Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 161

Recent Books

Browse All 976

Recently Published

Browse All
This document describes analytical methods for calculating the attenuation of the level of the sound propagating from an airplane to locations on the ground and to the side of the flight path of an airplane during ground roll, climbout after liftoff, and landing operations. Both level and non-level ground scenarios may be modeled using these methods, however application is only directly applicable to terrain without significant undulations, which may cause multiple reflections and/or multiple shielding effects. This attenuation is termed lateral attenuation and is in excess of the attenuation from wave divergence and atmospheric absorption. The methods for calculating the lateral attenuation of the sound apply to: turbofan-powered transport-category airplanes with engines mounted at the rear of the fuselage (on the sides of the fuselage or in the center of the fuselage as well as on the sides) or under the wings propeller-driven transport-category or general-aviation airplanes
A-21 Aircraft Noise Measurement Aviation Emission Modeling
This AIR presents an abbreviated review of the metallurgical phenomena known as whiskers. It is not all encompassing; rather, it is intended to introduce the design engineer to the technical issues of metallic whiskers, their formation, and the potentially dangerous problems they can cause
AMS B Finishes Processes and Fluids Committee
With the extensive production and widespread use of plastics, the issue of environmental pollution caused by plastic waste has become increasingly prominent. Consequently, researchers have been focusing on developing efficient methodologies for upcycling waste plastics and converting them into value-added materials. This hybrid review–conceptual article first provides an overview of strategies for upcycling waste plastic into carbon-capturing materials. It presents carbonization and activation as key steps in converting plastic waste into adsorbent materials and explores strategies for converting common waste plastics. Building upon this foundation, the article introduces and conceptualizes a novel upcycling approach with two manufacturing routes to convert plastic waste into carbon-capturing materials using supercritical fluid (ScF)-assisted injection molding process. It continues by investigating the potential of developing lightweight components made of such carbon-capturing
Pirani, MahdiMeiabadi, Mohammad SalehMoradi, MahmoudEnriquez, Lissette GarciaSreenivasan, Sreeprasad T.Farahani, Saeed
This SAE Aerospace Recommended Practice (ARP) establishes a method for evaluating the particulate matter extracted from the working fluid of a hydraulic system or component using a membrane. The amount of particulate matter deposited on the membrane due to filtering a given quantity of fluid is visually compared against a standard membrane in order to provide an indication of the cleanliness level of the fluid
A-6C1 Fluids and Contamination Control Committee
This document presents minimum criteria for the design and installation of LED assemblies in aircraft. The use of "shall" in this specification expresses provisions that are binding. Nonmandatory provisions use the term "should
A-20C Interior Lighting
This SAE Aerospace Recommended Practice (ARP) establishes design, manufacturing performance and test requirements for linear mechanical actuators intended to be used for linear motion applications in response to manual or automatic power control system inputs. It is applicable, but not confined to, ball screws, sliding contact screws, roller screws, helical splines, rack and pinion assemblies, and skewed roller actuators. It is a reference for preparing detail specifications for mechanical actuators compatible and applicable to military or commercial aircraft systems
A-6B3 Electro-Mechanical Actuation Committee
This SAE Aerospace Information Report (AIR) discusses the forms that air may take in aircraft hydraulic systems. Further, the effects of the various air forms on system operation are addressed. Recommended system design to prevent air effects and maintenance procedures to prevent and remove air are provided. Nitrogen leakage from accumulators is also a source of gas in hydraulic systems and may compose a portion of the “air” in the hydraulic system. The term “air” in this report does not differentiate between a gas composed strictly of normal atmospheric air or one that includes a mixture of additional nitrogen as well. The discussions of the report apply equally with any proportions of atmospheric air and nitrogen in the system
A-6C1 Fluids and Contamination Control Committee
This specification covers requirements for the superfinishing of High Velocity Oxygen/Fuel (HVOF) applied tungsten carbide thermal spray coatings
AMS B Finishes Processes and Fluids Committee
As countries around the world attach more importance to carbon emissions and more stringent requirements are put forward for vehicle emissions, hybrid vehicles, which can significantly reduce emissions compared with traditional fuel vehicles, as well as low-viscosity lubricating oil, have become significant trends in the industry. In this article, a total of nine vehicles of 48 V mild-hybrid models and full-hybrid models are tested. Using three kinds of low-viscosity lubricating oil and driving a total of 120,000 km in environments with low temperature, high humidity, high temperature, or high altitude, the engines are then disassembled and scored. The effects of the four extreme environments on the engine starts–stops, ignition advance angle, engine power, state of charge (SOC), acceleration performance, and oil consumption characteristics of hybrid vehicles are studied; the oxidation characteristics and iron content change characteristics of low-viscosity lubricating oil are analyzed
Zhu, GezhengtingPan, JinchongHua, LunShao, HengZhang, HengHu, HuaJiang, JiandiLuo, YitaoYan, JingfengXu, ZhengxinJiao, YanWei, Guangyuan
Due to manufacturing, assembly, and actuator wear, slight deviations between the actual and logical positions of various gears in a transmission system may accumulate, affecting shift quality, reducing shift accuracy, and causing operational anomalies. To address this issue, a self-learning method based on the top dead center (TDC) and lower dead center (LDC) was proposed, specifically for the hybrid gearbox of an electric torque converter (eTC) module and a double-input shaft gearbox (DIG). The linear active disturbance rejection control (LADRC) method was employed to estimate and manage the nonlinear resistance during the motion of the shifting motor. To simplify the controller parameter problem, the nutcracker optimization algorithm (NOA) was utilized to tune the LADRC parameters, thereby optimizing the position self-learning process. The control strategy was modeled using MATLAB/SIMULINK, and its reasonableness was verified through hardware-in-the-loop (HIL) tests. Based on these
Hong, HanchiQuan, Kangningd’Apolito, LuigiXu, Li
To address the issues of unreasonable collision avoidance path planning algorithms and inadequate safety in high-speed scenarios, a trajectory prediction-based collision avoidance path planning algorithm has been proposed. First, a trajectory prediction model is constructed using the long–short-term memory (LSTM) network, and the trajectory prediction model is trained and tested with the HighD dataset. Second, the future trajectory of the obstacle car is predicted, the future trajectory information of the two cars is combined to generate the lane-changing decision, and the three-times B-spline curves are used to generate the collision avoidance path clusters. The optimal collision avoidance paths are generated based on the multi-objective optimization function. Finally, build a MATLAB/CarSim simulation platform to verify the reasonableness and safety of the planned paths by taking the three scenarios of the continuous overtaking, preceding car pulling out, and the neighboring car
Liu, Xiao LongZhang, LeiLi, Peng KunXie, RuWang, QingLi, Ran Ran
From biology, to genetics, and paleontology, these fields share the DNA as a common and time-proven tool. In science, pressure may be such a tool, shared by thermodynamics, material science, and astrophysics, but not by aerodynamics. Pressure is a shorthand for a force acting perpendicular to a surface. When this surface is reduced to zero, so should the pressure. The wing area of an aircraft acts as a reference area to calculate its parasite drag coefficient. In this scenario, the parasite drag acts as a force over the wing area. If the wing area is reduced to zero, its parasite drag does not, as the fuselage is still generating parasite drag. The ratio of the parasite drag and wing area is an example of a pressure construct that uses a physically irrelevant reference area and has no absolute zero. Pressure constructs, more frequently used than pressures in aerodynamics, are a math-based parameter that preserve dimensional propriety according to the Buckingham Pi theorem but lacks a
Burgers, Phillip
In order to deploy renewable energy sources for balanced power generation and consumption, batteries are crucial. The large weight and significant drain on the energy efficiency of conventional batteries urge the development of structural batteries storing electrical energy in load-bearing structural components. With the current shift to a green economy and growing demand for batteries, it is increasingly important to find sustainable solutions for structural batteries as well. Sustainable structural batteries (SSBs) have strong attraction due to their lightweight, design flexibility, high energy efficiency, and reduced impact on the environment. Along with sustainability, these structural batteries increase volumetric energy density, resulting in a 20% increase in efficiency and incorporate energy storage capabilities with structural components, realizing the concept of massless energy storage. However, the significant problems in commercializing SSBs are associated with their
Kusekar, Sambhaji KashinathPirani, MahdiBirajdar, Vyankatesh DhanrajBorkar, TusharFarahani, Saeed
The comfort of seats increasingly becomes a crucial factor in the overall driving experience, particularly as vehicles become increasingly integrated into people’s daily lives. Passengers often maintain a relatively fixed posture and have close contact with the seat for extended periods of time, leading to issues such as heat, humidity, and stickiness. In order to enhance the thermal comfort experienced by occupants, manufacturers are no longer satisfied with ensuring the thermal comfort performance of vehicles only through the HVAC system in the cabin, but also developed a microclimate control seat that adjusts the temperature through ventilation between the contact surface of the seat and the human body, trying to improve the thermal comfort of passengers more effectively. However, the ventilation ducts of these seats are commonly designed based on empirical or autonomous standards, and their effectiveness is subsequently assessed through test or simulation, typically under unloaded
Zhang, TianmingRen, JindongZhang, Haonan