Browse Topic: Drive cycles

Items (913)
With advancements in model accuracy and computational power, system simulation is increasingly integrated into development tools as a “virtual test bed” alongside experimental testing. However, virtual vehicle and powertrain thermal models still face challenges, particularly in ensuring accuracy across systems developed by various internal and external sources. These models, often built using different software platforms, are difficult to validate consistently, especially when integrated in a Co-simulation environment. This integration can degrade the overall accuracy of the Vehicle Simulation Platform, reducing the return on investment in model development. To address these limitations, this paper proposes the use of machine learning-based feature importance techniques at the vehicle-level simulation stage. Feature importance helps identify the most influential variables affecting system outputs. By focusing calibration and validation efforts on these key variables, the approach aims
Srinivasan, RangarajanSarapalli Ramachandran, RaghuveeranAshok Bharde, PoojaSaravanan, Vivek
The present work highlights a case-study that aims to determine the performance (power input/output) and battery temperature on in-house developed e-rickshaw battery pack. With the rise of e-rickshaws in Indian market, the demand for the batteries have also increased and being the largest state-run energy company of India, R&D Centre of Indian Oil Corporation Limited (IOCL) has developed a chemically modified nanomaterial-based lead acid battery. The lab scale experiments, which are not presented in the study due to confidentiality and intellectual property obligations, indicated that the nanomaterial doped lead acid battery pack performs better than the control (reference) and leading commercial batteries in terms of lifecycle, capacity etc. Subsequently, this paper highlights the performance with IOC R&D Centre manufactured 12V/100AH chemically modified (nanomaterial) lead acid battery pack for e-rickshaw on duty cycle developed indigenously based on the city driving experiences. The
Saroj, ShyamsherSithananthan, MKumar, PrashantArora, AjaySundaram, PKalita, Mrinmoy
The clutch is a mechanical device that connects and disconnects engine power to the drivetrain through the clutch disc and cover assemblies. The disc, with friction material linings is mounted on the transmission shaft, transmits power when clamped between the flywheel and cover assembly. During operation, wear occurs due to speed differences and slippage between the engine and transmission. Clutch performance is evaluated under repeat restart conditions on steep gradients to assess thermal durability and reliability in commercial vehicles. The repeat restart test on a 12% gradient replicates truck launches under full load, where excessive slippage generates heat that may lead to friction material wear or failure if critical temperature limits are exceeded. To address the high cost and time of physical testing, a 1D thermal simulation was developed using GT Suite. The model replicates 90 repeat vehicle launches on a 12% gradient in first gear, integrating driver inputs and drive cycles
Munisamy, SathishkumarChollangi, DamodarMane, Sudhir
Transportation sector in India accounts for 12% of total energy consumption. Demand of energy consumption is being met by the imported crude oil, which makes transportation sector more vulnerable to fluctuating international crude oil prices. India is mindful of its commitment in 2016 Paris climate agreement to reduce GHG emissions intensity of its GDP by 40% by 2030 as compared to 2005 levels. To fast track the decarbonization of transportation sector, commercial vehicle manufacturers have been exploring other viable options such as battery electric vehicles (BEVs) as a part of their fleet. As on today, BEV has its own challenges such as range anxiety & high total cost of ownership. Range anxiety can be certainly addressed by optimum sizing of electric powertrain, reduction in specific energy consumption (SEC) & use of effective regeneration strategies. Higher SEC can be more effectively addressed by doing vehicle energy audit thereby estimating the energy losses occurring at each
Gijare, SumantKarthick, K.Juttu, SimhachalamThipse, Sukrut S.A, JothikumarJ, Frederick RoystonSR, SubasreeG, HariniM, Senthil Kumar
In line with global peers (EU, Japan, etc.), the Automotive Industry Standard (AIS) Committee in India has decided to adopt “World harmonized Light vehicle Test Procedure (WLTP)” for M2 and N1 category vehicles not exceeding 3500 kg and for all M1 category vehicles. As a result, “World harmonized Light-duty vehicles Test Cycle (WLTC)” is set to replace currently applicable “Modified Indian Drive Cycle (MIDC)” in the next couple of years. The draft Corporate Average Fuel Economy (CAFE) III & CAFE IV norms for CO2 emission limits, which are set to be implemented in year 2027 and 2032 respectively refer to a shift to WLTP from MIDC. The latest draft of Central Motor Vehicle Rules (CMVR) for BS-VI emissions is also being revised to use WLTC as test cycle. This migration to WLTC is in sync with the demand for test procedures to replicate real driving conditions more appropriately. Further, the move to WLTC along with stricter emission norms is a major step towards realizing India’s COP26
Pawar, BhushanEhrly, MarkusSandhu, RoubleEmran, AshrafBerry, Sushil
In India, Currently Continuous FULL MIDC (Modified Indian Driving Cycle) is used to declare the Range & Energy consumption of BEV (Battery Electric Vehicle). AISC (Automotive Industry Standards Committee) is looking to implement Worldwide Harmonized Light-Duty Test Procedure (WLTP) in India. AISC released AIS 175 for WLTP implementation from Apr 2027. The objective of WLTP is to standardize the test procedure globally for evaluating Emission/FE/Range of Light Duty Vehicles. But the effect of AIS 175 regulation on Battery Electric Vehicles Range Declaration is very less. The Range is almost same as Full MIDC declared Range. The On-road Range BEV is always lesser than the Declared Range of vehicles because of ambient conditions. Usually, the Full MIDC declared Range will be 20% ~26% higher than actual On Road Range. The Range of BEV as per India WLTP 3-Phase was observed 18% ~ 24% higher than actual On-road range of vehicles. There is only 2% difference observed between Full MIDC Range
Shiva Kumar, MucharlaTentu, Kavya
Identifying the type of drive cycle is crucial for analyzing customer usage, optimizing vehicle performance and emission control. Methods that rely on geographical location for drive cycle identification are limited by varying driving conditions at the same location (e.g. heavy traffic during peak hours vs. free-flowing traffic at night). This paper proposes a methodology to identify the type of drive cycle (city, interurban, highway or hybrid) using drive characteristics derived from vehicle data rather than geographical location. Real-world vehicle data from testing trucks is taken, whose drive profiles are already known. Initially, multiple characteristic features of the drive cycle are identified from literature surveys and domain experience. These features, which can be extracted from basic signal data, include gear shifts, time spent in different driving modes (acceleration, cruise, standstill), velocity distributions, and an 'aggressiveness factor' representing overall driving
Reddy, Mallangi PrashanthGorain, RajuGanguly, Gourav
This paper compares carbon dioxide, carbon monoxide, methane, and oxides of nitrogen emissions from medium and heavy-duty buses using diesel, diesel-hybrid, and CNG powertrains. Comparisons are made using results from chassis dynamometer-based tests with driving cycles intended to simulate a wide range of operating conditions. Tail pipe emissions are measured by diluting the vehicle’s exhaust in a full-scale dilution tunnel by mixing with conditioned air. Samples are drawn through probes of raw exhaust, diluted exhaust and measured using laboratory grade emission analyzers. Fuel consumption of diesel is measured using a weighing scale, while a gas flow meter is used for measuring CNG consumption. Experimental data from 19 buses tested on a chassis dynamometer over the last 8 years has been analyzed and a comparison of results from similar buses with the differently fueled powertrains is presented. Based on these test results, it is shown that replacing diesel engines with CNG engines
Iyer, Suresh
Maximizing vehicle energy efficiency and its performance is a high priority for automotive industries as customers’ expectations rise. Engineers constantly face the challenge of balancing the conflicting goals of achieving superior performance and maximizing energy efficiency, all while meeting increasingly tight development timelines. Leveraging digital methods can potentially enable considerable reduction in development timelines. Driving cycles function as standardized measurement procedures for certifying vehicle fuel efficiency and driving range. Representative velocity profiles condense numerous real-life driving cycles to enable quicker energy analysis and driver feedback evaluations. This paper introduces a novel methodology for generating synthetic drive cycles, such as average velocity cycles and ideal consumption velocity cycles, based on real-life driving scenarios. In this study, the importance of creating representative drive cycles to enhance vehicle performance and
Kanakannavar, RohitKelkar, KshitijSadalge, Anand
For regions with cold climate, the range of an electric bus becomes a serious restriction to expanding the use of this type of transport. Increased energy consumption affects not only the autonomous driving range, but also the service life of the batteries, the schedule delays and the load on the charging infrastructure. The aim of the presented research is to experimentally and computationally determine the energy consumption for heating the driver's cabin and passenger compartment of an electric bus during the autumn-winter operation period, as well as to identify and analyze ways to reduce this energy consumption. To determine the air temperature in the passenger compartment, a mathematical model based on heat balance equations was used. This model was validated using data from real-world tests. The research was conducted at a proving ground under two conditions: driving at a constant speed and simulating urban bus operation with stops and door openings. The causes of heat loss in
Kozlov, AndreyTerenchenko, AlexeyStryapunin, Alexander
The regulatory mechanisms to measure emissions from automobiles have evolved drastically over the years. Certification of CO2 emissions is one of them. It is not only critical for environmental protection but can also invite heavy fines to OEMs, if not complied with. In homologation test of a Hybrid Vehicle, it is necessary to correct the measured CO2 to account for deviations in measurement from failed Start-Stop phase and difference between start and end State of Charge (SOC) of battery. The correction methodology is also applicable for vehicle simulation in Software-in-Loop environment and for analyzing vehicle test data for CO2 emissions with programmed digital tools. The focus of this paper is on the correction of CO2 derived from SOC delta in the WLTP homologation drive cycle. The battery energy delta due to difference in SOC between start and end of drive cycle should be converted to corresponding CO2 expended from Internal Combustion Engine. The resulting correction factor is
Gopinath, Shravanthi PoorigaliKhatod, Krishna
Affordable, efficient and durable catalytic converters for the two and three-wheeler industry in developing countries are required to reduce vehicle emissions and to maintain them at a low level; and therefore, to participate in a cleaner and healthier environment. Especially, metallic catalyst substrates developed by Emitec Technologies GmbH with structured foils like the Longitudinal Structure (LS), or LS-Design® are fully compatible to this effort with more than 70% share of produced 2/3 Wheelers metallic catalyst substrates for the Indian market in 2024. One decade after the market introduction of this LS structure, Emitec Technologies GmbH will introduce now a new generation of foil structure: the Crossversal Structure (CS) or CS-Design®, that improves further the affordability, the efficiency of metallic catalytic converters, keeping the durability at same level as previous substrate generation. The paper will briefly review the development of metallic substrates for 2/3 wheelers
Jayat, FrancoisSeifert, SvenBhalla, AshishGanapathy, Narayana Prakash
In its conventional form, dynamometers typically provide a fixed architecture for measuring torque, speed, and power, with their scope primarily centered on these parameters and only limited emphasis on capturing aggregated real-time performance factors such as battery load and energy flow across the diverse range of emerging electric vehicle (EV) powertrain architectures. The objective of this work is to develop a valid, appropriate, scalable modular test framework that combines a real-time virtual twin of a compact physical dynamometer with world leading real-time mechanical and energy parameters/attributes useful for its virtual validation, as well as the evaluation of other unknown parameters that respectively span iterations of hybrid and electric vehicle configurations, ultimately allowing the assessment of multiple chassis without having to modify the physical testing facility's test bench. This integration enables a blended approach, using a live data source for now, providing
Kumar, AkhileshV, Yashvati
Improving transaxle efficiency is vital for enhancing the overall performance and energy economy of electric vehicles. This study presents a systematic approach to minimizing power losses in a single-speed, two-stage reduction e-transaxle (standalone) by implementing a series of component-level design optimizations. The investigation begins with the replacement of conventional transmission oil with a next-generation low-viscosity transmission fluid. By adopting a lower-viscosity lubricant, the internal fluid resistance is reduced, leading to lower churning losses and improved efficiency across a wide range of operating conditions. Following this, attention is directed toward refining the gear macro-geometry to create a gear set with reduced power losses. This involves adjustments to parameters such as module, helix angle, pressure angle, and tooth count, along with the introduction of a positive profile shift. These modifications improve the contact pattern, lower sliding friction, and
Agrawal, DeveshBhardwaj, AbhishekBhandari, Kiran Kamlakar
The electrification of transportation is revolutionizing the automotive and logistics sectors, with electric vehicles (EVs) assuming an increasingly pivotal role in both passenger mobility and commercial activities. As the adoption of EVs rises, the necessity for precise range estimation becomes essential, especially under diverse operational circumstances, including vehicle and battery characteristics, driving conditions, environmental influences, vehicle configurations, and user-specific behaviors. Among the varying factors, a key fluctuating one is user behavior—most notably, increased payload, which significantly affects EV range. A key business challenge lies in the significant variability of EV range due to changes in vehicle load, which can affect performance, operational efficiency, and cost-effectiveness—especially for fleet-based services. This research aims to tackle the technical deficiency in forecasting electric vehicle (EV) range under various payload conditions
Khatal, SwarajGupta, AnjaliKrishna, Thallapaka
In recent times, a standard driving cycle is an excellent way to measure the electric range of EVs. This process is standardized and repeatable; however, it has some drawbacks, such as low active functions being tested in a controlled environment. This sometimes causes huge variations in the range between driving cycles and actual on-road tests. This problem of variation can be solved by on-road testing and testing a vehicle for customer-based velocity cycles. On-road measurement may be high on active functions while testing, which may give an exact idea of real-world consumption, but the repeatability of these test procedures is low due to excessive randomness. The repeatability of these cycles is low due to external factors acting on the vehicle during on-road testing, such as ambient temperature, driver behavior, traffic, terrain, altitude, and load conditions. No two measurements can have the same consumption, even if they are done on the same road with the same vehicle, due to the
Kelkar, KshitijKanakannavar, Rohit
Electric vehicles (EVs) are coming into usage quickly because of the environmental advantages and technological innovations. But among the most important issues in EV operation is effectively handling thermal loads, especially in the mobile air-conditioning (MAC) system. As opposed to internal combustion engine (ICE) vehicles, which have access to engine waste heat to use for climate control, EVs depend solely on the battery for propulsion and auxiliary systems. This renders the MAC system one of the primary energy consumers and directly influences vehicle range and overall efficiency. While MAC systems are inherently designed for energy efficiency, this study focuses on an addition to the controller-level optimization, providing an additional pathway to improve thermal management performance in existing EV architectures. The work uniquely implements and compares five rule-based supervisory controllers (RBCs) on an open-source Simulink-based electric vehicle thermal management (EVTM
Akkalkot, Yash SatishVidyasagar, ShekharRaju, Tarun L.Vaasuki, G.Kiran, M.
Developing robust optimization and learning methods is necessary for intelligent vehicles since an increasing number of critical control functions will be handled by artificial intelligence. This paper proposes an adversary swarm learning (ASL) system and an optima selection strategy for robust energy management of plug-in hybrid electric vehicles (PHEVs). The proposed ASL system comprises an attacking swarm and a defending swarm, which compete against each other iteratively to derive the most robust equivalent consumption minimization strategy (ECMS) for PHEV energy management. During the attacking rounds, the ECMS settings are fixed by the defender. Meanwhile, the attacker generates worst-case driving conditions by training a model in order to Maximize the equivalent energy consumption. During the defending rounds, the ECMS settings are optimized by the defender based on the driving scenarios generated by the attacker. The settings of robust ECMS are derived by introducing the
Zhong, DanyangYu, ZhuopingXiong, LuZhou, Quan
Vehicle dynamic control is crucial for ensuring safety, efficiency and high performance. In formula-type electric vehicles equipped with in-wheel motors (4WD), traction control combined with torque vectoring enhances stability and optimizes overall performance. Precise regulation of the torque applied to each wheel minimizes energy losses caused by excessive slipping or grip loss, improving both energy efficiency and component durability. Effective traction control is particularly essential in high-performance applications, where maintaining optimal tire grip is critical for achieving maximum acceleration, braking, and cornering capabilities. This study evaluates the benefits of Fuzzy Logic-based traction control and torque distribution for each motor. The traction control system continuously monitors wheel slip, ensuring they operate within the optimal slip range. Then, torque is distributed to each motor according to its angular speed, maximizing vehicle efficiency and performance
Oliveira, Vivian FernandesHayashi, Daniela TiemiDias, Gabriel Henrique RodriguesAndrade Estevos, JaquelineGuerreiro, Joel FilipeRibeiro, Rodrigo EustaquioEckert, Jony Javorski
This paper presents the design and implementation of a test bench intended for the development and validation of control strategies applied to a hybrid-electric powertrain. The setup combines a 48 V SEG BRM electric machine with a small-displacement internal combustion engine (ICE), the HONDA GX160, operating in a parallel hybrid configuration. The platform was developed to improve energy efficiency in comparison to a conventional ICE-only system. Modifications were carried out on an existing test bench at Instituto Mauá de Tecnologia, including the fabrication of a new enclosure for the battery pack and its battery management system (BMS), as well as the integration of a Vector VN8911 real-time controller. A custom control strategy was implemented and experimentally evaluated using a predefined drive cycle under two conditions: (I) ICE-only operation and (II) hybrid-electric operation with the proposed strategy. Results showed a fuel consumption reduction of approximately 13% with the
Polizio, YuriZabeu, ClaytonPasquale, GianPinheiro, GiovanaVieira, Renato
Vehicles powered by internal combustion engines play a crucial role in urban mobility and still represent the vast majority of vehicles produced. However, these vehicles significantly contribute to pollutant emissions and fossil fuel consumption. In response to this challenge, various technologies and strategies have been developed to reduce emissions and enhance vehicle efficiency. This paper presents the development of a solution based on optimized gear-shifting strategies aimed at minimizing fuel consumption and emissions in vehicles powered exclusively by internal combustion engines. To achieve this, a longitudinal vehicle dynamics model was developed using the MATLAB/Simulink platform. This model incorporates an engine combustion simulation based on the Advisor (Advanced Vehicle Simulator) tool, which estimates fuel consumption and emissions while considering catalyst efficiency under transient engine conditions. Based on these models, an optimization method was employed to
Da Silva, Vitor Henrique GomesCarvalho, Áquila ChagasLopez, Gustavo Adolfo GonzalesCasarin, Felipe Eduardo MayerDedini, Franco GiuseppeEckert, Jony Javorski
In-Use emission compliance regulations globally mandate that machines meet emission standards in the field, beyond dyno certification. For engine manufacturers, understanding emission compliance risks early is crucial for technology selection, calibration strategies, and validation routines. This study focuses on developing analytical and statistical methods for emission compliance risk assessment using Fleet Intelligence Data, which includes high-frequency telematics data from over 500K machines, reporting more than 1000 measures at 1Hz frequency. Traditional analytical methods are inadequate for handling such big data, necessitating advanced methods. We developed data pipelines to query measures from the Enterprise Data Lake (A Structured Data storage system), address big data challenges, and ensure data quality. Regulatory requirements were translated into software logic and applied to pre-processed data for emission compliance assessment. The resulting reports provide actionable
Arya, Satya PrakashShekarappa, Kiran
In the transition towards sustainable mobility, Circular Design principles are crucial. Electric Motors are subject to continuous innovation to improve efficiency, performance density and reduce externalities associated with their production. Therefore, the choice of technological solutions during design phase must guarantee optimal performance and minimal environmental impact throughout the entire product life cycle: production, use, and end-of-life. In the automotive sector, the use phase is particularly critical since the efficiency of the traction system is directly related to total energy consumption during the life cycle and, consequently, to its environmental impact. This research introduces a simulation-based approach to evaluate the use phase of an Axial Flux Electric Motor equipped with Permanent Magnets (AFPM). While providing high performance for electric traction motors, these magnets are composed of Rare Earth Elements (REEs), e.g. Neodymium, classified as Critical Raw
Guadagno, MaurizioBerzi, LorenzoPugi, LucaDelogu, Massimo
To conserve the atmospheric environment, regulations on vehicle exhaust gas emissions have become increasingly stringent. For Light Duty Vehicles (LDVs), Real Driving Emission (RDE) assessments based on Portable Emission Measurement Systems (PEMS) have been introduced. However, the application of PEMS measurements to motorcycles presents several challenges, including reduced measurement accuracy owing to the small engine displacement and number of cylinders and increased motorcycle weight owing to PEMS installation. Therefore, an alternative evaluation method that does not rely on the PEMS is required. In this study, we developed a Random Cycle Generator (RCG) to provide an evaluation method that can be used in a laboratory environment. The RCG enables the evaluation of driving cycles by combining different motorcycle speed patterns. It can generate arbitrary driving cycles that consider the average and upper limits of regional driving characteristics, thereby enabling accurate
Matsuoka, MasahiroHirai, HiroshiIto, Takayuki
This study investigates emissions from motorcycles, focusing on both regulated gaseous pollutants (e.g., CO, NOx, HC) and particulate number (PN) emissions, which are non-regulated for this vehicle category in the actual EU emission regulation. Using a state-of-the-art testbench setup equipped with advanced exhaust gas analysis and particle measurement programme (PMP) system, emissions were analyzed under both standardized homologation cycles (WMTC) and more dynamic Real Driving Cycles (RDCs). Besides the measurement results the technological differences between different motorcycle categories are described. This is followed by a discussion of the influences of engine and exhaust gas aftertreatment systems on emission. The findings reveal, that there are two different subcategories of two-wheeler, which show different emission characteristics. L1e vehicles showed increased emissions compared to passenger cars, caused by the absence of advanced exhaust aftertreatment and on-board
Schurl, SebastianSchmidt, StephanBretterklieber, NikoKupper, MartinKirchberger, Roland
Evaluating the impact of software changes on fuel consumption and emissions is a critical aspect of transmission development. To evaluate the trade-offs between performance improvements and potential negative effects on efficiency, a forward-looking Software-in-the-Loop (SiL) simulation has been developed. Unlike backward calculations that derive fuel consumption based solely on cycle speed and engine speed, this approach executes complete driving cycles as the Worldwide Harmonized Light-Duty Vehicle Test Cycle (WLTC) within a detailed SiL environment. By considering all relevant influencing factors in a dynamic simulation, the method provides a more accurate assessment of fuel consumption and emission differences between two versions of the transmission software. The significant contribution of this work lies in the high-fidelity integration of a real virtual Transmission Control Unit (vTCU) software within a comprehensive, validated forward-looking SiL environment. This approach
Kengne Dzegou, Thierry JuniorSchober, FlorianRebesberger, RonHenze, Roman
The ongoing electrification of vehicle powertrains brings attention to components with a minor contribution to overall friction losses in research and development. To optimize the overall energy efficiency, it is essential to analyze and reduce the losses in these components. Wheel bearings are of particular interest in this context, as their friction losses affect both the driving and recuperation phases. These losses are dependent on temperature, mechanical loads and the bearing mounting situation into the vehicle. The analysis of friction losses and their dependency on the factors mentioned above is usually conducted by measurements on component test benches to allow an isolated analysis. In contrast, the friction losses of the complete drive system are measured on powertrain or roller test benches. In this context, the factors affecting the losses in wheel bearings deviate from the measurements obtained on component test benches. The purpose of this paper is to analyses the effect
Hartmann, LukasErxleben, LarsRebesberger, RonHenze, RomanSturm, Axel
The water pump is the crucial component of the engine cooling system. It is usually designed considering as rated conditions the ones evaluated when the engine delivers its maximum power. This results in an overdesign of the pump, considering that almost never the engine delivers the maximum power, in usual operation. At these conditions, in fact, flow rate and pressure delivered reach the maximum values, which are not needed to cool the engine in most probable operating conditions. In fact, considering the real operating conditions during a typical driving mission or a homologation cycle, the mechanical power is far away from the maximum datum, as well as the cooling flow rate and pressure delivered by the pump. To a so unbalanced design for the pump corresponds a low efficiency of it, being the technology oriented to use a centrifugal type, whose efficiency is quite dependent on speed of revolution and flow rate delivered. Hence, modifying the design point of the pump causes a
Di Battista, DavideDeriszadeh, AliDi Prospero, FedericoDi Giovine, GiammarcoDi Bartolomeo, MarcoFatigati, FabioCipollone, Roberto
This paper presents measurement results of emissions and fuel economy on real-world driving of two-wheelers in India using a state-of-the-art FTIR PEMS technology. The study aimed to characterize the emissions profiles of a small motorcycle under typical Indian driving conditions, including congested urban traffic and highway driving. This is the continuation of the study conducted previously on bigger motorcycle using gas analyzer [1], with necessary adaptations to suit the specific conditions of Indian roads and traffic. Key parameters such as NOx, CO, CO2 and Fuel consumption were measured during real-world driving cycles and comparison is done with standard WMTC emission testing cycle. The findings of this study provide valuable insights into the actual on-road emissions of two-wheelers in India, which can be used to develop more accurate emission models and guide the development of cleaner and more efficient two-wheeler technologies. Key Considerations: Specifics of Indian Driving
Agrawal, RahulJaswal, RahulYadav, Sachin
The increasing demand for alternative fuels due to environmental concerns has sparked interest in biodiesel as a viable substitute for conventional diesel. Most automotive engines use diesel fuel engines. They contribute a major portion of today’s air pollution, which causes serious health issues including chronic bronchitis, respiratory tract infections, heart diseases, and many more. Greenhouse gases are produced using fossil fuel in the engines and causes global warming. To combat air pollution, we need clean renewable and environmentally friendly fuels. Due to depletion of fossil fuels, it has become necessary to find alternative fuel which are safer for the environment and humankind. One such possible solution is Biodiesel. In present study, series of experiments were carried out on 435cc naturally aspirate DI Diesel engine with port water injection and different blend of Jatropha based Biodiesel. Biodiesel was derived from Jatropha oil, produced using a heterogeneous catalyst
Bhoite, VikramSyed, KaleemuddinChaudhari, SandipKhairnar, GirishJagtap, PranjalReddy, Kameswar
The current work is the second installment of a two-part study designed to understand the impact of high-power cold-start events for plug-in electric vehicles (PHEVs) on tailpipe emissions. In part 1, tailpipe emissions and powertrain signals of a modern PHEV measured over three drive cycles identified that high-power cold-start events generated the highest amounts of gaseous and particulate emissions. The trends in emissions data and powertrain performance were specific to the P2-type hybrid topology used in the study. In this second part of the study, the effects of different PHEV hardware configurations are determined. Specifically, the tailpipe emissions of three production plug-in hybrid vehicles, operated over the US06 drive cycle, are characterized. The approach compared the tailpipe emissions of the test vehicles on the basis of the hybrid topologies and corresponding engine operational characteristics during a high-power cold-start event. Analysis of test results showed
Chakrapani, VarunO’Donnell, RyanFataouraie, MohammadWooldridge, Margaret
Thermal management of electric vehicle (EV) battery systems is critical for ensuring optimal performance, user safety, and battery longevity. Existing high-fidelity simulation methods provide detailed thermal profiles, but their computational intensity makes them inefficient for early design iterations or real-time assessments. This paper introduces a streamlined, physics-based one-dimensional transient thermal model coded in MATLAB for efficiently predicting battery temperature behavior under various driving cycles. The model integrates vehicle dynamics to estimate power demands, calculates battery current output and heat generation from electrochemical principles, and determines the battery temperature profile through a 1D conduction model connected to a thermal resistance network boundary condition that incorporates the effect of coolant heat capacity. The model achieved prediction errors below 1% when compared to analytical solutions for conditions of no heat generation and steady
Builes, IsabelMedina, MarioBachman, John Christopher
Due to strengthened CO2 regulations, the automotive industry is facing the challenge of reducing greenhouse gas emissions. In response, the industry has focused on developing various technologies that enhance fuel economy and reduce greenhouse gas emissions. Hybrid electric powertrains have demonstrated significant potential to improve fuel economy and reduce greenhouse gas emissions. The improvements resulting from hybrid electric powertrains depend on the degree of electrification, which is closely related to the sizing of the motor and battery. However, hybridization increases the complexity of the powertrain. As multiple power sources are involved, complex control algorithms must be developed to allocate power usage among various driving scenarios while fulfilling driver requests. One way to simplify hybrid power management control is to implement optimization strategies that determine the operating states for each component during different driving scenarios, aiming to minimize
Echeverri Marquez, ManuelBhoge, MaheshLago, RafaelEngineer, NayanBhadra, KaustavWhitney, ChristopherBaur, Andrew
The light-duty transportation sector is experiencing a worldwide push towards reduced carbon intensity. One pathway that has been developed focuses on replacing internal combustion engine (ICE)-based vehicles with full-electric battery electric vehicles (BEV), which offer local carbon dioxide (CO2)-free mobility. However, batteries offer a limited mobility range and can require long recharging times, leading to a limited range perception among some vehicle operators. A range-extended electric vehicle (REEV) utilizes a small ICE to mitigate the range concerns of BEVs, while also enabling a battery size reduction with its associated improvements in cost, weight, and manufacturing-related CO2 intensity. A previous study by the authors discussed evaluation criteria for range extender engines (REx) and compared additive technology options to enable cost-, efficiency, or power-optimized REEV applications using a modular approach. This study contrasts the dedicated REx with associated modular
Hoth, AlexanderMarion, JoshuaSilvano, PeterPeters, NathanPothuraju Subramanyam, Sai KrishnaBunce, Mike
Knowledge of real-world driving behavior is fundamental to the development of drive systems. The derivation of representative requirements or driving cycles for use case-specific vehicle use allows a customer-centered drive system design. These datasets contain data such as distance, standstill times, average accelerations or a customer driving style estimation. In addition, the real-world data can be used for regulatory purposes such as the definition of utility factors or the definition of real driving emission cycles. In a research project funded by FVV e.V., we have developed a universal database software including data storage, user interface and general data plausibility functions for real driving data. The database contains detailed time series measurement data on component and vehicle level such as torque and speed of electric motors and internal combustion engines as well as general mobility data such as driving distance statistics. A key objective of the database development
Sander, MarcelSturm, Axel WolfgangMartínez Medina, ÓscarHenze, RomanKühne, UlfEilts, Peter
This study investigates an optimal control strategy for a battery electric vehicle (BEV) equipped with a high-speed motor and a continuously variable transmission (CVT). The proposed dual-motor powertrain model activates only one motor at a time, with Motor A routed through a CVT and Motor B through a fixed gear. To improve energy efficiency, two optimization methods are evaluated: a quasi-steady-state map-based approach and a dynamic programming (DP) method. The DP approach applies Bellman’s principle to derive the globally optimal CVT ratio and motor torque trajectory over the WLTC cycle. Simulation results demonstrate that the DP method significantly improves overall efficiency compared to traditional control logic. Furthermore, the study proposes using DP-derived maps to refine practical control strategies, offering a systematic alternative to conventional experimental calibration.
Zhao, HanqingMoriyoshi, YasuoKuboyama, Tatsuya
With the ongoing electrification of vehicles, components contributing a minor share of overall drivetrain losses are coming into focus. Analyzing these losses is crucial for enhancing the energy efficiency of modern vehicles and meeting the increasing demands for sustainability and extended driving range. These components include wheel bearings, whose friction losses are influenced by parameters such as temperature, mechanical loads, and mounting situation. Therefore, it is essential to analyze the resulting friction losses and their dependence on the mentioned influencing parameters at an early stage of development, both through test bench measurements and with the help of simulation models. To achieve these objectives, this submission presents a methodology that combines test bench measurements with a measurement-based simulation of the friction losses of wheel bearings occurring in the vehicle as a complete system under varying driving cycles and parameters. For this purpose, an
Hartmann, LukasSturm, AxelHenze, RomanNotz, Fabian
Assessing the effect of road grade on the performance evaluation and testing of heavy-duty vehicles (HDVs) requires the efficient construction of a high-quality multi-parameter driving cycle of HDVs. However, existing pure random heuristic methods fail to preserve the driving characteristics of the original driving cycles, resulting in poor-quality outputs. In addition, the randomness inherent in multiple heuristic approaches limits the search efficiency. To address these issues, this study proposes a novel Monte Carlo tree search heuristic method (MCTSHM) for efficiently constructing multi-parameter driving cycles of HDVs. First, a satisfactory criterion model was used to design the objective function for the multi-parameter driving cycle, ensuring the evaluation indices satisfy given constraints. Next, heuristics were designed to maintain the dynamic transition characteristics of driving cycles. An improved Monte Carlo tree search was conducted to efficiently select heuristics more
Zhang, ManPei, ZhenlongHe, SiyuanQian, Xueming
Items per page:
1 – 50 of 913