Browse Topic: Aerodynamics
To address the growing concern of increasing noise levels in urban areas, modern automotive vehicles need improved engineering solutions. The need for automotive vehicles to have a low acoustic signature is further emphasized by local regulatory requirements, such as the EU's regulation 540/2014, which sets sound level limits for commercial vehicles at 82 dB(A). Moreover, external noise can propagate inside the cabin, reducing the overall comfort of the driver, which can have adverse impact on the driving behavior, making it imperative to mitigate the high noise levels. This study explores the phenomenon of change in acoustic behavior of external tonal noise with minor geometrical changes to the A-pillar turning vane (APTV), identified as the source for the tonal noise generation. An incompressible transient approach with one way coupled Acoustics Wave solver was evaluated, for both the baseline and variant geometries. Comparison of CFD results between baseline and variant showed
This terminology document is intended to provide a common nomenclature for use in publishing road vehicle aerodynamics data and reports.
As automotive manufacturers have tried to set themselves apart by reducing emissions, and increasing vehicle range/fuel economy by eliminating any energy loss from inefficiencies on the vehicle, the brake corners have been an area of interest to reduce off-brake torque to zero in all conditions. Caliper designers can revise some attributes like piston seal grooves, and pad retraction features to reduce drag, but even if a caliper is designed perfectly in all aspects, trying to measure it in a reliable and repeatable manner proves to be difficult. There are many ways to measure brake drag all with ranging complexity. Some of the simplest measurements are the most repeatable, but it excludes the majority of the vehicle inputs. The most vehicle representative testing requires the most complex equipment and comes with the most challenges. This paper will focus mainly on the different ways residual brake drag can be measured, the benefits and challenges to each of them, the problems trying
Electric Vertical Take-Off and Landing (eVTOL) aircraft, conceptualized to be used as air taxis for transporting cargo or passengers, are generally lighter in weight than jet-fueled aircraft, and fly at lower altitudes than commercial aircraft. These differences render them more susceptible to turbulence, leading to the possibility of instabilities such as Dutch-roll oscillations. In traditional fixed-wing aircraft, active mechanisms used to suppress oscillations include control surfaces such as flaps, ailerons, tabs, and rudders, but eVTOL aircraft do not have the control surfaces necessary for suppressing Dutch-roll oscillations.
This study evaluates the effectiveness of two hybrid computational aeroacoustic methods—Lighthill wave model and perturbed convective wave model—in simulating HVAC duct noise in the automotive industry. Using component-level acoustic testing of a Ford HVAC duct, simulations were conducted at varying airflow rates to assess the accuracy of both models in predicting duct noise. The Lighthill wave model, suitable for noise analysis in regions outside turbulent flow areas, showed a good correlation with experimental data, especially in the frequency range of 100 Hz–5000 Hz, but sometimes struggled with pseudo-noise effects at low frequencies near turbulent regions. The perturbed convective wave model, which is suitable for noise analysis anywhere in the flow domain, underpredicted sound pressure levels at low frequencies as well. Both models underpredicted high-frequency noise (>5 kHz) due to insufficient mesh and time-step sizes. Despite these limitations, the Lighthill wave model
Experimental studies of wind tunnel blockage for road vehicles have usually been conducted in model wind tunnels. Models have been made in a range of scales and tested in a working section of fixed size. More recently CFD studies of blockage have been undertaken, which allow a fixed vehicle size and the blockage is varied by changing the cross section of the flow domain. This has some inherent advantages. A very recent database of CFD derived drag and lift coefficients for different road vehicle shapes and simple bodies tested in a closed wall tunnel with a wide range of blockage ratios has become available and provides some additional insight into the blockage phenomenon. In this paper a process is developed to derive the parameters influencing wind tunnel blockage corrections from CFD data. These are shown to be reasonably effective for correcting the measured drag and lift coefficients at blockage ratios up to 10%.
Items per page:
50
1 – 50 of 7070