Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 156

Recent Books

Browse All 972

Recently Published

Browse All
A novel design for a radial field switching reluctance motor with a sandwich-type C-core architecture is proposed. This approach combines elements of both traditional axial and radial field distribution techniques. This motor, similar to an in-wheel construction, is mounted on a shared shaft and is simple to operate and maintain. The rotor is positioned between the two stators in this configuration. The cores and poles of the two stators are separated from one another both magnetically and electrically. Both stators can work together or separately to produce the necessary torque. This adds novelty and improves the design’s suitability for use with electrical vehicles (EVs). A good, broad, and adaptable torque profile is provided by this setup at a modest excitation current. This work presents the entire C-core radial field switched reluctance motor (SRM) design process, including the computation of motor parameters through computer-aided design (CAD). The CAD outputs are verified via
Patel, Nikunj R.Mokariya, Kashyap L.Chavda, Jiten K.Patil, Surekha
ABSTRACT To realize the full potential of simulation-based evaluation and validation of autonomous ground vehicle systems, the next generation of modeling and simulation (M&S) solutions must provide real-time closed-loop environments that feature the latest physics-based modeling approaches and simulation solvers. Real-time capabilities enable seamless integration of human-in/on-the-loop training and hardware-in-the-loop evaluation and validation studies. Using an open modular architecture to close the loop between the physics-based solvers and autonomy stack components allows for full simulation of unmanned ground vehicles (UGVs) for comprehensive development, training, and testing of artificial intelligence vehicle-based agents and their human team members. This paper presents an introduction to a Proof of Concept for such a UGV M&S solution for severe terrain environments with a discussion of simulation results and future research directions. This conceptual approach features: 1
Misko, SamuelFree, ArnoldSivashankar, ShivaKluge, TorstenVantsevich, VladimirHirshkorn, MartinMorales, AndresBrascome, James MichaelRose, ShaylaBowen, NicZhang, SiyanGhasemi, MasoodGardner, StevenFiorini, PierreMaddela, MadhurimaJayakumar, ParamsothyGorsich, DavidManning, ChrisThurau, MatthiasRueddenklau, NicoZachariah, GibinDennis, EvaCostello, Ian
ABSTRACT This paper describes the development of a Battery Management System (BMS) State of Charge/Health (SOC/SOH) algorithm that was developed and proven for three different lithium ion based cell chemistries (nanophosphate, lithium manganese oxide, lithium iron phosphate). In addition, a universal BMS architecture based on this algorithm was developed that can support other chemistries, capacities, and formats. Algorithm performance was compared to actual data in the laboratory environment and also to data from a lithium iron phosphate hybrid electric vehicle pack that was integrated with an XM1124 hybrid electric HMMWV operating in a vehicle environment under realistic conditions. The system demonstrated accuracy within 5% in a software upgradeable, low cost package
Pilvelait, BruceRentel, CarlosPlett, Gregory L.Marcel, MikeCarmen, Dave
ABSTRACT Lidar, Sonar, and Vision-based measurements are often used to preview terrain topology for unmanned ground vehicles. Environmental conditions such as wet or snow-covered roads, shadows, superficial ground coverings, and deceptive surface textures can lead to erroneous measurements. Tactile terrain prediction is both an alternative and a supplement to existing measurement systems. Tactile feedback from an array of low-cost sensors on the moving vehicle is used to generate low wave-number terrain profile predictions. This paper presents tactile terrain prediction results evaluated on four unique courses. Prediction error data are presented up to 25m in front of the vehicle. Results indicate 0.02-0.2m RMS error and 0.18-1.0m peak error at a 10m look-ahead distance. As expected, the prediction errors decrease exponentially as the look-ahead distance decreases. The relatively small prediction errors suggest that the proposed tactile terrain prediction method is a viable low-cost
Southward, Steve
ABSTRACT The dynamic simulation of multibody tracked vehicles offers engineers a powerful tool with which they may analyze and design. Currently, parts of these complex mechanisms are introduced to multibody algorithms as rigid bodies. Then in a follow-on structural analysis, the loads from the multibody dynamic simulation are input to calculate strains and stresses within the bodies. The present investigation aims to establish appropriate means by which flexible three-dimensional track links, which allow large relative rotation between the elements, can be modeled. This will pave the way towards the incorporation of detailed flexible structural models into a multibody dynamic simulation environment allowing for an integrated solution. In addition, a new formulation for the interaction between the rigid sprocket teeth and flexible chain is presented. Numerical results are introduced to illustrate the effects of flexible links on the dynamics of tracked vehicles
Jayakumar, ParamsothyContreras, UlyssesLetherwood, Mike D.Hamed, Ashraf M.Mohamed, Abdel-Nasser A.Shabana, Ahmed A.
ABSTRACT This report documents the investigation of a vibration-based diagnostic approach developed for automotive transmissions. Data was recorded throughout three durability tests that were conducted by the transmission OEM. Rebuilt transmissions were operated around the clock under the most demanding speed and load set-points until critical gear or bearing failures resulted in loss of operability. The analysis results indicate that an embedded diagnostic and predictive capability can be implemented for military ground vehicle transmissions using vibration-based techniques. The results also specifically show an early indication of a fault condition is possible three weeks before failure for the test transmission. A technique for detecting solenoid faults using only the existing control signals rather than response measurements comparison that does not require the installation of additional sensors was also developed through this effort and will be discussed. This paper highlights the
Lebold, MitchellPflumm, ScottHines, JasonBanks, JeffreyBednar, JonathanMarino, LarryBechtel, Jim
ABSTRACT This paper presents a quantitative analysis and comparison of fuel economy and performance of a series hybrid electric HMMWV (High Mobility Multi-purpose Wheeled Vehicle) military vehicle with a conventional HMMWV of equivalent size. Hybrid vehicle powertrains show improved fuel economy gains due to optimized engine operation and regenerative braking. In this paper, a methodology is presented by which the fuel economy gains due to optimized engine are isolated from the fuel economy gains due to regenerative braking. Validated vehicle models as well as data collected on test tracks are used in the quantitative analysis. The regenerative braking of the hybrid HMMWV is analyzed in terms of efficiency from the kinetic energy at the wheels to the portion of regenerative power which is retrievable by the battery. The engine operation of both the series hybrid and conventional HMMWV are analyzed using a 2-D bin analysis methodology. Finally, the vehicle model is used to make
Nedungadi, AshokMasrur, AbulKhalil, Gus
ABSTRACT Crowdsourcing is an overarching term that denotes a number of ways to use the web as means to enlist a large number of individuals to perform a particular task. The tasks can range from simply providing an opinion, to contributing material, to solving a problem. Because the term crowdsourcing is used to denote a variety of activities in many different contexts, strong opinions have formed in many minds. This paper is an attempt to inform the reader of the complexity that underlies the simple term “crowdsourcing.” We then describe the connection between the DARPA Adaptive Vehicle Make program with the potential limitations of crowdsourcing complex tasks using examples from industry. Using these examples, we present a research motivation detailing areas to be improved within current crowdsourcing frameworks. Finally, an agent-based simulation using machine learning techniques is defined, preliminary results are presented, and future research directions are described
Gerth, Richard J.Burnap, AlexPapalambros, Panos
ABSTRACT This paper describes next generation modeling tools to solve a basic problem of concept analysis, which is the lack of component models that realistically estimate the performance of technology that has yet to be fully reduced to specific products. Three important classes of electric power components essential to future Army vehicles are addressed: integrated electric machines, battery energy storage, and traction motor drives. Behavior models are delivered in a common software simulation “wrapper” with a limited number of user settings that allow the ratings of the component to be scaled to the performance required by the vehicle concept represented in a larger simulation. This approach captures expert knowledge about components so the systems engineer managing the concept analysis can create reliable simulations quickly
Mazzola, Michael S.Molen, G. MarshallPhillips, StephenYoung, MatthewBillberry, CharlesCard, AngelaGafford, JamesKramer, DenisePozolo, Michael
ABSTRACT As military vehicles expand in mission roles and in offensive and defensive weaponry, there is an ever-increasing demand for greater energy storage. Moreover, with the technological breakthroughs in Direct Energy Weapons and Active Protective Systems (e.g., high-energy laser and high-power microwave systems, especially for prevention of UAVs), there is a commensurate need for increased energy density military power supplies to provide electrification to these Next Generation Combat Vehicles (Lynx, Griffin III, and CV-90). Current lithiumion batteries for vehicles (e.g., 6T) have limited energy density (~100 Wh/kg), which are not sufficient for the high energy and power needs of military vehicles. Additionally, they typically use carbonate electrolytes which are extremely flammable. To address these issues, CRG developed a high specific energy (>225 Wh/kg) lithium ion battery (LIB) pouch cell that could be integrated into current military vehicle battery formats. This cell
Hondred, JohnHenslee, BrianThampan, TonyDing, YiToomey, LaurenceLess, Greg
ABSTRACT The paper presents the EMX Hybrid Electric Cross Drive transmission developed by Kinetics Drive Solutions to satisfy RCV as well as conventional tracked vehicle requirements. Key design characteristics are modularity to enable performance customization, scalability to suit various vehicle weight classes, and flexibility to adapt to latest advancements in electric motor/inverter technology and autonomous control. EMX1000 prototypes have been built and are currently undergoing testing on dyno as well as in vehicle. Future development includes refining the prototype design and scaling the design for a heavier weight class. Citation: Caldarella F., Johnson A., Wright G., Scheper R., “Development of a Modular and Scalable Hybrid Electric Cross Drive Transmission,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022
Caldarella, FrancoJohnson, AndrewWright, GrantScheper, Ron
ABSTRACT This paper describes the architecture, capabilities, and readiness of the SAPA Advanced Combat Transmission (ACT) family. The ACT850, ACT1000, and ACT1075 utilize scalable and modular technology across the product line, applicable to tracked vehicles weighing 35 thru 75 tons. The ACT family of transmissions are designed to improve the size, weight, power, and cooling (SWaP-C) characteristics of armored vehicle powertrains. Common features of the ACT family include high efficiency (>90%), low heat rejection under all operating conditions, 32 speed mechanical propulsion in forward and reverse; high efficiency mechanical steering delivering smooth agility from pivot turns thru straight paths and enabling use of lower power electric motors to provide for silent maneuverability; drive-by-wire control interface to reduce operator fatigue and training requirements; and reduced powertrain cooling, weight, and space claim impacts on the vehicle
Garcia-Eizaga, IñigoAperribay, JokinHunter, Gary
ABSTRACT Hardware/software integrated system ensures a system will operate as intended in the same configuration it will be used in the field. Manual system testing can be a very slow and error prone process, as well as being incapable of testing interfaces that humans cannot interact with. Many existing solutions exist to introduce test hardware into the loop for verifying systems, but most of these solutions provide a separate component for each hardware interface. This paper presents an approach for a single integrated system that can test all hardware interfaces of a system under test, managed by a single controller. This test system provides the capability to abstract away the hardware being tested so a test developer can develop tests while only understanding the manual interfaces of the system being tested. We show that this approach can provide a significant acceleration to the time to execute tests, as well as improving the reliability, and consistency of the tests. Citation
Lingg, MichaelKushnier, Timothy JProenza, RodolfoPaul, HowardGrimes, BrendanThompson, Emory
ABSTRACT The objective is to develop a human-multiple robot system that is optimized for teams of heterogeneous robots control. A new human-robot system permits to ease the execution of remote tasks. An operator can efficiently control the physical multi-robots using the high level command, Drag-to-Move method, on the virtual interface. The innovative virtual interface has been integrated with Augmented Reality that is able to track the location and sensory information from the video feed of ground and aerial robots in the virtual and real environment. The advanced feature of the virtual interface is guarded teleoperation that can be used to prevent operators from accidently driving multiple robots into walls and other objects
Lee, SamHunt, ShawnCao, AlexPandya, Abhilash
ABSTRACT The M1 Abrams will be the primary heavy combat vehicle for the US military for years to come. Improvements to the M1 that increase reliability and reduce maintenance will have a multi-year payback. The M1 engine intake plenum seal couples the air intake plenum to the turbine inlet, and has opportunities for improvement to reduce leakage and intake of FOD (foreign object debris) into the engine, which causes damage and premature wear of expensive components
Tarnowski, StevePennala, SteveGoryca, MaryKauth, Kevin
ABSTRACT Synthetic terrain generation and scene generation is a critical component of performing meaningful simulation assessments across many simulation domains. The U.S. Army Combat Capabilities Development Command Aviation and Missile Center (CCDC AvMC) has developed a process for rapidly generating and characterizing large-scale, multispectral terrain models and thermal signatures for use in a wide range of simulation tools from ground vehicles and air platforms to smart weapons and AI algorithms. This process has allowed the replacement of legacy terrain generation methods of on-site collections or statistics-based models with high-fidelity, physics-based terrain signature modeling at a fraction of the schedule and cost by leveraging modern high-performance computing paradigms and algorithms. This allows for rapid generation of terrain models of any location in the world at any time of day or season. Citation: P. Etheredge, M. Rigney, B. Seal, J. Burns, T. Fronckowiak, J. Walters
Etheredge, PaulRigney, MattSeal, BradBurns, JamieFronckowiak, TomWalters, Josh
ABSTRACT The goal of Secure Wireless Communications is to provide controlled access to classified or controlled unclassified information (CUI) over any RF transport in the field – between vehicles and end users alike. Secure – yet simplified – system deployment, node integration, managed accessibility, network situational awareness, and configuration management are all essential for maintainability. Citation: D. Jedynak, C. Kawasaki, D. Gregory, “Managing Next Generation Open Standard Vehicle Electronics Architectures”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019
Gregory, DavidNelson, Jeff
ABSTRACT Through Army SBIR funding, NanoSonic has designed a next-generation multipurpose Spall Protective, Energy Absorbing (SPEA™) HybridSil® material that has the potential to provide vehicle occupants with pioneering combinatorial protection from 1) fragmentation behind-armor debris (BAD), 2) high velocity head / neck impact, and 3) fire during underbody blast, crash, and rollover events. This innovative multilayered ensemble consists of highly flame resistant, energy absorbing polyorganosiloxane foams, molded ultrahigh molecular weight polyethylene panels, and carbon fiber reinforced polymer derived ceramic composites. The technical foundation for this effort was provided through independent 1) MIL-STD-662 FSP ballistic testing with The Ballistics and Explosive Group at Southwest Research Institute (SwRI); 2) FMVSS 201U head impact testing with MGA Research Incorporation; and 3) ASTM E1354 fire resistance testing with the Fire Technology group at SwRI. Fragment simulating
Baranauskas, VinceKlima, Julie
ABSTRACT Acquisition programs typically develop a set of system requirements early in their lifecycle, which then become the standard against which future designs are evaluated. It is critical that these requirements be set at appropriate levels. Requirement sets that are not simultaneously achievable are a relatively common problem in military acquisition programs and often are not recognized until significant investment has already been made – sometimes even leading to program cancellation. The Advanced Requirements Integration & Exploration System (ARIES) is designed to aid program stakeholders in understanding the requirements trade space for a system and facilitate the identification of an achievable set of requirements. This paper presents the ARIES methodology, describes the analytic capability, and discusses its application. Citation: A.I. Dessanti, D.J. Anderson, S.M. Henry, A.J. Pierson, R.S. Agusti, M.A. Zabat, “Advanced Requirements Integration & Exploration System (ARIES
Dessanti, Alexander I.Anderson, Dennis J.Henry, Stephen M.Pierson, Adam J.Agusti, Rachel S.Zabat, Michael A.
ABSTRACT Evolving requirements for combat vehicles to provide increased mission capability and/or crew safety necessitate the addition of components and add-on armor to currently-fielded vehicles. These new requirements result in increased weight and increased electrical needs, which result in reduced mobility. The APD is built from the ground up to optimize a powertrain solution using cutting-edge technology specifically designed for harsh military environments, for use in both vehicle retrofits and new vehicle designs. The APD combines an efficient 1000 hp engine, transmission, integrated starter generator, thermal management system, and lithium-ion batteries to maximize powerpack power density. The APD was designed for a 45-60 ton combat vehicle, but designing for scalability, reconfigurability, and using modern techniques and technology has allowed the APD to greatly improve the capability and flexibility of the powerpack and the technology can be applied to heavier or lighter
Claus, MikeLaRoy, DavidNickel, DavidPanagos, ConstantinePesys, TomasSkillman, NewtonSrodawa, JohnTadros, Maged
ABSTRACT A newly developed structural adhesive demonstrates a unique combination of high strength (43 ± 2 MPa) and displacement (4.7 ± 1.2 mm) in aluminum lap joint testing. Bulk material characterization of the prototype adhesive reveals its extreme ductility, with nearly 80% shear strain before failure and a 2.5-fold increase in strain energy density as compared to commercial structural adhesives. The prototype adhesive is found to maintain 67 to 82% of its initial strength under extreme environmental conditions, including at high temperatures (71°C), after high humidity (63°C hot water soak, 2 weeks), and after corrosive conditions (B117 salt spray, 1000 hours). The prototype structural adhesive is shown to also generate high strength bonds with multiple substrates, including steel, carbon fiber, and mixed material joints, while also providing galvanic isolation
Pollum, MarvinKriley, JosephNakajima, MasaTan, Kar TeanStalker, JeffreyFleischauer, RichardRearick, Brian
ABSTRACT This paper reports on a prototype project to develop and mature a common, open, comprehensive, collaboratively developed, Government-owned, autonomy software architecture for ground robotic and autonomous systems (RAS). The prototype architecture, codenamed “SCION” promises the flexibility needed by the both the Government and industry research, development, testing, and engineering (RDT&E) communities to leverage reusable software and more rapidly innovate new capabilities; while ensuring the discipline and enabling the modularity required to develop RDT&E software structured to meet the software safety, cybersecurity, upgradeability, and other needs of RAS programs of record. Accordingly, program offices can adopt an acquisition strategy that requires compatibility with the de facto, military RAS standard, SCION architecture, while providing OEMs with baseline, SCION-compatible, GFE software (e.g. a future version of RTK). Such a strategy encourages optimal innovation
Thomasmeyer, WilliamJohn, Jon St.Martin, DaveMattes, Rich
ABSTRACT A thermodynamics-based Vehicle Thermal Management System (VTMS) model for a heavy-duty, off-road vehicle with a series hybrid electric powertrain is developed to analyze the thermal behavior of the powertrain system and investigate the power consumption under different vehicle driving conditions. The simulation approach consists of two steps: first, a Series Hybrid Electric Vehicle (SHEV) powertrain is modeled; the output data of the powertrain system simulation are then fed into a cooling system model to provide the operating conditions of the powertrain components. Guidelines for VTMS configuration was developed based on the vehicle simulation results and the operating conditions of powertrain components. Based on the guidelines, a VTMS configuration for the hybrid vehicle was created and used for designs of experiments to identify the factors that affect the performance and power consumption of each cooling system. Design space exploration techniques are then applied to
Park, S.Kokkolaras, M.Malikopoulos, A.AbdulNour, B.Sedarous, J.Jung, D.