Browse Topic: Aerodynamics

Items (7,114)
This work addresses an innovative method for improving energy harvesting in Bladeless wind turbines (BWT) by implementing profile modifications to the wind turbine for fixing it in Unmanned Surface Vehicles (USV). The streamlined flow undergoes a transformation and generates a vortex in the vicinity of the structure when the wind impacts the BWT. As the velocity increases, the wind strikes the structure with greater force, resulting in an imbalance that causes the structure to vibrate. To convert this vibrational energy of the wind turbine into electrical energy, the research investigates the use of a variety of profile modifications to capitalize on the aerodynamic effect generated by the structure. The entire cylindrical shape is altered to tapered shape, airfoil shapes with coordinates such as NACA 0012, 0015, 0018, 4412 and 4420. In addition to these shapes, hybrid models were also constructed by merging models made from two airfoil coordinates, including NACA 0018 & 4412, NACA
Veeraperumal Senthil Nathan, Janani PriyadharshiniRajendran, MahendranArumugam, ManikandanRaji, Arul PrakashSakthivel, PradeshStanislaus Arputharaj, BeenaL, NatrayanGanesan, BalajiRaja, Vijayanandh
This work deals with computational investigations of the component performances of Advanced Hexacopters under various maneuverings of the focused mission profiles. The Advanced Hexacopter is a kind of multirotor vehicle that contains more propellers and flexible arms, which makes this multirotor very maneuverable and aerodynamically efficient. This Hexacopter was designed specifically to execute multi-perspective applications along with enhanced payload-carrying capability. This Advanced Hexacopter contains a frame composed of modified arms equipped with coaxial rotors, which servo motors control. By providing specific and simple inputs to the microcontroller, the Hexacopter can autonomously undergo forward and backward maneuverings. The primary objective of this study is to analyze and compare different propeller configurational clearance sets that improve the maneuvering capability of this unmanned aerial vehicle (UAV), specifically emphasizing forward/backward and side maneuvering
Raja, VijayanandhNarayanan, SidharthElangovan, LogeshArumugam, LokeshSourirajan, LaxanaRaji, Arul PrakashKulandaiyappan, Naveen KumarGnanasekaran, Raj KumarMadasamy, Senthil Kumar
The paper present numerical effects of supercritical airfoil SC (2) 0414 having circular cavities at three different chord wise locations from leading to trailing edge. Here passive control method is widely applied by altering the \baseline airfoil surface coordinates to ascertain the aerodynamic behavior of the cavity at 40 %, 50 % and 60 % of the chord length respectively. The cavity shapes were deformed using Bezier curve to observe vortex pattern in the cavity region. Structured meshing was employed. The analysis was performed on SC 2 (0) 414 two-dimensional airfoil using commercial CFD ANSYS Fluent software where Spalart- Allmaras turbulence model technique is chosen to solve boundary layer problems on adverse pressure gradient and tested at extended range of angle of attack (-150 to 150) at Mach number 0.85. The study highlights the aerodynamic characteristics of lifting coefficient, drag coefficient and lift to drag ratio. It was observed that the cavity in suction surface
Pushparaj, Catherine VictoriaP, Booma DeviD, PiriadarshaniGanesan, BalajiGanesan, Santhosh KumarRaja, Vijayanandh
The thermoelectric generator system is regarded as an advanced technology for recovering waste heat from automotive exhaust. To address the issue of uneven temperature distribution within the heat exchanger that limits the output performance of the system, this study designs a novel thermoelectric generation system integrated with turbulence enhancers. This configuration aims to enhance convective heat transfer at the rear end of the heat exchanger and improve overall temperature uniformity. A multiphysics coupled model is established to evaluate the impact of the turbulence enhancers on the system's temperature distribution and electrical output, comparing its performance with that of traditional systems. The findings indicate that the integration of turbulence enhancers significantly increases the heat transfer rate and temperature uniformity at the rear end of the heat exchanger. However, it also leads to an increase in exhaust back pressure, which negatively affects system
Chen, JieDing, RenkaiWang, RuochenLiu, WeiLuo, Ding
Current work details the preliminary CFD analysis performed on custom-built race car by Team Sakthi Racing team as part of Formula SAE competition using OpenFOAM. The body of the race car is designed in compliance with FSAE regulations, OpenFOAM utilities and solvers are used to generate volumetric mesh and perform CFD analysis. Formula student tracks are typically designed with numerous sharp turns and a few long straights to maintain low speeds for safety. In order to enhance the cars’ performance in sharp turns, the race car should be equipped with aerodynamic devices like nose cone and wings on both the rear and front ends within the confines of the formula student racing rules. Thus, efficient aerodynamic design is highly critical to maximizing tire grip by ensuring consistent contact with the track, reducing the risk of skidding, and maintaining control, especially during high-speed maneuvers. In this work, the performance and behavior of the race car, both with and without the
Rangarajan, KishorePushpananthan, BlesscinAnumolu, LakshmanSelvakumar, KumareshJayakumar, Shyam Sundar
From biology, to genetics, and paleontology, these fields share the DNA as a common and time-proven tool. In science, pressure may be such a tool, shared by thermodynamics, material science, and astrophysics, but not by aerodynamics. Pressure is a shorthand for a force acting perpendicular to a surface. When this surface is reduced to zero, so should the pressure. The wing area of an aircraft acts as a reference area to calculate its parasite drag coefficient. In this scenario, the parasite drag acts as a force over the wing area. If the wing area is reduced to zero, its parasite drag does not, as the fuselage is still generating parasite drag. The ratio of the parasite drag and wing area is an example of a pressure construct that uses a physically irrelevant reference area and has no absolute zero. Pressure constructs, more frequently used than pressures in aerodynamics, are a math-based parameter that preserve dimensional propriety according to the Buckingham Pi theorem but lacks a
Burgers, Phillip
The flow structure and unsteadiness of shock wave–boundary layer interaction (SWBLI) has been studied using rainbow schlieren deflectometry (RSD), ensemble averaging, fast Fourier transform (FFT), and snapshot proper orthogonal decomposition (POD) techniques. Shockwaves were generated in a test section by subjecting a Mach = 3.1 free-stream flow to a 12° isosceles triangular prism. The RSD pictures captured with a high-speed camera at 5000 frames/s rate were used to determine the transverse ray deflections at each pixel of the pictures. The interaction region structure is described statistically with the ensemble average and root mean square deflections. The FFT technique was used to determine the frequency content of the flow field. Results indicate that dominant frequencies were in the range of 400 Hz–900 Hz. The Strouhal numbers calculated using the RSD data were in the range of 0.025–0.07. The snapshot POD technique was employed to analyze flow structures and their associated
Datta, NarendraOlcmen, SemihKolhe, Pankaj
Road loads, encompassing aerodynamic drag, rolling resistance, and gravitational effects, significantly impact vehicle design and performance by influencing factors such as fuel efficiency, handling, and overall driving experience. While traditional coastdown tests are commonly used to measure road loads, they can be influenced by environmental variations and are costly. Consequently, numerical simulations play a pivotal role in predicting and optimizing vehicle performance in a cost-effective manner. This article aims to conduct a literature review on road loads and their effects on vehicle performance, leveraging experimental data from past studies from other researchers to establish correlations between measured road loads and existing mathematical models. By validating these correlations using real-world measurements, this study contributes to refining predictive models used in automotive design and analysis. The simulations in this study, utilizing five distinct empirical
Pereira, Leonardo PedreiraBraga, Sérgio Leal
The fuel economy performance of road vehicles is one of the most important factors for a successful project in the current automotive industry due to greenhouse effect gases reduction goals. Aerodynamics and vehicle dynamics play key roles on leading the automaker fulfill those factors. The drag coefficient and frontal area of the vehicle are affected by several conditions, where the ground height and pitch angle are very relevant, especially for pickup trucks. In this work, we present a combined study of suspension trim heights and aerodynamics performance of a production pickup truck, where three different loading conditions are considered. The three weight configurations are evaluated both in terms of ground height and pitch angle change considering the suspension and tires deflection and these changes are evaluated in terms of drag coefficient performance, using a Lattice-Boltzmann transient solver. Results are compared with the baseline vehicle at road speed condition, where both
Buscariolo, Filipe FabianTerra, Rafael Tedim
The aerodynamic force produced by external flows over two-dimensional bodies is typically decomposed into two components: lift and drag. In race cars, the lift is known as downforce and it is responsible for increasing tire grip, thereby enhancing traction and cornering ability. Drag acts in the direction opposite to the car’s motion, reducing its acceleration and top speed. The primary challenge for aerodynamicists is to design a vehicle capable of producing high downforce with low drag. This study aims to optimize the shape of a multi-element rear wing profile of a Formula 1 car, achieving an optimal configuration under specific prescribed conditions. The scope of this work was limited to a 2-D model of a rear wing composed of two 4-digit NACA airfoils. Ten control parameters were used in the optimization process: three to describe each isolated profile, two to describe their relative position, and two to describe the angles of attack of each profile. An optimization cycle by finite
Souza Dourado, GuilhermeHayashi, Marcelo Tanaka
The purpose of this study is to analyze different airfoils using various tools like X-Foil and Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamic (CFD) analysis (ANSYS Fluent) and compare both the results with wind tunnel experimental data to choose an aerodynamically efficient airfoil, which is suitable for an unmanned aerial vehicle/micro aerial vehicle (UAV/MAV) and its operational domain of Reynolds number. The main objective of this analysis is to identify and give us an understanding of the airfoil that has a higher value of Cl max and minimum possible value of Cd. This article discusses various low Reynolds number airfoils, i.e., for the range of Reynolds number between 50,000 and 200,000, which is mostly used for MAVs. Also, between the range of 100,000 and 200,000 for UAVs, which have displayed considerable performance in the past. The article also presents an effort to understand the phenomenon of laminar separation bubbles.
Roy, IndranilRao, Sameera
This document specifies dimensional, functional and visual requirements for Automotive grade coaxial cable. This material will be designated AG for general-purpose automotive applications or AG LL for low loss applications. It is the responsibility of the user of this cable to verify the suitability of the selected product (based on dimensional, mechanical, electrical and environmental requirements) for its intended application. It is the responsibility of the supplier to retain and maintain records as evidence of compliance to the requirements detailed in this standard.
USCAR
Aerodynamic analysis is a primary requirement in the development of electric scooters to predict the impact of air flow around the vehicle on critical performance parameters including the overall range, vehicle stability due to wind loads, air cooling of electric motor and battery. Any new design of vehicle requires an aerodynamic evaluation to estimate the variations in drag forces with speed. It is prohibitively expensive and time consuming to perform full-scale model wind tunnel tests on each variant of the vehicle configuration for wide range of driving scenarios. Physics-based 3D simulation is the preferred approach in the present context and the use of Computational Fluid Dynamics (CFD) for such cases has been well understood and established. Although only the external shape changes make a difference to external aerodynamics, sometimes even a small variation in shape could trigger unwanted flow behavior leading to large drag forces, or enhance the vehicle performance by reducing
Balachandran, KarthikDas, AlokShinde, Pranav
Since the inception of battery driven electric vehicles in the automotive world, there has been a constant challenge in maximizing the range of an electric vehicles through various means including battery technology, vehicle weight optimization, low drag coefficients etc. The tires being a viscoelastic composite material have now become a vital to the range performance of an EV. The rolling resistance of a tire is now become a hotter topic than ever. The rolling resistance coefficient (RRC) is the measure of energy loss during rolling due to viscoelastic dissipation in the tire. The viscous dissipation in tire arises due to hysteresis in the various components of a tire including tread, sidewall, inner liner, apex etc rubber compounds. The internal friction between layers of body ply, steel belts and tread crown ply also contribute to the internal heat generation. Therefore, the development of ultra-low RRC tires is a serious challenge for tire engineers. Nevertheless, the recent
Mishra, NitishSingh, Ram Krishnan
The SAE J2923 procedure is a recommended practice that applies to on-road vehicles with a GVWR below 4540 kg equipped with disc brakes.
Brake Dynamometer Standards Committee
Researchers at Caltech took an important step toward using reinforcement learning to adaptively learn how turbulent wind can change over time, and then uses that knowledge to control a UAV based on what it is experiencing in real time. California Institute of Technology, Pasadena, CA In nature, flying animals sense coming changes in their surroundings, including the onset of sudden turbulence, and quickly adjust to stay safe. Engineers who design aircraft would like to give their vehicles the same ability to predict incoming disturbances and respond appropriately. Indeed, disasters such as the fatal Singapore Airlines flight this past May in which more than 100 passengers were injured after the plane encountered severe turbulence, could be avoided if aircraft had such automatic sensing and prediction capabilities combined with mechanisms to stabilize the vehicle. Now a team of researchers from Caltech's Center for Autonomous Systems and Technologies (CAST) and NVIDIA has taken an
Researchers have achieved data rates as high as 424Gbit/s across a 53-km turbulent free-space optical link using plasmonic modulators — devices that uses special light waves called surface plasmon polaritons to control and change optical signals. The new research lays the groundwork for high-speed optical communication links that transmit data over open air or space.
In nature, flying animals sense coming changes in their surroundings, including the onset of sudden turbulence, and quickly adjust to stay safe. Engineers who design aircraft would like to give their vehicles the same ability to predict incoming disturbances and respond appropriately. Indeed, disasters such as the fatal Singapore Airlines flight this past May in which more than 100 passengers were injured after the plane encountered severe turbulence, could be avoided if aircraft had such automatic sensing and prediction capabilities combined with mechanisms to stabilize the vehicle.
In this work, we evaluated computational fluid dynamics (CFD) methods for predicting the design trends in flow around a mass-production luxury sport utility vehicle (SUV) subjected to incremental design changes via spoiler and underbody combinations. We compared Reynolds-averaged Navier–Stokes (RANS) using several turbulence models and a delayed detached eddy simulation (DDES) to experimental measurements from a 40% scale wind tunnel test model at matched full-scale Reynolds number. Regardless of turbulence model, RANS was unable to consistently reproduce the design trends in drag from wind tunnel data. This inability of RANS to reproduce the drag trends stemmed from inaccurate base pressure predictions for each vehicle configuration brought on by highly separated flow within the vehicle wake. When taking A-B design trends, many of these errors compounded together to form design trends that did not reflect those measured in experiments. On the other hand, DDES proved to be more
Aultman, MatthewDisotell, KevinDuan, LianMetka, Matthew
This paper investigates the drag reduction matching of modular flying cars based on a nested configuration. To address the high aerodynamic drag issue of traditional modular flying car configurations, a nested design scheme is proposed. In this scheme, the cabin is extracted from a low-drag car and combined with the flying module using a nested approach, achieving aerodynamic matching between the cabin, driving module, and flying module. First, the conceptual design of the new modular flying car and the parameters of each module, including the driving module, cabin module, and flying module, are introduced. Then, computational fluid dynamics (CFD) methods are utilized to numerically simulate the aerodynamic characteristics of the new flying car, and the results are compared with the existing typical modular flying car, AIRBUS. The research results show that the nested modular flying car exhibits superior aerodynamic performance in both driving and flying modes. Compared to the typical
Li, YanlongYe, ShengfeiZhou, Hua
An electric vertical take-off and landing aircraft (eVTOL) is a variety of vertical take-off aircraft driven by electric power. This work proposed a new boundary condition control method to investigate the take-off and landing process of eVTOL, which is under the conditions of a typical atmospheric boundary layer. The spatial flow field information, especially the height-dependent atmospheric crosswind velocity profile, will be projected on the temporal axis and superimposed with the existing time-dependent unsteady conditions. Taking a 4-axis eVTOL as an example, computational fluid dynamics (CFD) simulations based on unsteady Reynolds-Averaged Navier-Stokes (uRANS) and rigid body motion (RBM) are carried out with proposed unsteady boundary conditions. The loads and surrounding flow field of the aircraft are obtained, while the vortical structures are further identified and discussed. Notably, the impact of atmospheric boundary layer on the aerodynamic force of eVTOL during vertical
Wei, HuanxiaJia, ChundongShi, YongweiJia, QingXia, ChaoMo, RengYang, ZhigangLi, YanlongHu, Qiangqiang
Items per page:
1 – 50 of 7114