Browse Topic: Vehicle dynamics

Items (8,581)
Accurately determining the loads acting on a structure is critical for simulation tasks, especially in fatigue analysis. However, current methods for determining component loads using load cascade techniques and multi-body dynamics (MBD) simulation models have intrinsic accuracy constraints because of approximations and measurement uncertainties. Moreover, constructing precise MBD models is a time-consuming process, resulting in long turnaround times. Consequently, there is a pressing need for a more direct and precise approach to component load estimation that reduces efforts and time while enhancing accuracy. A novel solution has emerged to tackle these requirements by leveraging the structure itself as a load transducer [1]. Previous efforts in this direction faced challenges associated with cross-talk issues, but those obstacles have been overcome with the introduction of the "pseudo-inverse" concept. By combining the pseudo-inverse technique with the D-optimal algorithm
Pratap, RajatApte, Sr., AmolBabar, Ranjit
In pursuit of a distinct sporty interior sound character, the present study explores an innovative strategy for designing intake systems in passenger vehicles. While most existing literature primarily emphasizes exhaust system tuning for enhancing vehicle sound quality, the current work shifts the focus toward the intake system’s critical role in shaping the perceived acoustic signature within the vehicle cabin. In this research work, target cascading and settings were derived through a combination of benchmark and structured subjective evaluation study and aligning with literature review. Quantitative targets for intake orifice noise was defined to achieve the desired sporty character inside cabin. Intake orifice targets were engineered based on signature and sound quality parameter required at cabin. Systems were designed by using advanced NVH techniques, Specific identified acoustic orders were enhanced in the intake system to reinforce the required signature in acceleration as well
Sadekar, Umesh AudumbarTitave, UttamPatil, JitendraNaidu, Sudhakara
Driver-in-the-Loop (DIL) simulators have become crucial tools across automotive, aerospace, and maritime industries in enabling the evaluation of design concepts, testing of critical scenarios and provision of effective training in virtual environments. With the diverse applications of DIL simulators highlighting their significance in vehicle dynamics assessment, Advanced Driver Assistance Systems (ADAS) and autonomous vehicle development, testing of complex control systems is crucial for vehicle safety. By examining the current landscape of DIL simulator use cases, this paper critically focuses on Virtual Validation of ADAS algorithms by testing of repeatable scenarios and effect on driver response time through virtual stimuli of acoustic and optical warnings generated during simulation. To receive appropriate feedback from the driver, industrial grade actuators were integrated with a real-time controller, a high-performance workstation and simulation software called Virtual Test
Sharma, ChinmayaBhagat, AjinkyaKale, Jyoti GaneshKarle, Ujjwala
In traditional commercial vehicles with leaf spring suspension and Recirculating Ball Joint (RCBT) steering systems often experience undesirable pulling due to unsymmetrical steering mechanism during braking, especially when the suspension and steering hardpoints are not properly tuned. This work analyzes the mechanisms responsible for pulling tendencies, primarily addressing brake steer and bump steer, which occur due to misalignments in the suspension and steering geometries. Brake steer occurs when braking forces create an imbalance in torque, resulting in the vehicle deviating to one side. On the other hand, bump steer refers to the unwanted changes in the wheel alignment when the suspension undergoes travel, leading to instability or unintended steering input. These two phenomena, if not controlled, can result in undesirable vehicle handling, especially under heavy braking conditions. This work focuses on evaluating these mechanisms and suggests strategies for minimizing their
Pandhare, Vinay RamakantM, Anantha PadmnabhanNizampatnam, BalaramakrishnaLondhe, AbhijitDoundkar, Vikas
Heavy tipper vehicles are primarily utilized for transporting ores and construction materials. These vehicles often operate in challenging locations, such as mining sites, riverbeds, and stone quarries, where the roads are unpaved and characterized by highly uneven elevations in both the longitudinal and lateral directions of vehicle travel. During the unloading process, the tipper bodies are raised to significant heights, which increases the vehicle's centre of gravity, particularly if the payload material does not discharge quickly. Such conditions can lead to tipper rollover accidents, causing severe damage to life and substantial vehicle breakdowns. To analyse this issue, a study is conducted on the vehicle design parameters affecting the rollover stability of a 35-ton GVW tipper using multi-body simulations in ADAMS software. The tilt table test was simulated to determine the table angle at which wheel lift occurs. Initially, simulations are performed with the rigid body model
Vichare, Chaitanya AshokPatil, SudhirGupta, Amit
Sustainability and environmentally friendly business practices are becoming essential. Tyre industries are embracing the green initiatives to reduce its impact on the environment by exploring the eco-friendly strategies. Starting from the ethical raw material sourcing to a creative recycling technique, strategies are widely distributing in every step of tyre manufacturing to disposition. Each stage of a tyre’s life cycle viz. raw material procurement, manufacturing, transportation both upstream and downstream as well as during the end-of-life phases have an emission-saving potential. It is important to reduce emissions at every stage of tyre’s lifecycle. We have recently developed a Sustainable Tyre with 11% less GHG emission through sustainable raw material approach. Bio sourced or bio attributed raw materials like Styrene Butadiene Rubber (SBR), Polybutadiene Rubber (PBR), Rubber process oil (RPO) and Silica along with natural rubber (NR) had been used. Beside the raw materials from
Bhandary, TirthankarSingha Roy, SumitPaliwal, MukeshDasgupta, SaikatChattopadhyay, DipankarDas, MahuyaMukhopadhyay, Rabindra
In recent years, the automotive industry has been looking into alternatives for conventional vehicles to promote a sustainable transportation future having a lesser carbon footprint. Electric Vehicles (EV) are a promising choice as they produce zero tail pipe emissions. However, even with the demand for EVs increasing, the charging infrastructure is still a concern, which leads to range anxiety. This necessitates the judicious use of battery charge and reduce the energy wastage occurring at any point. In EVs, regenerative braking is an additional option which helps in recuperating the battery energy during vehicle deceleration. The amount of energy recuperated mainly depends on the current State of Charge (SoC) of the battery and the battery temperature. Typically, the amount of recuperable energy reduces as the current SoC moves closer to 100%. Once this limit is reached, the excess energy available for recuperation is discharged through the brake resistor/pads. This paper proposes a
Barik, MadhusmitaS, SethuramanAruljothi, Sathishkumar
With the inevitable shift of automotive industry towards E-mobility and mandatory fuel efficiency targets, there is a need to evaluate the energy losses in the vehicle & identify potential areas of improvement. Energy losses are calculated for different components in the corner module system of a passenger car. Contribution of losses (resistances) from respective component are depicted using simple analytical models. Potential energy saving improvements were identified and analyzed basis emerging technologies in respective areas.
Raghatate, Kumar ShreyasVedartham, RaghavendraKhanger, RakeshBisht, Arun
Today due to time to market requirements, Original Equipment Manufacturers (OEM) prefers platform modularity for Product Development in Automotive Domain. Money and time being main constraint we need to focus on single platform which can give flavors of different category just by changing Ride height and Tyre and some extra tunable. Taking this as challenge still tyre development for new variant demands lot of time and iterations which can lead to delays in time to market. This study provides a virtual development process using driver in loop Simulator and Multi body dynamics simulation which are real time capable and integrating physical tire models. The proposed alteration introduces ride height changes, weight distribution changes, and center of gravity changes from existing vehicle design. The proposed new vehicle variant also introduces tire change from highway terrain type to all-terrain type as it was intended to deliver some off-roading capabilities, thereby vehicle dynamics
Shrivastava, ApoorvAsthana, Shivam
Final design choices are frequently made early in the product development cycle in the fiercely competitive automotive sector. However, because of manufacturing tolerances design tolerances stiffness element fitment and other noise factors physical prototypes might show variations from nominal specifications. Significant performance differences (correlation gaps) between the digital twin representation produced during the design phase and real-world performance may result from these deviations. Measuring every system parameter repeatedly to take these variations into account can be expensive and impractical. The goal of this study is to identify important system parameters from system characteristic data produced by controlled dynamic testing to close the gap between digital and physical models. Dynamic load cases are carried out with a 4-poster test rig where vehicle responses are captured under controlled circumstances at different suspension locations. An ideal set of digital model
Verma, Rahul RanjanGoli, Naga Aswani KumarPrasad, Tej Pratap
The automotive industry is highly competitive, especially in terms of design and perceived quality. The use of hard plastics with a high gloss finish is driven by styling trends and the push towards zero gaps, making interfaces critical. In-cabin mood lighting is another feature being offered as a theme for interiors. Dashboard or cockpit designs often incorporate a significant amount of polycarbonate-acrylonitrile butadiene styrene (PC-ABS) and polycarbonate (PC). These materials provide strength and design flexibility but have the disadvantage of material incompatibility when used together, leading to stick-slip phenomena. Traditionally, felt tapes were used as interface isolation to solve this problem, but this increased manufacturing costs and assembly complications. The study focuses on the stick-slip phenomenon and material interface modifications. Specifically, it examines selecting the right surface finish on one side of the PC & PC-ABS interface to change adhesion and friction
Mohammed, RiyazuddinR, PrasathRahman, Shafeeq
Vehicles with a high center of gravity (CG) and moderate wheel track, like compact Sport Utility Vehicles (SUVs), have a relatively low Static Stability Factor (SSF) and thus are inherently less stable and more susceptible to rollover crashes. Moreover, to be more maneuverable in highly populated urban areas, a smaller Turning Circle Diameter (TCD) is necessary. Here, Variable Gear Ratio (VGR) steering systems have major benefits over traditional Constant Gear Ratio (CGR) systems in terms of enhancing both roll stability and agility. To adapt VGR steering systems to a particular vehicle dynamic, Full Vehicle (FV) and Driver-in-the-Loop (DIL) simulations are utilized. Using this method, exact calibration is possible according to realistic driving conditions so that the VGR steering C-factor curve is properly tuned for optimal handling in on-center, off-centre, and transitional areas of the Steering Wheel Angle (SWA). Primary performance measures—e.g., SWA gradients at different lateral
Rewale, PratikKopiec, JakubKumar, DevaRasal, ShraddheshHussain, InzamamNehal, S B
Vehicle dynamics is a vital area of automotive engineering that focuses on analyzing how a vehicle responds to driver inputs and external factors like road conditions and environmental influences. Achieving optimal performance, safety, and ride comfort requires a detailed understanding of longitudinal, lateral, and vertical dynamic behavior. The objective of this paper is to develop and validate the model of a concept Race car and evaluate its vehicle dynamics behavior using IPG CarMaker, a high-fidelity virtual testing environment widely used in industry. The model incorporates a range of vehicle parameters, including suspension parameters like spring and damper characteristics, mass distribution, tire properties and powertrain parameters. The performance evaluation is done as per standard guidelines, including Constant Radius turn test, Sine Steer test and other standard tests like Acceleration, Braking along with Ride and Comfort classification. The key parameters that are
Agrewale, Mohammad Rafiq B.Vaish, Ujjwal
This study presents an integrated vehicle dynamics framework combining a 12-degree-of-freedom full vehicle model with advanced control strategies to enhance both ride comfort and handling stability. Unlike simplified models, it incorporates linear and nonlinear tire characteristics to simulate real-world dynamic behavior with higher accuracy. An active roll control system using rear suspension actuators is developed to mitigate excessive body roll and yaw instability during cornering and maneuvers. A co-simulation environment is established by coupling MATLAB/Simulink-based control algorithms with high-fidelity multibody dynamics modeled in ADAMS Car, enabling precise, real-time interaction between control logic and vehicle response. The model is calibrated and validated against data from an instrumented test vehicle, ensuring practical relevance. Simulation results show significant reductions in roll angle, yaw rate deviation, and lateral acceleration, highlighting the effectiveness
Duraikannu, DineshDumpala, Gangi Reddi
The handling of a vehicle is crucial to the perception of its dynamic characteristics, such as comfort, stability, composure, sportiness, and precision. Kinematics and Elasto-kinematics, also known as Kinematics and Compliance (K&C), form the basis of an automobile's handling characteristics. Kinematics focuses on the movement of suspension components, including wheels, axles, and linkages, and how these movements relate to the vehicle's body motion. Compliance refers to the suspension's ability to deform under load, primarily due to the flexibility of springs, bushings, and other elastic components. Elastomer bushings, as flexible elements in the kinematic chain, significantly impact K&C and require a detailed study. Suspension bush stiffness is typically measured through static and dynamic tests, in various directions – radial, axial, torsional, etc. Tests involve applying a force or torque and measuring the resulting deflection and/or rotation. These measurements are used to
Avhad, Anish
In its conventional form, dynamometers typically provide a fixed architecture for measuring torque, speed, and power, with their scope primarily centered on these parameters and only limited emphasis on capturing aggregated real-time performance factors such as battery load and energy flow across the diverse range of emerging electric vehicle (EV) powertrain architectures. The objective of this work is to develop a valid, appropriate, scalable modular test framework that combines a real-time virtual twin of a compact physical dynamometer with world leading real-time mechanical and energy parameters/attributes useful for its virtual validation, as well as the evaluation of other unknown parameters that respectively span iterations of hybrid and electric vehicle configurations, ultimately allowing the assessment of multiple chassis without having to modify the physical testing facility's test bench. This integration enables a blended approach, using a live data source for now, providing
Kumar, AkhileshV, Yashvati
This manuscript introduces a methodology to reduce the DC link capacitor size in pole-phase modulated (PPM) induction motor drives (IMD). Typically, the DC link capacitor (DCLC) occupies around 25 to 30% of the inverter volume and 20% of the inverter material cost. Reducing the DCLC size and cost is essential to lowering the inverter size and cost. This can be accomplished by lowering the DCLC ripple current. The proposed technique suggests adapting phase-shifted triangular carrier waveforms, in all the operating modes of the PPM drive, to significantly reduce the ripple current through DCLC, successively reduces the size and cost of DCLC. Simulations are performed in MATLAB/Simulink on a 9 phase PPM drive to validate the efficacy of the strategy. Though the suggested concept is verified with a 9 phase PPM drive, which is operated in 2 modes, it can be extended to any 3n PPM drive. The results demonstrate a 60% reduction in ripple magnitude, enabling the use of smaller, more reliable
A, Rajeshwari
Twist beam suspensions are widely utilised in passenger vehicles because of their simplicity and cost-efficiency, yet they provide engineers with a complex challenge as their performance depends entirely upon the structural properties of the beam itself. Traditional methodologies rely on the generation of Modal Neutral Files (MNF) based upon vehicle dynamics requirements and packaging constraints, which is a highly time-consuming process that starts failing to fulfil the demands of a market where development times are being exponentially reduced. Besides this, part of flexible body’s real behaviour might be lost in the process of converting multibody models into parametric ones, which, in turn, presents difficulties in modifying compliant-related items. Thanks to a novel approach followed jointly by Applus+ IDIADA & Mahindra, quick identification and optimisation of key tuneable items is achieved by employing a hybrid solution that combines full flexible and FE elements in Hexagon
Osorio, Alejandro GarcíaPrabhakara Rao, VageeshAsthana, ShivamRasal, Shraddhesh
Balance towards various Vehicle attributes often faces design contradictions, particularly in Noise, Vibration, and Harshness (NVH) optimization. Traditional approaches rely on trade-offs, but TRIZ (Theory of Inventive Problem Solving) offers a structured methodology to resolve contradictions innovatively. This paper presents TRIZ-based solutions for 2 key NVH challenges: (1) exhaust systems requiring noise reduction while maintaining low engine back-pressure, (2) engine mounts requiring both softness for vibration isolation and hardness for durability & vehicle stability, By applying TRIZ principles such as separation, mechanics change, etc. and using Thinking Tools such as thinking in time & scale, novel solutions are proposed to achieve superior performance without traditional compromises. These case studies demonstrate how TRIZ enhances automotive NVH refinements by enabling systematic innovations. This also explores benefits of Frugal Engineering for profitable launch of new
A, Milind Ambardekar
Electric vehicles (EVs) are becoming more popular than Internal Combustion Engine (ICE) powered vehicles, but their battery and motor components elevate their Gross Vehicle Weight (GVW), posing unique collision risks. Manufacturers strategically mount the high voltage (HV) battery packs under the passenger compartment to lower the Centre of Gravity and shield them from the front impacts. However, side impacts remain a concern, as the battery deformation in such instances could trigger fires or explosions, endangering occupants. To address this, crashworthiness designs adhere to New Car Assessment Program (NCAP) standards, particularly against side pole impact and side mobile barrier impact. Unlike the frontal section of BIW, which typically has larger crush space to absorb the crash energy, extensive design attention is required to the vehicle's side structure to absorb pole impacts without transmitting excessive force to the battery pack. Utilizing aluminium extrusions and sheet
Nivesh, DharunNamani, PrasadRamaraj, Rajasekar
The fuel management system for a fixed-wing aircraft has been developed and explored with the model-based systems engineering (MBSE) methodology for maintaining the center of gravity (CoG) and analyzing flight safety. The system incorporates high-level modeling abstractions that exploit a mix of behaviors and physical detail resembling real-world components. This approach enables analysis for a multitude of system requirements, verification, and failure scenarios at high simulation speed, which is necessary during system definition. Initially, the CoG is maintained by directly accessing the flight deck valves and pumps in both wings and controlling them through the bang-bang control law. In the refinement phase of the fuel system controller, the manual and individual controls of the valves and pumps are replaced with an autonomous fuel transfer scheme. The autonomous scheme achieves no more than a 20 kg difference in fuel between the wings during normal conditions. In the event of
Zaidi, YaseenMichalek, Ota
With the rapid development of automobile industrialization, the traffic environment is becoming increasingly complex, traffic congestion and road accidents are becoming critical, and the importance of Intelligent Transportation System (ITS) is increasingly prominent. In our research, for the problem of cooperative control of heterogeneous intelligent connected vehicle platoons under ITS considering communication delay. The proposed method integrates the nonlinear Intelligent Driver Model (IDM) and a spacing compensation mechanism, aiming to ensure that the platoon maintains structural stability in the presence of communication disturbances, while also enhancing the comfort and safety of following vehicles. Firstly, construct heterogeneous vehicle platoon system based on the third-order vehicle dynamics model, Predecessor-Leader-Following (PLF) communication topology, and the fixed time-distance strategy, while a nonlinear distributed controller integrating the IDM following behavior
Ye, XinKang, Zhongping
Distributed drive steer-by-wire chassis has significant potential for enhancing vehicle dynamics performance, while also presenting great challenges to vehicle dynamics control. To address the coordination among multiple chassis subsystems and the coupled control allocation of longitudinal and lateral tire forces, this paper proposes a centralized control framework based on optimal yaw moment control. By analyzing the impact of longitudinal and lateral tire forces on vehicle yaw moments, a method for allocating longitudinal and lateral forces with maximum yaw moment as the objective is proposed. On this basis, a hierarchical control architecture is designed, including the driver control layer, motion control layer, tire force allocation layer, and actuator execution layer, to achieve centralized domain control of longitudinal and lateral dynamics in distributed drive steer-by-wire chassis. Finally, the proposed centralized controller is validated using offline simulation and real-time
Wu, DongmeiGuo, ChunzhiLiu, ChangshengXia, XinLi, MiaoLiu, Wei
In-situ steering can significantly improve the vehicle's maneuverability in narrow spaces, especially suitable for extreme scenarios such as off-road driving and professional operations. For distributed drive electric vehicles, kinematics-based left and right wheel differential control and dynamics-based vehicle yaw control can achieve in-situ steering, however, the two methods have different effects on in-situ steering performance. This paper proposes a kinematics-based distributed drive electric vehicle differential in-situ steering control method, which first establishes the functional relationship between the drive pedal and the expected yaw rate, so that the driver can adjust the steering speed. The initial reference wheel speed is calculated from the expected yaw rate, and the reference wheel speed is adjusted by feedback from the actual and expected yaw rate errors to improve the tracking accuracy. On this basis, the sliding mode control algorithm is used to calculate the
Chen, JingxuLi, YangZhang, YiZhao, HongwangQiao, MiaomiaoWang, BeibeiWu, Dongmei
This paper proposes a DYC/ABS coordinated control strategy for cornering and braking based on driver intention. A hierarchical control structure is established, where the upper-level controller uses a vehicle dynamics model to calculate the additional yaw moment required by the DYC controller to track the desired yaw rate and sideslip angle, as well as the driver’s intended braking intensity. Taking multiple constraints into account, a quadratic programming algorithm is employed to optimize the distribution of braking forces among the four wheels. The lower-level ABS controller is designed with multiple thresholds and corresponding control phases to precisely regulate the hydraulic pressure of individual wheel cylinders. In emergency braking scenarios where ABS intervention may conflict with the upper-layer braking force allocation, a rule-based, stepwise diagonal pressure reduction compensation strategy is proposed. This strategy fully considers the influence of longitudinal and
Zou, YanMa, YaoKong, YanPei, Xiaofei
This paper briefly introduces the vehicle characteristics of four-wheel steering. Based on the parameters of an electric SUV, a linear two-degree-of-freedom vehicle dynamics model is established, and the transfer function of the rear wheel steering angle is derived to keep the sideslip angle at the center of gravity(CoG) constant at zero and proportional to the front wheel steering angle under steady state. The active rear wheel steering control strategy based on zero sideslip angle is established by MATLAB/Simulink, and a co-simulation model is built with CarSim and the HIL test bench to simulate and analyze the proposed control strategy. Subsequently, through classic handling stability test conditions such as the snake test, steering angle step test, and double lane change test, the influence of active rear wheel steering on vehicle dynamic response indicators such as sideslip angle, lateral acceleration, and yaw rate is studied, and the control effect is compared with that of the
Xu, XiangfeiQu, YuanLiu, Jiabao
As one of the most common types of traffic accidents, tire blowout has become a significant safety issue in the stability control of autonomous vehicles. This paper presents a coordinated control strategy for autonomous vehicles operating under tire blowout conditions. A simplified three-degree-of-freedom vehicle dynamics model and a preview-based kinematic model are developed to capture the complex interactions between lateral and longitudinal motions during a blowout event. Then, the proposed control framework integrates sliding mode control (SMC) with a prescribed-performance function to constrain lateral deviation and heading error within predefined boundaries. To improve emergency path tracking and ensure stability, a transformation-based error bounding method is introduced. Lyapunov-based stability analysis verifies the convergence properties of the closed-loop system. Simulation results validate the effectiveness of the proposed method under both tubeless and tubed tire blowout
Xia, HongyangYang, MingLi, HongluoHuang, Yongxian
Based on field investigations of loess slopes along highways in the Lüliang region, a numerical infiltration model of highway loess slopes was established using the ABAQUS finite element software. The study examined the time to plastic zone coalescence and variations in infiltration range under two intense rainfall scenarios for slopes of different heights. Furthermore, a landslide numerical model of the loess slope was constructed using the FEM-SPH method, and a predictive formula for landslide runout distance of highway loess slopes was derived through data fitting.The results indicate that under the same slope height, increased rainfall intensity leads to a certain degree of reduction in landslide runout distance. Conversely, under the same rainfall condition, greater slope height significantly increases the runout distance. This study provides a theoretical foundation and methodological support for stability evaluation and runout distance prediction of loess slopes under intense
Liu, ManfengLi, Hong
With the advancement of cable-stayed bridge construction technology, the application of long-span concrete girder cable-stayed bridge is gradually extensive, making the study of construction technology and equipment for concrete main girders increasingly important. The cable hanging basket, a crucial piece of equipment for cable-stayed bridge construction, maximizes the cable’s bearing capacity, improves construction efficiency, and ensures safety and stability during construction. However, due to the varying structural designs and construction environments, the cable hanging basket must be specifically tailored for different cases. The Hanjiang Bridge on the Xi’an-Shijiazhuang High-speed Railway is China’s first steel-truss-reinforced PC box-girder cable-stayed bridge, with a main span of 420 meters. If conventional diamond-shaped hanging baskets are used for suspended casting of small sections, the construction period will not meet the construction requirements of this bridge. To
Li, Jian
The presence of time-varying loads on shell structures can result in the generation of undesirable noise in the time domain. This paper presents a time-domain noise control method based on piezoelectric smart shell structures. Firstly, a coupled time-domain finite element/boundary element method (TDFEM/BEM) is used to calculate the sound pressure radiated from shell structures subjected to arbitrary time-varying loads. Then a classical time-domain CGVF algorithm is used to control the vibration and to suppress the sound radiation from structures. Finally, numerical examples demonstrate a 44.2% reduction in the displacement response, a 35.8% decrease in acceleration response, a 36.2% decline in sound pressure of the central node, and a 28.5% decrease in average surface sound pressure. The results show that after CGVF control, the vibration and radiation noise of the plate/shell structure under time domain load are effectively reduced, which is of great significance in engineering
Zheng, HaoWang, HongfuLi, JingjingZhou, QiangSun, YongZhou, LingZhang, HongliangWang, BaichuanHuang, JunsongLiu, XiaorangYin, Guochuan
Items per page:
1 – 50 of 8581