Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 163

Recent Books

Browse All 976

Recently Published

Browse All
Additive manufacturing technologies, particularly wire arc additive manufacturing (WAAM), have gained recognition for their ability to produce large metallic components efficiently and cost-effectively. This study investigates both the mechanical properties and microstructure of 304L austenitic stainless steel produced via WAAM, focusing on orientation-dependent behavior. Tensile specimens were prepared in transversal, diagonal, and longitudinal orientations according to ASTM E8 standards, and their mechanical properties were evaluated. The results show that the diagonal sample exhibited the highest tensile strength of 555 MPa with an elongation of 47.9%, while the longitudinal sample demonstrated the highest ductility with a notable elongation of 61.4%. Microstructural analysis, including scanning electron microscopy (SEM), revealed refined grain structures and alignment that influenced mechanical properties and stress distribution. Hardness measurements showed an increase across all
Navaneethasanthakumar, S.Suresh, R.Santhosh, V.Godwin Raja Ebenezer, N.Sankarapandian, S.
Fused deposition modeling (FDM) is a rapidly growing additive manufacturing method employed for printing fiber-reinforced polymer composites. Nonetheless, the performance of printed parts is often constrained by inherent defects. This study investigates how the varying annealing parameter affects the tribological properties of FDM-produced polypropylene carbon fiber composites. The composite pin specimens were created in a standard size of 35 mm height and 12 mm diameter, based on the specifications of the tribometer pin holder. The impact of high-temperature annealing process parameters are explored, specifically annealing temperature and duration, while maintaining a fixed cooling rate. Two set of printed samples were taken for post-annealing at temperature of 85°C for 60 and 90 min, respectively. The tribological properties were evaluated using a dry pin-on-disc setup and examined both pre- (as-built) and post-annealing at temperature of 85°C for 60 and 90 min printed samples
Nallasivam, J.D.Sundararaj, S.Kandavalli, Sumanth RatnaPradab, R.
This report explores the move from traditional industry practices to emerging technologies, specifically the integration of artificial intelligence (AI) solutions in engineering service sectors. It highlights the increasing problem of “technology washing,” when organizations overstate (sometimes deceivingly) their technology abilities and ethics, posing challenges to accountability, transparency, and trust in various fields. The rise of AI-based solutions in sectors like autonomous mobility, manufacturing, and aerospace has exposed a contrast between ambitious future aspirations and current technological barriers. With this, the role of human knowledge in guaranteeing ethical, efficient, and clear technology incorporation becomes essential. Starting with an examination of today’s technological scene, this report tackles topics such as the buzz around autonomous systems and the difficulties of standardizing fresh innovations. It also points out the problem of organizations exaggerating
Khan, Samir
Artificial intelligence (AI) is poised to significantly impact metal additive manufacturing (AM). Understanding how one might use AI in AM is challenging because AM experts are not AI experts, nor the other way around. This document introduces AI in AM and guides researchers in accessing relevant literature. It also discusses the hype surrounding AI in AM, the rush to publish peer-reviewed papers that use AI in AM, and the resulting uneven quality of the literature. Conclusions regarding the application of AI in both large and small enterprises are discussed. This document is intended to help illuminate AI in AM for Hands-on engineers who need to quickly understand what levels of problems they might encounter when dealing with AI in AM Engineering managers who need to stay current on emerging trends in their technical realm of responsibilities Policymakers who may not have the relevant technical expertise Faculty and students who want an introduction to AI in AM NOTE: SAE Edge Research
King, Wayne
The aim of the article is to evaluate the effect of the cooling system on the NVH behavior of traction permanent magnets synchronous motors (PMSMs). An effective numerical method is proposed for modeling the fluid–structure interaction in the cooling system of PMSMs. A simplified physical prototype of a cooling jacket of a PMSM is realized by welding two concentric tubes with an internal cavity filled by coolant. A finite element model of the structure is realized. The coolant is modeled as an acoustic domain to account for the fluid–structure interaction in the cavity and a coupled acoustic–structural dynamic problem is solved. The model is validated by experimental modal tests conducted on the prototype of the cooling jacket both with and without the presence of coolant. The validated model is employed to quantify the effect of the cooling system on a real PMSM. The structure of a 10-poles, 12-slots electric machine is modeled by means of finite element method. The model includes the
Barri, DarioSoresini, FedericoBallo, FedericoLucà, FrancescantonioManzoni, StefanoGobbi, MassimilianoMastinu, Giampiero
Verifying training datasets in vision-based vehicle safety applications is crucial to understanding the potential limitations of detection capabilities that may result in a higher safety risk. Vision-based pedestrian safety applications with crash avoidance technologies rely on prompt detection to avoid a crash. This research aims to develop a verification process for vulnerable road user safety applications with vision-based detection functionalities. It consists of reviewing the application’s safety requirements, identifying the target objects of detection in the operational design domain and pre-crash scenarios, and evaluating the safety risks qualitatively by examining the training dataset based on the results of pre-crash scenarios classification. As a demonstration, the process is implemented using open-source pedestrian tracking software, and the pre-crash scenarios are classified based on the trajectories of pedestrians in an example training dataset used in a pedestrian
Hsu, Chung-Jen
The increased connectivity of vehicles expands the attack surface of in-vehicle networks, enabling attackers to infiltrate through external interfaces and inject malicious traffic. These malicious flows often contain anomalous semantic information, potentially leading to misleading control instructions or erroneous decisions. While most semantic-based anomaly detection methods for in-vehicle networks focus on extracting semantic context, they often overlook interactions and associations between multiple semantics, resulting in a high false positive rate (FPR). To address these challenges, the Adaptive Structure Graph Attention Network Model (AS-GAT) is proposed for in-vehicle network anomaly detection. Our approach combines a semantic extractor with a continuously updated graph structure learning method based on attention weight similarity constraints. The semantic extractor identifies semantic features within messages, while the graph structure learning module adaptively updates the
Luo, FengLuo, ChengWang, JiajiaLi, Zhihao
This AIR presents an abbreviated review of the metallurgical phenomena known as whiskers. It is not all encompassing; rather, it is intended to introduce the design engineer to the technical issues of metallic whiskers, their formation, and the potentially dangerous problems they can cause
AMS B Finishes Processes and Fluids Committee
This SAE Aerospace Recommended Practice (ARP) establishes a method for evaluating the particulate matter extracted from the working fluid of a hydraulic system or component using a membrane. The amount of particulate matter deposited on the membrane due to filtering a given quantity of fluid is visually compared against a standard membrane in order to provide an indication of the cleanliness level of the fluid
A-6C1 Fluids and Contamination Control Committee
This document presents minimum criteria for the design and installation of LED assemblies in aircraft. The use of "shall" in this specification expresses provisions that are binding. Nonmandatory provisions use the term "should
A-20C Interior Lighting
This SAE Aerospace Recommended Practice (ARP) establishes design, manufacturing performance and test requirements for linear mechanical actuators intended to be used for linear motion applications in response to manual or automatic power control system inputs. It is applicable, but not confined to, ball screws, sliding contact screws, roller screws, helical splines, rack and pinion assemblies, and skewed roller actuators. It is a reference for preparing detail specifications for mechanical actuators compatible and applicable to military or commercial aircraft systems
A-6B3 Electro-Mechanical Actuation Committee
This document describes analytical methods for calculating the attenuation of the level of the sound propagating from an airplane to locations on the ground and to the side of the flight path of an airplane during ground roll, climbout after liftoff, and landing operations. Both level and non-level ground scenarios may be modeled using these methods, however application is only directly applicable to terrain without significant undulations, which may cause multiple reflections and/or multiple shielding effects. This attenuation is termed lateral attenuation and is in excess of the attenuation from wave divergence and atmospheric absorption. The methods for calculating the lateral attenuation of the sound apply to: turbofan-powered transport-category airplanes with engines mounted at the rear of the fuselage (on the sides of the fuselage or in the center of the fuselage as well as on the sides) or under the wings propeller-driven transport-category or general-aviation airplanes
A-21 Aircraft Noise Measurement Aviation Emission Modeling
This SAE Aerospace Information Report (AIR) discusses the forms that air may take in aircraft hydraulic systems. Further, the effects of the various air forms on system operation are addressed. Recommended system design to prevent air effects and maintenance procedures to prevent and remove air are provided. Nitrogen leakage from accumulators is also a source of gas in hydraulic systems and may compose a portion of the “air” in the hydraulic system. The term “air” in this report does not differentiate between a gas composed strictly of normal atmospheric air or one that includes a mixture of additional nitrogen as well. The discussions of the report apply equally with any proportions of atmospheric air and nitrogen in the system
A-6C1 Fluids and Contamination Control Committee
This specification covers requirements for the superfinishing of High Velocity Oxygen/Fuel (HVOF) applied tungsten carbide thermal spray coatings
AMS B Finishes Processes and Fluids Committee
With the extensive production and widespread use of plastics, the issue of environmental pollution caused by plastic waste has become increasingly prominent. Consequently, researchers have been focusing on developing efficient methodologies for upcycling waste plastics and converting them into value-added materials. This hybrid review–conceptual article first provides an overview of strategies for upcycling waste plastic into carbon-capturing materials. It presents carbonization and activation as key steps in converting plastic waste into adsorbent materials and explores strategies for converting common waste plastics. Building upon this foundation, the article introduces and conceptualizes a novel upcycling approach with two manufacturing routes to convert plastic waste into carbon-capturing materials using supercritical fluid (ScF)-assisted injection molding process. It continues by investigating the potential of developing lightweight components made of such carbon-capturing
Pirani, MahdiMeiabadi, Mohammad SalehMoradi, MahmoudEnriquez, Lissette GarciaSreenivasan, Sreeprasad T.Farahani, Saeed
To address the issues of unreasonable collision avoidance path planning algorithms and inadequate safety in high-speed scenarios, a trajectory prediction-based collision avoidance path planning algorithm has been proposed. First, a trajectory prediction model is constructed using the long–short-term memory (LSTM) network, and the trajectory prediction model is trained and tested with the HighD dataset. Second, the future trajectory of the obstacle car is predicted, the future trajectory information of the two cars is combined to generate the lane-changing decision, and the three-times B-spline curves are used to generate the collision avoidance path clusters. The optimal collision avoidance paths are generated based on the multi-objective optimization function. Finally, build a MATLAB/CarSim simulation platform to verify the reasonableness and safety of the planned paths by taking the three scenarios of the continuous overtaking, preceding car pulling out, and the neighboring car
Liu, Xiao LongZhang, LeiLi, Peng KunXie, RuWang, QingLi, Ran Ran
As countries around the world attach more importance to carbon emissions and more stringent requirements are put forward for vehicle emissions, hybrid vehicles, which can significantly reduce emissions compared with traditional fuel vehicles, as well as low-viscosity lubricating oil, have become significant trends in the industry. In this article, a total of nine vehicles of 48 V mild-hybrid models and full-hybrid models are tested. Using three kinds of low-viscosity lubricating oil and driving a total of 120,000 km in environments with low temperature, high humidity, high temperature, or high altitude, the engines are then disassembled and scored. The effects of the four extreme environments on the engine starts–stops, ignition advance angle, engine power, state of charge (SOC), acceleration performance, and oil consumption characteristics of hybrid vehicles are studied; the oxidation characteristics and iron content change characteristics of low-viscosity lubricating oil are analyzed
Zhu, GezhengtingPan, JinchongHua, LunShao, HengZhang, HengHu, HuaJiang, JiandiLuo, YitaoYan, JingfengXu, ZhengxinJiao, YanWei, Guangyuan
Due to manufacturing, assembly, and actuator wear, slight deviations between the actual and logical positions of various gears in a transmission system may accumulate, affecting shift quality, reducing shift accuracy, and causing operational anomalies. To address this issue, a self-learning method based on the top dead center (TDC) and lower dead center (LDC) was proposed, specifically for the hybrid gearbox of an electric torque converter (eTC) module and a double-input shaft gearbox (DIG). The linear active disturbance rejection control (LADRC) method was employed to estimate and manage the nonlinear resistance during the motion of the shifting motor. To simplify the controller parameter problem, the nutcracker optimization algorithm (NOA) was utilized to tune the LADRC parameters, thereby optimizing the position self-learning process. The control strategy was modeled using MATLAB/SIMULINK, and its reasonableness was verified through hardware-in-the-loop (HIL) tests. Based on these
Hong, HanchiQuan, Kangningd’Apolito, LuigiXu, Li
From biology, to genetics, and paleontology, these fields share the DNA as a common and time-proven tool. In science, pressure may be such a tool, shared by thermodynamics, material science, and astrophysics, but not by aerodynamics. Pressure is a shorthand for a force acting perpendicular to a surface. When this surface is reduced to zero, so should the pressure. The wing area of an aircraft acts as a reference area to calculate its parasite drag coefficient. In this scenario, the parasite drag acts as a force over the wing area. If the wing area is reduced to zero, its parasite drag does not, as the fuselage is still generating parasite drag. The ratio of the parasite drag and wing area is an example of a pressure construct that uses a physically irrelevant reference area and has no absolute zero. Pressure constructs, more frequently used than pressures in aerodynamics, are a math-based parameter that preserve dimensional propriety according to the Buckingham Pi theorem but lacks a
Burgers, Phillip