consuming process, which requires extensive vehicle testing under a variety of operating conditions. The frequent updates in emission legislation requires a high-efficiency process to achieve a faster time-to-market. The use of Machine Learning (ML) in the domain of emission calibration is the need of the hour to proactively improve the process efficiency and achieve a faster time-to-market. This paper attempts to explores emerging trend of Machine Learning (ML) based data analysis that have improved the overall process efficiency of emission control calibration. The data generated by automated programs could be used directly in data analysis with minimal or no need for data cleaning. The Machine Learning (ML) models could be trained by historical data from
Dhayanidhi, HukumdeenBalasubramanian, KarthickA, Akash
To conduct RDE (Real-Drive Emission) test on CEV (Construction Equipment Vehicle), the first step is to study the requirements set forth in the regulation [1, 2] for data collection, post-processing of data and emission calculation along with certain requirements for vehicle operation. Conducting tests on CEV machines poses a different set of challenges compared to on-road vehicles, the major one being the placement of PEMS (Portable Emission Measurement Equipment) on the machine under test. No singular method or mechanism can be specified to suit all types of machinery, although certain guidelines can be set for best practices. The requirement of running the machine on an actual duty cycle or a reference duty cycle requires a thorough study of the intended machine operation and also awareness on the multi-functionality setups offered for such machines by manufacturers, before deciding on a duty cycle to run during actual emission testing. Measurement of emission components such as
Chauhan, PratyushKulkarni, S DMore, ManojJoshi, Monal Vishwas
In this study, a novel dual-fuel combustion strategy is investigated, employing late pilot injection in diesel–methane engines to improve performance and reduce emissions. The engine was first tested with conventional diesel and methane, exploring a wide range of pilot injection timings, injection pressures, and intake boost pressures. Subsequently, experiments were repeated using a methane/hydrogen blend to assess the influence of hydrogen addition. Results show that, when using only methane, delayed pilot injections have minimal effects on engine performance. In naturally aspirated operation, unburned hydrocarbons and carbon monoxide are reduced, while in supercharged conditions, emissions increase; however, they remain within acceptable limits. Nitrogen oxides and particulate matter reach their lowest levels with delayed injection. Introducing hydrogen reduces engine performance and hydrocarbons and carbon monoxide emissions; notably, it suppresses the typical nitrogen oxides
Carlucci, Antonio PaoloStrafella, LucianoFicarella, Antonio
22xx
Pasa, Bruno RobertoSilveira, Juliano PereiraFagundez, Jean Lucca SouzaLanzanova, Thompson Diórdinis MetzkaMartins, Mario Eduardo SantosSalau, Nina Paula Gonçalves
This study develops deep learning (DL) long–short-term memory (LSTM) models to predict tailpipe nitrogen oxides (NOx) emissions using real-driving on-road data from a heavy-duty Class 8 truck. The dataset comprises over 4 million data points collected across 11,000 km of driving under diverse road, weather, and load conditions. The effects of dataset size, model complexity, and input feature set on model performance are investigated, with the largest training dataset containing around 3.5 million data points and the most complex model consisting of over 0.5 million parameters. Results show that a large and diverse training dataset is essential for achieving accurate prediction of both instantaneous and cumulative NOx emissions. Increasing model complexity only enhances model performance to a certain extent, depending on the size of the training dataset. The best-performing model developed in this study achieves an R2 higher than 0.9 for instantaneous NOx emissions and less than a 2
Shahpouri, SaeidJiang, LuoKoch, Charles RobertShahbakhti, Mahdi
Hydrogen is a promising alternative to conventional fuels for decarbonizing the commercial vehicle sector due to its carbon-free nature. This study investigates the ignition and flame propagation characteristics of hydrogen in a 2-liter single-cylinder optical research engine representative of the commercial vehicle sector. The main objective was to enable high power density operation while minimizing NOx emissions. For that, ultra-lean combustion was employed to lower in-cylinder temperatures, addressing the challenge of NOx formation. To counteract delayed and unstable combustion under lean conditions, an active pre-chamber ignition system was implemented. It uses a gas-purged pre-chamber with separate hydrogen injection and spark plug ignition. Turbulent hot gas jets from the pre-chamber ignite the fresh mixture in the main combustion chamber, enabling faster and more stable ignition compared to conventional spark plugs. Additionally, the low volumetric energy density of hydrogen
Borken, PhilippBill, DanielLink, LukasDinkelacker, FriedrichHansen, Hauke
This experimental study compared a blend of diesel–DEE (DEE 40% v/v in diesel) with baseline diesel. This experimental study assesses different fuel injection strategies for controlling the in-cylinder charge stratification, such as single, double, and triple injections. The peak in-cylinder pressure under the partially premixed combustion mode was higher than conventional diesel combustion. Higher in-cylinder pressure with increasing dwell time was observed under triple injections. Retarding pilot injections increased the peak in-cylinder pressure. Conventional diesel combustion mode exhibited the highest brake thermal efficiency and lowest emissions with all injection strategies. A longer dwell time of 12° CA showed higher brake thermal efficiency, nitric oxide, and carbon monoxide emissions, whereas hydrocarbon emissions were lower compared to a shorter dwell time of 6° CA. Hydrocarbon and carbon monoxide emissions increased, but nitric oxide and brake thermal efficiency were
Sonawane, UtkarshaAgarwal, Avinash Kumar
Achieving compression ignition (CI) with ethanol, a renewable fuel, comes with challenges because of its much lower cetane number compared to diesel. Additionally, ethanol’s high cooling potential and high volatility compared to diesel also offer challenges and opportunities to achieving robust, high-efficiency CI. Increasing the compression ratio (CR) and expanding the injection strategy beyond a conventional close-coupled pilot-main diesel injection strategy can help overcome these challenges. This work experimentally tested ethanol CI with several different injection strategies with CRs ranging from 16.3 to 22.3. The results showed that in homogeneous charge CI (HCCI), increasing the CR improved thermal efficiency but incurred a combustion efficiency penalty. In any CI concept, increasing the CR lowered the required intake temperature to achieve ignition. Using close-coupled pilot injections is an effective way to achieve ethanol CI, but it was also shown that HCCI-like intake
Gainey, BrianVedpathak, KunalKumar, MohitLawler, Benjamin
Items per page:
1 – 50 of 5058