Your Destination for Mobility Engineering Resources
Announcements for SAE Mobilus
Browse AllRecent SAE Edge™ Research Reports
Browse All 156Recent Books
Browse All 972Recently Published
Browse AllABSTRACT To realize the full potential of simulation-based evaluation and validation of autonomous ground vehicle systems, the next generation of modeling and simulation (M&S) solutions must provide real-time closed-loop environments that feature the latest physics-based modeling approaches and simulation solvers. Real-time capabilities enable seamless integration of human-in/on-the-loop training and hardware-in-the-loop evaluation and validation studies. Using an open modular architecture to close the loop between the physics-based solvers and autonomy stack components allows for full simulation of unmanned ground vehicles (UGVs) for comprehensive development, training, and testing of artificial intelligence vehicle-based agents and their human team members. This paper presents an introduction to a Proof of Concept for such a UGV M&S solution for severe terrain environments with a discussion of simulation results and future research directions. This conceptual approach features: 1
ABSTRACT The dynamic simulation of multibody tracked vehicles offers engineers a powerful tool with which they may analyze and design. Currently, parts of these complex mechanisms are introduced to multibody algorithms as rigid bodies. Then in a follow-on structural analysis, the loads from the multibody dynamic simulation are input to calculate strains and stresses within the bodies. The present investigation aims to establish appropriate means by which flexible three-dimensional track links, which allow large relative rotation between the elements, can be modeled. This will pave the way towards the incorporation of detailed flexible structural models into a multibody dynamic simulation environment allowing for an integrated solution. In addition, a new formulation for the interaction between the rigid sprocket teeth and flexible chain is presented. Numerical results are introduced to illustrate the effects of flexible links on the dynamics of tracked vehicles
ABSTRACT This paper describes next generation modeling tools to solve a basic problem of concept analysis, which is the lack of component models that realistically estimate the performance of technology that has yet to be fully reduced to specific products. Three important classes of electric power components essential to future Army vehicles are addressed: integrated electric machines, battery energy storage, and traction motor drives. Behavior models are delivered in a common software simulation “wrapper” with a limited number of user settings that allow the ratings of the component to be scaled to the performance required by the vehicle concept represented in a larger simulation. This approach captures expert knowledge about components so the systems engineer managing the concept analysis can create reliable simulations quickly
ABSTRACT As military vehicles expand in mission roles and in offensive and defensive weaponry, there is an ever-increasing demand for greater energy storage. Moreover, with the technological breakthroughs in Direct Energy Weapons and Active Protective Systems (e.g., high-energy laser and high-power microwave systems, especially for prevention of UAVs), there is a commensurate need for increased energy density military power supplies to provide electrification to these Next Generation Combat Vehicles (Lynx, Griffin III, and CV-90). Current lithiumion batteries for vehicles (e.g., 6T) have limited energy density (~100 Wh/kg), which are not sufficient for the high energy and power needs of military vehicles. Additionally, they typically use carbonate electrolytes which are extremely flammable. To address these issues, CRG developed a high specific energy (>225 Wh/kg) lithium ion battery (LIB) pouch cell that could be integrated into current military vehicle battery formats. This cell
ABSTRACT The paper presents the EMX Hybrid Electric Cross Drive transmission developed by Kinetics Drive Solutions to satisfy RCV as well as conventional tracked vehicle requirements. Key design characteristics are modularity to enable performance customization, scalability to suit various vehicle weight classes, and flexibility to adapt to latest advancements in electric motor/inverter technology and autonomous control. EMX1000 prototypes have been built and are currently undergoing testing on dyno as well as in vehicle. Future development includes refining the prototype design and scaling the design for a heavier weight class. Citation: Caldarella F., Johnson A., Wright G., Scheper R., “Development of a Modular and Scalable Hybrid Electric Cross Drive Transmission,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022
ABSTRACT Hardware/software integrated system ensures a system will operate as intended in the same configuration it will be used in the field. Manual system testing can be a very slow and error prone process, as well as being incapable of testing interfaces that humans cannot interact with. Many existing solutions exist to introduce test hardware into the loop for verifying systems, but most of these solutions provide a separate component for each hardware interface. This paper presents an approach for a single integrated system that can test all hardware interfaces of a system under test, managed by a single controller. This test system provides the capability to abstract away the hardware being tested so a test developer can develop tests while only understanding the manual interfaces of the system being tested. We show that this approach can provide a significant acceleration to the time to execute tests, as well as improving the reliability, and consistency of the tests. Citation
ABSTRACT The objective is to develop a human-multiple robot system that is optimized for teams of heterogeneous robots control. A new human-robot system permits to ease the execution of remote tasks. An operator can efficiently control the physical multi-robots using the high level command, Drag-to-Move method, on the virtual interface. The innovative virtual interface has been integrated with Augmented Reality that is able to track the location and sensory information from the video feed of ground and aerial robots in the virtual and real environment. The advanced feature of the virtual interface is guarded teleoperation that can be used to prevent operators from accidently driving multiple robots into walls and other objects
ABSTRACT The M1 Abrams will be the primary heavy combat vehicle for the US military for years to come. Improvements to the M1 that increase reliability and reduce maintenance will have a multi-year payback. The M1 engine intake plenum seal couples the air intake plenum to the turbine inlet, and has opportunities for improvement to reduce leakage and intake of FOD (foreign object debris) into the engine, which causes damage and premature wear of expensive components
ABSTRACT The goal of Secure Wireless Communications is to provide controlled access to classified or controlled unclassified information (CUI) over any RF transport in the field – between vehicles and end users alike. Secure – yet simplified – system deployment, node integration, managed accessibility, network situational awareness, and configuration management are all essential for maintainability. Citation: D. Jedynak, C. Kawasaki, D. Gregory, “Managing Next Generation Open Standard Vehicle Electronics Architectures”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019
ABSTRACT Acquisition programs typically develop a set of system requirements early in their lifecycle, which then become the standard against which future designs are evaluated. It is critical that these requirements be set at appropriate levels. Requirement sets that are not simultaneously achievable are a relatively common problem in military acquisition programs and often are not recognized until significant investment has already been made – sometimes even leading to program cancellation. The Advanced Requirements Integration & Exploration System (ARIES) is designed to aid program stakeholders in understanding the requirements trade space for a system and facilitate the identification of an achievable set of requirements. This paper presents the ARIES methodology, describes the analytic capability, and discusses its application. Citation: A.I. Dessanti, D.J. Anderson, S.M. Henry, A.J. Pierson, R.S. Agusti, M.A. Zabat, “Advanced Requirements Integration & Exploration System (ARIES
ABSTRACT Evolving requirements for combat vehicles to provide increased mission capability and/or crew safety necessitate the addition of components and add-on armor to currently-fielded vehicles. These new requirements result in increased weight and increased electrical needs, which result in reduced mobility. The APD is built from the ground up to optimize a powertrain solution using cutting-edge technology specifically designed for harsh military environments, for use in both vehicle retrofits and new vehicle designs. The APD combines an efficient 1000 hp engine, transmission, integrated starter generator, thermal management system, and lithium-ion batteries to maximize powerpack power density. The APD was designed for a 45-60 ton combat vehicle, but designing for scalability, reconfigurability, and using modern techniques and technology has allowed the APD to greatly improve the capability and flexibility of the powerpack and the technology can be applied to heavier or lighter