Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 171

Recent Books

Browse All 699

Recently Published

Browse All
This standard is intended to apply to portable compressed gaseous oxygen equipment. When properly configured, this equipment is used either for the administration of supplemental oxygen, first aid oxygen or smoke protection to one or more occupants of either private or commercial transport aircraft. This standard is applicable to the following types of portable oxygen equipment: a Continuous flow 1 Pre-set 2 Adjustable 3 Automatic b Demand flow 1 Straight-demand 2 Diluter-demand 3 Pressure-demand c Combination continuous flow and demand flow.
A-10 Aircraft Oxygen Equipment Committee
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
Twenty-nine percent of the greenhouse gas emissions in the US are produced by the transportation sector according to the US Environmental Protection Agency. The combination of increasingly stringent regulations on emissions and fuel economy, along with the current practical limitations of electrification motivate continued development efforts for improving internal combustion engine efficiency and emissions. Ethanol, an extensive fuel additive or drop-in replacement for gasoline, is already recognized as a promising transition fuel in decarbonization efforts. Furthermore, lean combustion in spark-ignited (SI) engines has been pursued extensively for engine efficiency and emissions improvements. Lean combustion, however, faces the challenges of decreased combustion stability and strong increases to engine-out NOx at conditions where conventional SI engines are stable (ϕ > 0.7). Water dilution, historically used as a knock inhibitor in performance engines, has shown potential for
Voris, AlexLundberg, MattPuzinauskas, Paulius
This specification covers an iron-nickel alloy in the form of strip 0.020 to 0.1874 inch (0.51 to 4.760 mm), inclusive, in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of plate 0.250 to 4.000 inches (6.35 to 101.60 mm), inclusive, in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet, strip, and foil.
AMS F Corrosion and Heat Resistant Alloys Committee
Current regulations (e.g., Title 14 of the United States Code of Federal Regulations, or 14 CFR) define design requirements for oxygen system provisions for protection of crewmembers and passengers following emergency events such as in-flight decompression. This aerospace information report (AIR) addresses the operational oxygen system requirements for a decompression incident that may occur at any point during a long-range flight, with an emphasis for a decompression at the equal time point (ETP). This AIR identifies fuel and oxygen management contingencies and presents possible solutions for the efficient, safe, and optimum fuel/oxygen flight continuation. Oxygen management is a critical concern for all aircraft, ranging from single-engine types operating above 10000 feet to complex, high-performance aircraft equipped with supplemental oxygen systems. Proper planning ensures compliance with regulations and supports pilot and passenger safety at higher altitudes. This document
A-10 Aircraft Oxygen Equipment Committee
This specification covers the procurement of granular heat-treating salts suitable for use in the molten state.
AMS B Finishes Processes and Fluids Committee
The mobility industry is rapidly advancing towards more autonomous modes of transportation with the adoption of sophisticated self-driving technologies. However, a critical challenge, being the lack of standardized norms for defining, measuring, and ensuring vehicle visibility across various dynamic traffic environments, remains. This lack of awareness of visibility is hindering the development of new regulations for color visibility and the controlled transition to a fully integrated and visible autonomous future. While current efforts focus on improving sensing technologies like computer vision, LiDAR systems, and sensor fusion development, two key issues remain unresolved: 1 The absence of a representative and realistic three-dimensional color visibility model for measuring and comparing the visibility of complex shapes with large but varying coated and painted surface areas. 2 The need for enhanced visibility solutions that maintain color freedom while improving detectability for
Mijnen, Paul W.Moerenburg, Joost H.
As the adoption of battery electric vehicles (BEVs) continues to rise, analyzing their performance under varying environmental conditions that affect energy consumption has become increasingly important. A critical factor influencing the efficiency of BEVs is the heat loss from the operation and interaction between the vehicle components, such as the battery and motor, and the surrounding temperature. This study presents a comprehensive analysis of the thermal interaction in BEVs by integrating hub motor vehicle and battery electrochemical model with environmental factors. It explores how ambient temperature variations influence the performance of EV components, particularly the motors and battery systems, in both hot and cold weather conditions. The simulations also consider the passenger comfort inside the cabin as it investigates the effects of operating the air-conditioning system on overall energy consumption, revealing significant energy consumption shifts during extreme ambient
Abdullah, MohamedZhang, Xi
A DRL (deep reinforcement learning) algorithm, DDPG (deep deterministic policy gradient), is proposed to address the problems of slow response speed and nonlinear feature of electro-hydrostatic actuator (EHA), a new type of actuation method for active suspension. The model-free RL (reinforcement learning) and the flexibility of optimizing general reward functions are combined with the ability of neural networks to deal with complex temporal problems through the introduction of a new framework called “actor-critic”. A EHA active suspension model is developed and incorporated into a 7-degrees-of-freedom dynamics model of the vehicle, with a reward function consisting of the vehicle dynamics parameters and the EHA pump–valve control signals. The simulation results show that the strategy proposed in this article can be highly adapted to the nonlinear hydraulic system. Compared with iLQR (iterative linear quadratic regulator), DDPG controller exhibits better control performance, achieves
Wang, JiaweiGuo, HuiruDeng, Xiaohe
This specification covers an aluminum alloy in the form of sheet and plate 0.020 to 6.000 inches (0.551 to 152.4 mm), inclusive, in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
The present study aims to simulate the non-reacting flow within the cylinder of a two-stroke spark ignition internal combustion engine (SIE) utilizing gasoline direct injection (GDI). A computational fluid dynamics (CFD) analysis was employed to forecast the turbulence levels of the in-cylinder flow, including the root-mean-square (RMS) turbulent velocity. The three-dimensional model was developed using ANSYS-FLUENT. The investigation examined the intake manifold inclination angles of 0°, 10°, 20°, 30°, and 40° for two different types of single-intake port engines (I and II) and a single-type double-intake port engines, that are presented at an engine speed of 1500 rpm. The findings revealed that the highest RMS turbulent velocities occurred at a 30° inclination for the double-intake engine, while the single-intake engines (I) and (II) showed peak velocities at 0° and 10°, respectively. Furthermore, in single-intake engine (I), the RMS turbulent velocity was found to be 38.7% greater
Soliman, MohabElbadawy, Ibrahim
Urea–water solution (UWS) is sprayed during selective catalytic reduction (SCR) in the aftertreatment system of a diesel engine. UWS decomposes to ammonia and reacts with harmful nitrogen oxides present in exhaust gas to convert it to harmless nitrogen and water vapor. The interaction of UWS spray droplets with the hot wall of the aftertreatment system plays a crucial role in the performance and life of the aftertreatment system used in modern diesel engines for emission control. We report here a comprehensive experimental investigation on the normal impact of UWS droplets on the heated wall of stainless steel (SS410), mimicking the droplet–wall interaction in an SCR aftertreatment system. We have built a regime map underlying the possible outcomes under operating conditions encountered in an SCR system. The transition zones are identified, and the complex transition dynamics from one regime to another are discussed. Finally, we investigate and discuss the universality of the non
Singh, Kartikeya K.Deka, HiranyaPandey, VinodKhot, AmbarishBasak, NarendranathShastry D. M., Channaveera
In recent years, there has been a significant rise in research focused on estimating the base pressure (Pb) characteristics of convergent–divergent nozzles with sudden expansion regions. This study explores the use of geometrical parameters as a control strategy for nozzles experiencing abrupt expansion at supersonic Mach numbers within an axisymmetric duct. It focuses on four distinct novel expansion duct configurations: square nozzle (SN), step square nozzle (SSN), curved nozzle (CN), and double curved nozzle (DCN). In this work, the high-speed compressible flow investigation is carried out numerically using control volume method on the nozzle with a fixed area ratio (AR) and L/D nozzle. Standard k-ε turbulence model is used in the analysis to access the recirculation region formed near the nozzle walls. The recirculation zone directly influences the Pb and shock cell. For NPR range from 2 to 10, SSN and CN shows an increase in Pb, which further increases the thrust and decreases the
Raj, R. JiniKumar, P. DeepakPanchksharayya, D. V.Kousik Kumaar, R.Praveen, N.
Due to increasingly stringent emission regulations, advanced combustion strategies, such as premixed charge compression ignition (PCCI), have emerged promising solutions for achieving low NOx and soot emissions. However, challenges such as increased unburned hydrocarbon (HC), carbon monoxide (CO) emissions, and a restricted engine operating load range remain unsolved. Since conventional diesel engines are not inherently designed for PCCI operation, re-optimizing engine parameters is essential. The primary objective of this work is to investigate the influence of injector orientation and nozzle spray angle on combustion parameters, performance, and emissions in a PCCI diesel engine. Initial parametric studies revealed that early direct injection combined with high fuel injection pressure limited the PCCI load range to 30% and 60% of the rated capacity with diesel, without and with EGR, respectively, accompanied by higher HC and CO emissions. To address these limitations, the injector
Ranjan, Ashish PratapKrishnasamy, Anand
This SAE Recommended Practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with spark ignition (SI) engines and compression ignition (CI) engines for land vehicles. Current legal definitions only distinguish between “Unleaded Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
Fuel Systems Standards Committee
This document establishes general design criteria, tolerances, and limits of application for tooling, fixtures, and accessories for mounting and driving gas turbine engine rotors on horizontal and vertical balancing machines.
EG-1A Balancing Committee
This specification covers a high-strength, corrosion-resistant alloy in the form of bar up to 1.75 inches (44.4 mm) in diameter (see 8.2).
AMS F Corrosion and Heat Resistant Alloys Committee
This standard establishes the recommended requirements for application of AMS3144 anodic electrodeposition primer to aerospace components. Adherence to these requirements will help facilitate satisfactory performance of the applied primer.
AMS G8 Aerospace Organic Coatings Committee
This specification covers a high-strength, corrosion-resistant alloy in the form of bars up to 1.75 inches (44.4 mm) in diameter (see 8.2).
AMS F Corrosion and Heat Resistant Alloys Committee
In the heavy-duty commercial trucks sector, selecting the most energy-efficient vehicle can enable great reductions of the fleet operating costs associated with energy consumption and emissions. Customization and selection of the vehicle design among all possible options, also known as “vehicle specification,” can be formulated as a design space exploration problem where the objective is to find the optimal vehicle configuration in terms of minimum energy consumption for an intended application. A vehicle configuration includes both vehicle characteristics and powertrain components. The design space is the set of all possible vehicle configurations that can be obtained by combining the different powertrain components and vehicle characteristics. This work considers Class 8 heavy-duty trucks (gross combined weight up to 36,000 kg). The driving characteristics, such as the desired speed profile and the road elevation along the route, define the intended application. The objective of the
Villani, ManfrediPandolfi, AlfonsoAhmed, QadeerPianese, Cesare