Browse Topic: Aerodynamics

Items (7,070)
Off-highway vehicles (OHVs) routinely navigate unstable and varied terrains—mud, sand, loose gravel, or uneven rock beds—causing increased rolling resistance, reduced traction, and high energy expenditure. Traditional rigid chassis systems lack the flexibility to adapt dynamically to changing surface conditions, leading to inefficiencies in vehicle stability, maneuverability, and fuel economy. This paper proposes an adaptive terrain morphing chassis (ATMC) that can actively modify its structural geometry in real-time using embedded sensors, hydraulic actuators, and soft robotic elements. Drawing inspiration from nature and recent advances in adaptive materials, the ATMC adjusts vehicle ground clearance, track width, and load distribution in response to terrain profile data, thereby optimizing fuel efficiency and performance. Key contributions include: A multi-sensor fusion system for real-time terrain classification Hydraulic actuators and morphing polymers for variable chassis
Vashisht, Shruti
Ammonia, a carbon-neutral fuel, is a promising candidate for next-generation engine applications. However, its low flame speed (~7cm/s) and prolonged ignition delay (~10ms at stoichiometric conditions) impose significant challenges in achieving stable and efficient combustion across varying operating conditions. At high-speeds, incomplete combustion due to limited residence time reduces efficiency, while at low-speeds, ignition instability and low combustion temperatures hinder reliable operation. To address these challenges, the Passive Turbulent Jet Ignition (PTJI) system has been proposed to enhance turbulence-driven mixing and improve ignition characteristics. This study focuses on optimizing a PTJI system for ammonia-fueled engines using a three-phase methodology. First, the 800cc 2-cylinder gasoline engine was modified for ammonia using numerical analysis, and a baseline analysis of the combustion characteristics was conducted. Next, a turbulent intensity study within the PTJI
Ju, KangminKang, Hyun-UngKim, Jeong Hyeon
Real Driving Emission (RDE) testing for motorcycles presents unique challenges due to the motorcycle’s lightweight construction, limited mounting space, and sensitivity to added mass and aerodynamic drag. Full-functional automotive Portable Emission Measurement Systems (PEMS), while highly accurate, are often impractical for two-wheelers as their weight and size can alter driving resistances, fuel consumption, and emission profiles, but also complicate installation and probably effect the drivability of the vehicle. To address these limitations, lightweight alternatives such as Mini-PEMS and ultralightweight alternatives such as Sensor-based Emission Measurement Systems (SEMS) offer compact, low-power solutions tailored for small vehicles. SEMS are typically equipped with lower cost sensors and low-tech gas conditioning systems compared to PEMS. Due to this these systems may not meet regulatory homologation requirements. Nevertheless, they provide justifiable accuracy for many real
Schurl, SebastianLienerth, PeterJaps, LeonidSchroeder, MatthiasSchmidt, StephanKirchberger, Roland
India, being one of the largest automotive markets has considered various policies affecting fuel efficiency to curb vehicle carbon emissions. In a typical light-duty vehicle (LDV), around 20% of the fuel's energy is used to power the wheels and overcome aerodynamic drag resistance. Aerodynamic drag resistance, influenced by the projected surface area, cooling drag and velocity refers to the resistive force encountered by the vehicle. Furthermore, cooling drag resistance is determined by the effective cooling system architecture and aerodynamic design of the front-end module (FEM), which has major impact on the vehicle's performance and ram curve. In the pursuit of enhancing cooling system architecture, this paper investigates thermal performance and structural integrity of using common fins for both the condenser and radiator to improve the inlet aerodynamic performance which lowers cooling fan power consumption. Preliminary results show a 12% notable reduction in motor power
K, MuthukrishnanVijayaraj, Jayanth MuraliN, AswinNarashimagounder, ThailappanMahobia, Tanmay
To address the growing concern of increasing noise levels in urban areas, modern automotive vehicles need improved engineering solutions. The need for automotive vehicles to have a low acoustic signature is further emphasized by local regulatory requirements, such as the EU's regulation 540/2014, which sets sound level limits for commercial vehicles at 82 dB(A). Moreover, external noise can propagate inside the cabin, reducing the overall comfort of the driver, which can have adverse impact on the driving behavior, making it imperative to mitigate the high noise levels. This study explores the phenomenon of change in acoustic behavior of external tonal noise with minor geometrical changes to the A-pillar turning vane (APTV), identified as the source for the tonal noise generation. An incompressible transient approach with one way coupled Acoustics Wave solver was evaluated, for both the baseline and variant geometries. Comparison of CFD results between baseline and variant showed
Pawar, SourabhSharma, ShantanuSingh, Ramanand
TOC
Tobolski, Sue
Recent experimental work from the authors’ laboratory demonstrated that applying a boosted current ignition strategy under intensified flow conditions can significantly reduce combustion duration in a rapid compression machine (RCM). However, that study relied on spark anemometry, which provided only localized flow speed estimates and lacked full spatial resolution of velocity and turbulence near the spark gap. Additionally, the influence of turbulence on combustion behavior and performance across varying flow speeds and excess air ratios using a conventional transistor-controlled ignition (TCI) system was not thoroughly analyzed. In this study, non-reactive CFD simulations were used to estimate local flow and turbulent velocities near the spark gap for piston speeds ranging from 1.2 to 9.7 m/s. Simulated local velocities ranged from 0.7 to 96 m/s and were used to interpret experimentally observed combustion behavior under three excess air ratios (λ = 1.0, 1.4, and 1.6). Combustion was
Haider, Muhammad.ShaheerJin, LongYu, XiaoReader, GrahamZheng, Ming
System-level design decisions in Formula SAE (FSAE) vehicles drive all downstream subsystem designs, yet these decisions are often based on historical precedent or anecdotal evidence rather than rigorous analysis. This work presents a simulation-driven methodology to support data-informed decisions early in the design process, specifically examining how overall vehicle parameters—such as engine power, vehicle mass, aerodynamic drag and lift, wheelbase, and track width—influence performance in a representative FSAE endurance scenario. Two types of lap-time simulation tools were used in this study: OpenLAP, a point-mass simulator, and ChassisSim, a transient 3D vehicle dynamics simulator that incorporates suspension geometry, yaw response, weight transfer, and steering effects. Initial simulations with OpenLAP were used to rapidly identify trends and guide early design decisions, while ChassisSim was used for detailed sensitivity analyses and to validate system-level trade-offs in a more
Hernandez, Andy JoseBachman, John Christopher
This terminology document is intended to provide a common nomenclature for use in publishing road vehicle aerodynamics data and reports.
Road Vehicle Aerodynamics Forum Committee
Electro-mechanical braking (EMB) system has emerged as a potential candidate that serves the brake-by-wire technology. Several mechanisms are used to transmit the clamp force, where each has efficiency losses due to static friction and viscous damping. Compensating these losses is essential for accurate responses such that meeting the performance goal and improving the stopping distance of the EMB. Mathematical and empirical models are used to estimate these losses so that clamp force is accurately estimated and controlled. However, none of these models are capable of addressing the part-to-part variation or predicting the impact of other noise factors on these losses such as operating temperature and degradation. The purpose of this work is to online estimate the EMB coulomb friction by introducing an external torque command over a period of time while observing the system’s response. This approach continuously measures the coulomb friction while the system is in normal operation
Aljoaba, SharifRamakrishnan, RajaDobbs, Jeremy
Electric vehicles (EVs) require improved drag performance from wheel bearings to achieve a longer range. EVs are heavier and have higher torque output compared to internal combustion-powered vehicles. Due to the increased weight and torque of EVs, there will be higher loads at the bearing-to-knuckle joint. These increased loads may necessitate higher clamp loads to maintain joint integrity. However, higher clamp loads can lead to distortion or reduced roundness of the wheel bearing outer ring. Such distortion permanently increases drag and reduces bearing life. Therefore, after vehicle corner assembly with higher clamp loads, it is critical to minimize outer ring distortion during the initial assembly and throughout the bearing's lifespan. This paper will cover the design considerations for the wheel bearing outer ring to minimize distortion, utilizing Computer-Aided Engineering (CAE) analysis for various designs. A Design of Experiments (DOE) will be conducted to understand the
Mandhadi, Chaitanya ReddyCallaghan, KevinSutherlin, RobertLee, SeungpyoLee, YeonsikBovee, Benjamin
As automotive manufacturers have tried to set themselves apart by reducing emissions, and increasing vehicle range/fuel economy by eliminating any energy loss from inefficiencies on the vehicle, the brake corners have been an area of interest to reduce off-brake torque to zero in all conditions. Caliper designers can revise some attributes like piston seal grooves, and pad retraction features to reduce drag, but even if a caliper is designed perfectly in all aspects, trying to measure it in a reliable and repeatable manner proves to be difficult. There are many ways to measure brake drag all with ranging complexity. Some of the simplest measurements are the most repeatable, but it excludes the majority of the vehicle inputs. The most vehicle representative testing requires the most complex equipment and comes with the most challenges. This paper will focus mainly on the different ways residual brake drag can be measured, the benefits and challenges to each of them, the problems trying
Retting, Joshua
In the present article it is investigated why active grille shutters (AGS) can have very different aerodynamic characteristics, ranging from progressive to strongly degressive, and which factors influence them. For this purpose, the authority concept known from the field of heating, ventilation, and air-conditioning (HVAC) is referred to. According to this theory, the control characteristics of dampers depend primarily on the ratio of the pressure losses at the fully open damper to the pressure losses of the rest of the system. The adaptation of the concept to the automotive field shows that, in addition to the pressure losses, the geometry of the cooling air ducting plays a decisive role in motor vehicles. The effect of driving speed and fan operation on the characteristic curves is also being investigated. In addition, authority theory can also be used to derive the conditions under which the opening characteristic curve of an AGS provides a good prediction of the real characteristic
Wolf, Thomas
For further elucidation of the extremely complex mechanism of wall heat transfer during diesel flame impingement, heat flux measurement results based on two different relatively new approaches, high-speed infrared thermography and Micro Electro- Mechanical Systems (MEMS) heat flux sensor, were compared. Both measurements were conducted on the chamber wall impinged by a diesel flame achieved in constant volume combustion vessels under similar experimental conditions. Infrared thermography was conducted using a high-speed infrared camera (TELOPS M3k, 13,000 fps, 128×128 pixels), allowing the capture of time-series temperature and heat flux distributions on the wall surface with a spatial resolution of 70 μm (9 mm / 128 pixels). This high-resolution imaging also enables detailed estimation of near-wall turbulent structures, which are considered to significantly influence the heat flux distributions. The MEMS sensor is composed of closely aligned (520 microns separated) multiple highly
Shimizu, FumikaMorooka, MasatoAizawa, TetsuyaDejima, KazuhitoNakabeppu, Osamu
The transportation and mobility industry trend toward electrification is rapidly evolving and in this specific scenario, wind noise aeroacoustics becomes one of the major concerns for OEMs, as new propulsion systems are notably quieter than traditional ones. There is, however, very limited references available in the literature regarding validation of computational fluid dynamics (CFD) simulations applied to the prediction of aeroacoustics contribution to the noise generated by large commercial trucks. Thus, in this work, high-fidelity CFD simulations are performed using lattice Boltzmann method (LBM), which uses very large eddy simulation (VLES) turbulence model and compared to on-road physical tests of a heavy-duty truck to validate the approach. Furthermore, the effect of realistic wind conditions is also analyzed. Two different truck configurations are considered: one with side mirror (Case A) and the other without (Case B) side mirrors. The main focus of this work is to assess the
Guleria, AbhishekNovacek, JustinIhi, RafaelFougere, NicolasDasarathan, Devaraj
The recent advancements in vehicle powertrain and aerodynamics have led to an increase in the production of faster passenger cars, where high-speed driving scenarios demand equally efficient and safe braking systems to ensure the safety of both passengers and surrounding vehicles and pedestrians. At high speeds, aerodynamics can significantly impact overall vehicle braking performance due to the interaction between downforces and lift forces, which, in turn, affects the vehicle’s overall dynamic weight, directly contributing to the maximum attainable deceleration or braking force. Accordingly, the braking performance can be maximized by generating more downforce by means of rear spoilers, while taking into consideration their inevitable drag, which adds to the total vehicle motion resistance. Therefore, this proposed work aims to investigate the effectiveness of employing an active rear spoiler to enhance the vehicle’s braking performance, without introducing remarkable drag that could
Abidou, DiaaAbdellah, Ahmed HelmyHaggag, Salem
Electric Vertical Take-Off and Landing (eVTOL) aircraft, conceptualized to be used as air taxis for transporting cargo or passengers, are generally lighter in weight than jet-fueled aircraft, and fly at lower altitudes than commercial aircraft. These differences render them more susceptible to turbulence, leading to the possibility of instabilities such as Dutch-roll oscillations. In traditional fixed-wing aircraft, active mechanisms used to suppress oscillations include control surfaces such as flaps, ailerons, tabs, and rudders, but eVTOL aircraft do not have the control surfaces necessary for suppressing Dutch-roll oscillations.
In this article the transition of a laminar boundary layer (BL) over a flat plate is characterized using an acoustic technique with a pitot probe linked to a microphone unit. The probe was traversed along a BL plate at a fixed wind tunnel flow velocity of 5.5 m/s. A spectral analysis of the acoustic fluctuations showed that this setup can estimate the streamwise location and length of the BL transition region, as well as the BL thickness, by using the intermittency similitude approach. Further work is required to quantify the uncertainty caused by signal attenuation within the data acquisition system.
Lawson, Nicholas JohnZachos, Pavlos K.
The present study aims to simulate the non-reacting flow within the cylinder of a two-stroke spark ignition internal combustion engine (SIE) utilizing gasoline direct injection (GDI). A computational fluid dynamics (CFD) analysis was employed to forecast the turbulence levels of the in-cylinder flow, including the root-mean-square (RMS) turbulent velocity. The three-dimensional model was developed using ANSYS-FLUENT. The investigation examined the intake manifold inclination angles of 0°, 10°, 20°, 30°, and 40° for two different types of single-intake port engines (I and II) and a single-type double-intake port engines, that are presented at an engine speed of 1500 rpm. The findings revealed that the highest RMS turbulent velocities occurred at a 30° inclination for the double-intake engine, while the single-intake engines (I) and (II) showed peak velocities at 0° and 10°, respectively. Furthermore, in single-intake engine (I), the RMS turbulent velocity was found to be 38.7% greater
Soliman, MohabElbadawy, Ibrahim
In recent years, there has been a significant rise in research focused on estimating the base pressure (Pb) characteristics of convergent–divergent nozzles with sudden expansion regions. This study explores the use of geometrical parameters as a control strategy for nozzles experiencing abrupt expansion at supersonic Mach numbers within an axisymmetric duct. It focuses on four distinct novel expansion duct configurations: square nozzle (SN), step square nozzle (SSN), curved nozzle (CN), and double curved nozzle (DCN). In this work, the high-speed compressible flow investigation is carried out numerically using control volume method on the nozzle with a fixed area ratio (AR) and L/D nozzle. Standard k-ε turbulence model is used in the analysis to access the recirculation region formed near the nozzle walls. The recirculation zone directly influences the Pb and shock cell. For NPR range from 2 to 10, SSN and CN shows an increase in Pb, which further increases the thrust and decreases the
Raj, R. JiniKumar, P. DeepakPanchksharayya, D. V.Kousik Kumaar, R.Praveen, N.
Currently, effective methods for analyzing the aerodynamic sound sources of Sport Utility Vehicles (SUVs) are still under development, and the relationship between sound sources and flow dynamics is not yet fully understood. This study presents a method for identifying multi-frequency sound dipole sources within the near-wall flow field by analyzing the relationship between unsteady flow field properties and dipole sources, thereby addressing the complex characteristics of aerodynamic sound sources on vehicle surfaces. Wind tunnel tests, along with full-scale (1:1) Large Eddy Simulation (LES) were conducted on a real SUV. The identification method was applied to analyze the location and magnitude of sound sources near the vehicle's surface. The results, validated using Acoustic Perturbation Equations (APE), indicated that the dipole sources are primarily distributed around the windward side of the front wheels, the side of the front headlights, the A pillar-side mirror-front side
Zhang, HaoJia, QingWang, Yigang
This paper presents a fully parallelized Computational Acoustics (CA) module, integrated within the Simerics-MP+ platform, developed for the prediction of noise source power and far-field propagation across a range of Computational Fluid Dynamics (CFD) applications. Utilizing the Ffowcs Williams-Hawkings (FWH) acoustic analogy, the CA module seamlessly integrates with existing CFD workflows, offering minimal computational overhead with less than a 5% increase in runtime. Extensive validation has been conducted against analytical, numerical, and experimental data in various acoustic scenarios, including monopole and dipole noise emissions, flow around slender bodies, circular cylinders and aero-propellers. These validation studies underscore the reliability of the framework in accurately identifying noise sources and assessing the impact of design modifications, significantly reducing the need for expensive physical prototyping in industries such as automotive and aerospace. Building
Taghizadeh, SalarCzwielong, FelixBecker, StefanVarghese, JoelRaj, GowthamDhar, Sujan
The unsteady wind conditions experienced by a vehicle whilst driving on the road are different to those typically experienced in the steady-flow wind tunnel development environment, due to turbulence in the natural wind, moving through the unsteady wakes of other road vehicles and travelling through the stationary wakes generated by roadside obstacles. This paper presents an experimental approach using a large SUV-shaped vehicle to assess the effect of unsteady wind on the modulated noise performance, commonly used to evaluate unsteady wind noise characteristics. The contribution from different geometric modifications were also assessed. The approach is extended to assess the pressure distribution on the front side glass of the vehicle, caused by the aerodynamic interactions of the turbulent inflow in straight and yawed positions, to provide insight into the noise generation mechanisms and differences in behaviour between the two environments. The vehicle response to unsteady wind
Jamaluddin, Nur SyafiqahOettle, NicholasStaron, Domenic
This study evaluates the effectiveness of two hybrid computational aeroacoustic methods—Lighthill wave model and perturbed convective wave model—in simulating HVAC duct noise in the automotive industry. Using component-level acoustic testing of a Ford HVAC duct, simulations were conducted at varying airflow rates to assess the accuracy of both models in predicting duct noise. The Lighthill wave model, suitable for noise analysis in regions outside turbulent flow areas, showed a good correlation with experimental data, especially in the frequency range of 100 Hz–5000 Hz, but sometimes struggled with pseudo-noise effects at low frequencies near turbulent regions. The perturbed convective wave model, which is suitable for noise analysis anywhere in the flow domain, underpredicted sound pressure levels at low frequencies as well. Both models underpredicted high-frequency noise (>5 kHz) due to insufficient mesh and time-step sizes. Despite these limitations, the Lighthill wave model
Nam, Jee-WhanMendel, MarcGolberg, Igor
Multiple-ion-probe method consists of multiple ion probes placed on the combustion chamber wall, where each individual ion probe detects flame contact and records the time of contact. From the recorded data, it is also possible to indirectly visualize the inside of the combustion chamber, for example, as a motion animation of moving flame front. In this study, a thirty-two ion probes were used to record flames propagating in a two-stroke gasoline engine. The experiment recorded the combustion state in the engine for about 3 seconds under full load at about 6500 rpm, and about 300 cycles were recorded in one experiment. Twelve experiments were conducted under the same experimental conditions, and a total of 4,164 cycles of signal data were obtained in the twelve experiments. Two types of analysis were performed on this data: statistical analysis and machine learning analysis using a linear regression model. Statistical analysis calculated the average flame detection time and standard
Yatsufusa, TomoakiOkahira, TakehiroNagashige, Kohei
New regulations introduced by the Fédération Internationale de l’Automobile (FIA) for the 2026 Formula 1 season mark the first instance of active flow control methods being endorsed in Formula 1 competition. While active methods have demonstrated significant success in airfoil development, their broader application to grounded vehicle aerodynamics remains unexplored. This research investigates the effectiveness of trapped vortex cavity (TVC) technology in both active and passive flow controls, applied to a NACA0012 airfoil and an inverted three-element airfoil from a Formula 1 model. The investigation is conducted using numerical methods to evaluate the aerodynamic performance and potential of TVC in this paper. In the single-airfoil case, a circular cavity is placed along the trailing edge (TE) on the suction surface; for the three-element airfoils, the cavity is positioned on each airfoil to determine the optimum location. The results show that the presence of a cavity, particularly
Ng, Ming KinTeschner, Tom-Robin
Automotive signal processing is dealt with in several contributions that propose various techniques to make the most out of the available data, typically for enhancing safety, comfort, or performance. Specifically, the accurate estimation of tire–road interaction forces is of high interest in the automotive world. A few years ago the T.R.I.C.K. tool was developed, featuring a vehicle model processing experimental data, collected through various vehicle sensors, to compute several relevant virtual telemetry channels, including interaction forces and slip indices. Following years of further development in collaboration with motorsport companies, this article presents T.R.I.C.K. 2.0, a thoroughly renewed version of the tool. Besides a number of important improvements of the original tool, including, e.g., the effect of the limited slip differential, T.R.I.C.K. 2.0 features the ability to exploit advanced sensors typically used in motorsport, including laser sensors, potentiometers, and
Napolitano Dell’Annunziata, GuidoFarroni, FlavioTimpone, FrancescoLenzo, Basilio
The Guangzhou Automotive Group Co., Ltd (GAC Group) wind tunnel, located in Guangzhou, China, is a state-of-the-art facility that uniquely integrates world-class aerodynamic flow quality, acoustic capability, and thermal conditions into a single system for the development of passenger vehicles. This closed return, ¾ open jet wind tunnel features a nozzle with a cross-section of 20 m2 and a 2.5 MW fan, capable of delivering a maximum wind speed of 200 km/h. The wind tunnel is equipped with a ±90° turntable, a boundary layer control system, and a 5-belt moving ground plane system for aerodynamic tests. Comprehensive acoustic treatments in the test section and throughout the wind tunnel circuit establish a hemi-anechoic test environment with minimal background noise levels for acoustic tests. For thermal tests, the wind tunnel includes a 4-wheel chassis dynamometer system downstream of the turntable, with temperature control ranging from 20°C to 60°C and humidity control between 15% and
Bender, TrevorNasr Esfahani, VahidLiu, ZhengYang, HuiLi, ShuyaSong, XinLiu, ManMa, Zhijian
Roller bearings are used in many rotating power transmission systems in the automotive industry. During the assembly process of the power transmission system, some types of roller bearings (e.g., tapered roller bearings) require a compressive preload force. Those bearings' rolling resistance and lifespan strongly depend on the preload set during the installation process. Therefore, accurate preload setting can improve bearing efficiency, increase bearing lifespan, and reduce maintenance costs over the life of the vehicle. A new method for bearing preload measurement has shown potential for high accuracy and fast cycle time using the frequency response characteristics of the power transmission system. One open problem is the design of the production controller, which relies on a detailed sensitivity study of the system frequency response to changes in the bearing and system design parameters. Recently, an analytical model was developed for multi-row tapered roller bearings that includes
Gruzwalski, DavidMynderse, James
The difficulties of testing a bluff automotive body of sufficient scale to match the on-road vehicle Reynolds number in a closed wall wind tunnel has led to many approaches being taken to adjust the resulting data for the inherent interference effects. But it has been very difficult to experimentally analyze the effects that are occurring on and around the vehicle when these blockage interferences are taking place. The present study is an extension of earlier works by the author and similarly to those studies uses the computational fluid dynamics analysis of three bodies that generate large wakes to examine the interference phenomena in solid wall wind tunnels and the effects that they have on the pressures, and forces experienced by the vehicle model when it is in yawed conditions up to 20 degrees. This is accomplished by executing a series of CFD configurations with varying sized cross sections from 0.4% to 14% blockage enabling an approximation of free air conditions as a reference
Gleason, MarkRiegel, Eugen
Experimental studies of wind tunnel blockage for road vehicles have usually been conducted in model wind tunnels. Models have been made in a range of scales and tested in a working section of fixed size. More recently CFD studies of blockage have been undertaken, which allow a fixed vehicle size and the blockage is varied by changing the cross section of the flow domain. This has some inherent advantages. A very recent database of CFD derived drag and lift coefficients for different road vehicle shapes and simple bodies tested in a closed wall tunnel with a wide range of blockage ratios has become available and provides some additional insight into the blockage phenomenon. In this paper a process is developed to derive the parameters influencing wind tunnel blockage corrections from CFD data. These are shown to be reasonably effective for correcting the measured drag and lift coefficients at blockage ratios up to 10%.
Howell, JeffButcher, DanielGleason, Mark
An energy-use analysis is presented to examine the potential energy-savings and range-extension benefits of aerodynamic improvements to tractors and trailers used in commercial transportation. The impetus for the study was the observation of aerodynamically-redesigned/optimized tractor shapes of emerging zero-emission commercial vehicles that have the potential for significant drag reduction over conventional aerodynamic tractors. Using wind-tunnel test results, a series of aerodynamic performance models were developed representing a range of tractor and trailer combinations. From modern day-cab and sleeper-cab tractors to aerodynamically-optimized zero-emission cab concepts, paired with standard dry-van trailers or low-drag trailer concepts, the study examines the energy use, and potential savings thereof, from implementing various fleet configurations for different operational duty cycles. An energy-use analysis was implemented to estimate the energy-rate contributions associated
McAuliffe, BrianGhorbanishohrat, Faegheh
Wind tunnel calibration is necessary for repeatable and reproducible data for all industries interested in their output. Quantities such as wind speed, pressure gradients, static operating conditions, ground effects, force and moment measurements, as well as flow uniformity and angularity are all integral in an automotive wind tunnel’s data quality and can be controlled through appropriate calibration, maintenance, and statistical process control programs. The purpose of this technical paper is to (1) provide a basis of commonality for automotive wind tunnel calibration, (2) help customers and operators to determine the calibration standards best suited for their unique automotive wind tunnel and, (3) complement the American Institute of Aeronautics and Astronautics recommended practice R-093-2003(2018) Calibration of Subsonic and Transonic Wind Tunnels as specifically applied to the automotive industry. This document compiles information from various automotive wind tunnel customers
Bringhurst, KatlynnBest, ScottNasr Esfahani, VahidSenft, VictorStevenson, StuartWittmeier, Felix
A new method for bearing preload measurement has shown potential for both high accuracy and fast cycle time using the frequency response characteristics of the power transmission system. One open problem is the design of the production controller, which relies on a detailed sensitivity study of the system frequency response to changes in the bearing and system design parameters. Recently, an analytical model was developed for multi-row tapered roller bearings that includes all appropriate bearing and power transmission system design parameters. During the assembly process, some of the parameters related to the roller positions cannot be controlled. These parameters include the actual position of the first roller compared to the vertical axis, the relative position of the rollers between the bearing rows, and others. This work presents a sensitivity analysis of the effects of those uncontrollable parameters on the analytical model. The sensitivity study determines the percentage change
Gruzwalski, DavidMynderse, James
Novel experimental and analytical methods were developed with the objective of improving the reliability and repeatability of coast-down test results. The methods were applied to coast-down tests of a SUV and a tractor-trailer combination, for which aerodynamic wind-tunnel data were available for comparison. The rationale was to minimize the number of unknowns in the equation of motion by measuring rolling and mechanical resistances and wheel-axle moments of inertia, which was achieved using novel experimental techniques and conventional rotating-drum tests. This led to new modelling functions for the rolling and mechanical resistances in the equation of motion, which was solved by regression analysis. The resulting aerodynamic drag coefficient was closer to its wind-tunnel counterpart, and the predicted low-speed road load was closer to direct measurements, than the results obtained using conventional methods. It is anticipated that applying the novel techniques to characterize the
Tanguay, Bernardde Souza, Fenella
Understanding the formation and behaviour of sprays and aerosols generated by vehicles traveling on wet surfaces is crucial due to their impact on vehicle soiling, visibility, and autonomous driving. These sprays and aerosols can reduce visibility for other drivers, contribute to traffic accidents, and reduce the operational capabilities of sensors for driving assistance systems and future autonomous vehicles. Despite the critical importance of understanding the physical properties of these sprays and aerosols for the testing and validation of sensors used in environmental perception and recognition, field data on this subject remains limited. The formation and behaviour of these sprays and aerosols are complex. A fraction of the trailing droplets and ligaments originates directly from the tyres, while the remainder is generated upon the impact of the particles ejected from the tyres with the vehicle’s wheel houses and other surfaces, resulting in either coalescence or further
Otxoterena, PaulKallhammer, Jan-ErikEriksson, PeterRonelov, Erik
The natural wind experienced on public roads can increase the yaw angle and therefore drag coefficient (CD), which may contribute to the discrepancy between catalog fuel economy and actual fuel economy. The impact of yaw characteristics alone on fuel economy during actual driving has not been verified or proven as it is difficult to obtain actual driving data under uniform conditions. For this reason, shape optimization is normally performed at zero-yaw through the aerodynamic development phases. In this paper, two vehicles with different yaw sensitivity characteristics are driven simultaneously, and fuel economy measurements are performed simultaneously with ambient airflow, environment, and vehicle conditions. The results where the conditions of the two vehicles match are extracted to clarify the impact of the differences of yaw characteristics on fuel economy. The obtained results matched the values predicted by theoretical calculations for the impact of yaw angle on fuel economy
Onishi, YasuyukiNichols, LarryMetka, Mattmasumitsu, YasutakaInoue, Taisuke
Reducing aerodynamic drag through Vehicle-Following is one of the energy reduction methods for connected and automated vehicles with advanced perception systems. This paper presents the results of an investigation aimed at assessing energy reduction in light-duty vehicles through on-road tests of reducing the aerodynamic drag by Vehicle-Following. This study provides insights into the effects of lateral positioning in addition to intervehicle distance and vehicle speed, and the profile of the lead vehicle. A series of tests were conducted to analyze the impact of these factors, conducted under realistic driving conditions. The research encompasses various light-duty vehicle models and configurations, with advanced instrumentation and data collection techniques employed to quantify energy-saving potential. The study featured two sets of L4 capable light duty vehicles, including the Stellantis Pacifica PHEV minivan and Stellantis RAM Truck, examined in various lead and following vehicle
Poovalappil, AmanRobare, AndrewSchexnaydre, LoganSanthosh, PruthwirajBahramgiri, MojtabaBos, Jeremy P.Chen, BoNaber, JeffreyRobinette, Darrell
Items per page:
1 – 50 of 7070