Browse Topic: Lightweighting
ABSTRACT This paper focuses on the application of a novel Additive Molding™ process in the design optimization of a combat vehicle driver’s seat structure. Additive Molding™ is a novel manufacturing process that combines three-dimensional design flexibility of additive manufacturing with a high-volume production rate compression molding process. By combining the lightweighting benefits of topology optimization with the high strength and stiffness of tailored continuous carbon fiber reinforcements, the result is an optimized structure that is lighter than both topology-optimized metal additive manufacturing and traditional composites manufacturing. In this work, a combat vehicle driver’s seatback structure was optimized to evaluate the weight savings when converting the design from a baseline aluminum seat structure to a carbon fiber / polycarbonate structure. The design was optimized to account for mobility loads and a 95-percentile male soldier, and the result was a reduction in
ABSTRACT This paper will discuss how proven automotive systems engineering lightweighting principles and practices are being adapted and applied to combat and tactical ground vehicle systems. An automotive lightweighting methodology has most recently been utilized to reduce the weight of a light-duty pickup truck by 511 kilograms resulting in a 20.8% vehicle mass reduction. A holistic approach to light-weighting offers great benefits with additional mass reduction at a cost savings, reducing the overall vehicle lightweighting cost impact. Automotive studies have shown additional vehicle mass-reductions in the range of 3-5% are achievable when vehicles are aggressively light-weighted (i.e., approximate 20% vehicle mass reduction range). Although many factors like customer usage, function and performance requirements, production volumes, product life cycles, value stream, manufacturing infrastructure, litigation application, etc., are indeed considerably different between automotive and
ABSTRACT It is generally accepted that structural optimization has been responsible for achieving component and system weight reduction for multiple applications, but often these methods are considered only as a tool to reduce vehicle weight later in a vehicle design. This paper proposes earlier and broader application of the technology during a military vehicle program. An optimization driven design approach will reduce development time, through fewer design iterations, while creating robust design directions not influenced by design history. The proactive use of optimization technologies throughout a development program yield benefits in terms of vehicle weight (and therefore increased payload), improve performance and protection while reducing material costs
ABSTRACT One of the main thrusts in current Army Science & Technology (S&T) activities is the development of occupant-centric vehicle structures that make the operation of the vehicle both comfortable and safe for the soldiers. Furthermore, a lighter weight vehicle structure is an enabling factor for faster transport, higher mobility, greater fuel conservation, higher payload, and a reduced ground footprint of supporting forces. Therefore, a key design challenge is to develop lightweight occupant-centric vehicle structures that can provide high levels of protection against explosive threats. In this paper, concepts for using materials, damping and other mechanisms to design structures with unique dynamic characteristics for mitigating blast loads are investigated. The Dynamic Response Index (DRI) metric [1] is employed as an occupant injury measure for determining the effectiveness of the each blast mitigation configuration that is considered. A model of the TARDEC Generic V-Hull
Bemis Manufacturing and BASF collaborated to develop a lighter-weight and lower-cost hydraulic tank for compact excavators that was recognized with a lightweighting award traditionally reserved for automotive innovations. Receiving an honorable mention in the Enabling Technology category of this year's Altair Enlighten Awards, the development team leveraged a combination of injection molding and vibration welding techniques to lower costs by approximately 20% and reduce mass by about 5% compared to the traditional roto-molding process. The solution also is more eco-efficient, delivering both environmental savings (reductions in lifecycle CO2 emissions) and reducing lifecycle costs
Eight arguments for these resins, compounds and composites. Weight reduction in EV battery components is an important factor in optimizing battery energy density, which in turn is critical to extending vehicle range and boosting power and performance. Although traditional metals such as steel and aluminum are widely used in EV batteries, the ongoing push for higher energy density is opening new opportunities for thermoplastic resins, compounds, and composites. The main advantage of these materials vs. metals is their inherent lighter weight - particularly in the case of lower-density polymers. Thermoplastics can be 30-50 percent lighter than metals. They also increase design freedom, which permits further weight-out through part consolidation and thin walls
Reducing vehicle weight is a key task for automotive engineers to meet future emission, fuel consumption, and performance requirements. Weight reduction of cylinder head and crankcase can make a decisive contribution to achieving these objectives, as they are among the heaviest components of a passenger car powertrain. Modern passenger car cylinder heads and crankcases have greatly been optimized in terms of cost and weight in all-aluminum design using the latest conventional production techniques. However, it is becoming apparent that further significant weight reduction cannot be expected, as processes such as casting have reached their limits for further lightweighting due to manufacturing restrictions. Here, recent developments in the additive manufacturing (AM) of metallic structures is offering a new degree of freedom. As part of the government-funded research project LeiMot [Lightweight Engine (Eng.)] borderline lightweight design potential of a passenger car cylinder head with
This study delves into the microstructural and mechanical characteristics of AlSi10Mg alloy produced through the Laser Powder Bed Fusion (L-PBF) method. The investigation identified optimal process parameters for AlSi10Mg alloy based on Volume Energy Density (VED). Manufacturing conditions in the L-PBF process involve factors like laser power, scan speed, hatching distance, and layer thickness. Generally, high laser power may lead to spattering, while low laser power can result in lack-of-fusion areas. Similarly, high scan speeds may cause lack-of-fusion, and low scan speeds can induce spattering. Ensuring the quality of specimens and parts necessitates optimizing these process parameters. To address the low elongation properties in the as-built condition, heat treatment was employed. The initial microstructure of AlSi10Mg alloy in its as-built state comprises a cell structure with α-Al cell walls and eutectic Si. Heat treatment caused the collapse of the eutectic Si cell walls, and a
Most motor mounts, even for EV applications, are made of metal alloys. It makes intuitive sense: It's a vibration-intensive mounting application that demands durability that matches the life of the vehicle itself. But there is another way. Now, a composite nylon-based motor mount on the Cadillac Lyriq has won the Society for Automotive Analysts' Innovation in Lightweighting Award. The mount is a collaboration between GM, anti-vibration parts maker DN Automotive and chemical company Celanese. It is made with Zytel PA NVH Gen 2, a new polyamide (PA 66). The results not only showed up in development data, but in the end product, which has reviewers raving about how quiet the Lyriq's cabin is - “crypt quiet,” according to Automotive News
Items per page:
50
1 – 50 of 548