Browse Topic: Vehicle performance
As electric vehicles (EVs) become more advanced, so ensuring the reliability of critical components like the motor and Motor Control Unit (MCU) is essential. This paper presents a digital twin model designed to predict failures in motor and MCU components using machine learning. The approach focuses on detecting early signs of failure through real-world data and advanced analytics. We collected thermal and performance data from field vehicles, capturing both normal (healthy) and abnormal (faulty) operating conditions. Using this dataset, we developed and trained an Auto Encoder-based machine learning model that learns what “normal” looks like and flags deviations as potential issues. One key outcome of this study is the successful early prediction of Insulated Gate Bipolar Transistor (IGBT) degradation, where the system identified subtle behavioral changes long before any visible failure symptoms appeared. This digital twin acts as a virtual replica of the physical components
In automotive engineering, understanding driving behavior is crucial for decision on specifications of future system designs. This study introduces an innovative approach to modeling driving behavior using Graph Attention Networks (GATs). By leveraging spatial relationships encoded in H3 indices, a graph-based model constructed, which captures dependencies between various vehicle operational parameters and their operational regions using H3 indices. The model utilizes CAN signal features such as speed, fuel efficiency, engine temperature, and categorical identifiers of vehicle type and sub-type. Additionally, regional indices are incorporated to enrich the contextual information. The GAT model processes these heterogeneous features, learning to identify patterns indicative of driving behavior. This approach offers several significant advantages. Firstly, it enhances the accuracy of driving behavior modeling by effectively capturing the complex spatial and operational dependencies
The US trucking industry heavily relies on the diesel powertrain, and the transition towards zero-emission vehicles, such as battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV), is happening at a slow pace. This makes it difficult for truck manufacturers to meet the Phase 3 Greenhouse Gas standards, which mandate substantial emissions reductions across commercial vehicle classes beginning of 2027. This challenging situation compels manufacturers to further optimize the powertrain to meet stringent emissions requirements, which might not account for customer application specifics may not translate to a better total cost of ownership (TCO) for the customer. This study uses a simulation-based approach to connect customer applications and regulatory categories across various sectors. The goal is to develop a methodology that helps identify the overlap between optimizing for customer applications vs optimizing to meet regulations. To use a data-driven approach, a real
The light and light signaling devices installation test as per as per IS/ ISO 12509:2004 & IS/ISO 12509:2023 for Earth Moving Machinery / Construction Equipment Vehicles is a mandatory test to ensure the safety and comfort of both road users and operators. Considering the shape and size of construction equipment vehicles, accurate measurement of lighting installation requirements is crucial for ensuring safety and regulatory compliance. The international standard IS/ISO 12509:2004 & IS/ISO 12509:2023 outlines specific criteria for these installation requirements of lighting components, including the precise measurement of various dimensions to ensure optimal visibility and safety. Among these dimensional requirements, the dimension 'E' i.e., the “distance between the outer edges of the machine and the illuminating surface of the lighting device” plays a critical role in the performance of vehicle lighting systems. Traditional methods of measuring this dimension, such as using a
The customer perception of ride comfort with vehicle performance is the most important aspect in a vehicle design. The ride comfort and vehicle performance are influenced by driveline components i.e. propeller shaft phase angle, inclination angle and critical frequency of the driveline system. The optimization of the driveline system is essential to ensure the efficient and smooth power transfer. Propeller shaft is one of the critical components in the driveline to influence the vehicle performance. Propeller shaft characteristics influenced by several factors like vehicle max torque, propeller shaft joint type, materials properties, UJ phase and inclination angle and shaft unbalance value. The optimization of the above parameter within the tolerance limit enables to meet the required performance standard. Various methodologies are available to optimize these parameters to enhance the vehicle performance and comfort leads to customer satisfactions. This study focuses on the analytical
Items per page:
50
1 – 50 of 1447