Browse Topic: Nitrogen oxides
This paper is to introduce a new catalyst family in gasoline aftertreatment. The very well-known three-way catalysts effectively reduce the main emission components resulting from the combustion process in the engine, namely THC, CO, and NOx. The reduction of these harmful emissions is the main goal of emission legislation such as Bharat VI to increase air quality significantly, especially in urban areas. Indeed, it has been shown that under certain operating conditions, three-way catalysts may produce toxic NH3 and the greenhouse gas N2O, which are both very unwanted emissions. In a self-committed approach, OEMs could want to minimize these noxious pollutants, especially if this can be done with no architecture change, namely without additional underfloor catalyst. In most Bharat VI gasoline aftertreatment system architectures, significant amounts of NH3 occur in two phases of vehicle driving: situations with the catalyst temperature below light-off, which appear after cold start or
Environmental pollution is one of the growing concerns of our society. As vehicle emissions are a major contributor to air pollution, emission control is a primary goal of the Automotive industry. Vehicle emissions are higher due to improper combustion, which leads to toxic gases being generated from the exhaust system. Unburnt fuel is one of the leading causes of toxic pollutants such as Carbon Monoxide, Nitric Oxides (NOx) and Hydrocarbons. The catalytic converter converts these gases into less toxic substances such as Carbon Dioxide, Nitrogen, and water vapor. The catalytic converter performs efficiently after reaching its “Light Off” temperature, after which the catalyst becomes active. Hence, elevated temperature of the exhaust gases aids in efficient conversion. Presently, the gases from the exhaust system are approximately at a temperature of 300°C-600°C. This paper outlines the concept of a Peltier (Thermoelectric) Module - based system, which helps maintain the high
The study emphasizes on development of Diesel Exhaust Fluid (DEF) dosing system specifically used in Selective Catalytic Reduction (SCR) of diesel engine for emission control, where a low pressure pumpless DEF dosing system is developed, utilizing compressed air for pressurizing the DEF tank and discharging DEF through air assisted DEF injection nozzle. SCR systems utilize Diesel Exhaust Fluid (DEF) to convert harmful NOx emissions from diesel engines into harmless nitrogen and water vapor. Factors such as improper storage, handling, or refilling practices can lead to DEF contamination which pose significant operational challenges for SCR systems. Traditional piston-type, diaphragm-type, or gear-type pumps in DEF dosing systems are prone to mechanical failures leading to frequent maintenance, repairs, and costly downtimes for vehicles. To overcome the existing challenges and to create a more reliable and simple DEF delivery mechanism the pumpless DEF Dosing system is developed. The
After the implementation of BS-VI emission standards, effective exhaust after-treatment has become critical in minimizing harmful emissions from diesel engines. One significant challenge is the accumulation of hydrocarbons (HC) in the Diesel Oxidation Catalyst (DOC). Certain hydrocarbons may adsorb onto the catalyst surface yet remain unreactive, leading to potential operational inefficiencies. This phenomenon necessitates the desorption of unreactive hydrocarbons to allow space for more reactive species, thereby enhancing oxidation efficiency and overall catalyst performance. The process of desorption (DeSorb) is vital to maintaining the balance of reactive hydrocarbons within the DOC. When a vehicle is idling, unburnt fuel produces hydrocarbons that accumulate in the DOC. Upon acceleration, these hydrocarbons can lead to an uncontrolled rise in temperature, resulting in DOC push-out, catalyst damage, and downstream impacts on the Diesel Particulate Filter (DPF). To mitigate these
To conduct RDE (Real-Drive Emission) test on CEV (Construction Equipment Vehicle), the first step is to study the requirements set forth in the regulation [1, 2] for data collection, post-processing of data and emission calculation along with certain requirements for vehicle operation. Conducting tests on CEV machines poses a different set of challenges compared to on-road vehicles, the major one being the placement of PEMS (Portable Emission Measurement Equipment) on the machine under test. No singular method or mechanism can be specified to suit all types of machinery, although certain guidelines can be set for best practices. The requirement of running the machine on an actual duty cycle or a reference duty cycle requires a thorough study of the intended machine operation and also awareness on the multi-functionality setups offered for such machines by manufacturers, before deciding on a duty cycle to run during actual emission testing. Measurement of emission components such as
Items per page:
50
1 – 50 of 5058