Browse Topic: Vehicle performance
This paper aims to explore the application of machine learning techniques to the analysis of road suspension systems, with particular emphasis on mechanical leaf spring suspensions. These systems are essential for vehicle performance, as they guarantee comfort and stability while driving, and they have an intrinsically complex and non-linear dynamic behavior. Because of this complexity, traditional approaches often prove costly and insufficient to represent operating conditions. In this context, machine learning techniques stand out for their ability to learn patterns from experimental data, allowing the modelling of non-linear phenomena that characterize road implement suspensions. One of the main contributions of this study is the demonstration that machine learning algorithms are capable of identifying complex patterns to represent the behavior of the system, as well as facilitating the detection of anomalies and potential faults in the suspension system, contributing to predictive
This SAE Information Report applies to structural integrity, performance, drivability, and serviceability of personally licensed vehicles not exceeding 10000 pounds GVWR such as sedans, crossovers, SUVs, MPVs, light trucks, and van-type vehicles that are powered by gas and alternative fuel such as electric, plug-in hybrid, or hybrid technologies. It provides engineering direction to vehicle modifiers in a manner that does not limit innovation, and it specifies procedures for preparing vehicles to enhance safety during vehicle modifications. It further provides guidance and recommendations for the minimum acceptable design requirements and performance criteria on general and specific structural modifications, thereby allowing consumers and third-party payers the ability to obtain and purchase equipment that meets or exceeds the performance and safety of the OEM production vehicle.
A good Noise, Vibration, and Harshness (NVH) environment in a vehicle plays an important role in attracting a large customer base in the automotive market. Hence, NVH has been given significant priority while considering automotive design. NVH performance is monitored using simulations early during the design phase and testing in later prototype stages in the automotive industry. Meeting NVH performance targets possesses a greater risk related to design modifications in addition to the cost and time associated with the development process. Hence, a more enhanced and matured design process involves Design Point Analysis (DPA), which is essentially a decision-making process in which analytical tools derived from basic sciences, mathematics, statistics, and engineering fundamentals are used to develop a product model that better fulfills the predefined requirement. This paper shows the systematic approach of conducting a Design Point Analysis-level NVH study to evaluate the acoustic
The electric vehicle market, vehicle ECU computing power, and connected electronic vehicle control systems continue to grow in the automotive industry. The results of these advanced and expanded vehicle technologies will provide customers with increased cost savings, safety, and ride quality benefits. One of these beneficial technologies is the tire wearing prediction. The improved prediction of tire wear will advise a customer the best time to change tires. It is expected that this prediction algorithms will be essential part for both the optimization of the chassis control systems and ADAS systems to respond to changed tire performance that varies with a tire’s wear condition. This trend is growing, with many automakers interested in developing advanced technologies to improve product quality and safety. This study is aimed at analyzing the handling and ride comfort characteristics of the tire according to the depth of tire pattern wear change. The handing and ride comfort
There is a lack of data to support the efficacy of traditional mileage and time-based criteria for oil changes in vehicles. In this study, used-oil samples from 63 vehicles were collected and analyzed. Besides dynamic viscosity, viscosity index and activation energy were evaluated as measures of thermal stability of viscosity. The results revealed that mileage and time of use are not significantly correlated with (p > 0.05) and are thus poor indicators of oil viscosity and viscosity thermal stability measures. These findings highlight the limitations of current criteria and underscore the need for new sensing and evaluation methods to reduce costs, waste, and environmental impact while ensuring vehicle performance.
Items per page:
50
1 – 50 of 1384