Browse Topic: Vehicle ride

Items (546)
In order to effectively improve the chassis handling stability and driving safety of intelligent electric vehicles (IEVs), especially in combing nonlinear observer and chassis control for improving road handling. Simultaneously, uncertainty with system input, are always existing, e.g., variable control boundary, varying road input or control parameters. Due to the higher fatality rate caused by variable factors, how to precisely chose and enforce the reasonable chassis prescribed performance control strategy of IEVs become a hot topic in both academia and industry. To issue the above mentioned, a fuzzy sliding mode control method based on phase plane stability domain is proposed to enhance the vehicle’s chassis performance during complex driving scenarios. Firstly, a two-degree-of-freedom vehicle dynamics model, accounting for tire non-linearity, was established. Secondly, combing with phase plane theory, the stability domain boundary of vehicle yaw rate and side-slip phase plane based
Liao, YinshengWang, ZhenfengGuo, FenghuanDeng, WeiliZhang, ZhijieZhao, BinggenZhao, Gaoming
As global warming and environmental problems are becoming more serious, tires are required to achieve a high level of performance trade-offs, such as low rolling resistance, wet braking performance, driving stability, and ride comfort, while minimizing wear, noise, and weight. However, predicting tire wear life, which is influenced by both vehicle and tire characteristics, is technically challenging so practical prediction method has long been awaited. Therefore, we propose an experimental-based tire wear life prediction method using measured tire characteristics and the wear volume formula of polymer materials. This method achieves practical accuracy for use in the early stages of vehicle development without the need for time-consuming and costly real vehicle tests. However, the need for improved quietness and compliance with dust regulations due to vehicle electrification requires more accuracy, leading to an increase in cases requiring judgment through real vehicle tests. To address
Ando, Takashi
The electric vehicle market, vehicle ECU computing power, and connected electronic vehicle control systems continue to grow in the automotive industry. The results of these advanced and expanded vehicle technologies will provide customers with increased cost savings, safety, and ride quality benefits. One of these beneficial technologies is the tire wearing prediction. The improved prediction of tire wear will advise a customer the best time to change tires. It is expected that this prediction algorithms will be essential part for both the optimization of the chassis control systems and ADAS systems to respond to changed tire performance that varies with a tire’s wear condition. This trend is growing, with many automakers interested in developing advanced technologies to improve product quality and safety. This study is aimed at analyzing the handling and ride comfort characteristics of the tire according to the depth of tire pattern wear change. The handing and ride comfort
Kim, ChangsuKwon, SeungminSung, Dae-UnRyu, YonghyunKo, Younghee
Taking a commercial vehicle cab suspension system as the research focus, a rigid-flexible coupled dynamics model was established based on the nonlinear characteristics of the integrated damper air spring and bushings. Time-domain vibration acceleration signals were acquired at the connection points between the frame, cab, and suspension. The vibration signals at the frame and suspension connection points were input into the simulation model, where the vibration responses at the cab and suspension connection points were calculated and analyzed using the established cab suspension system model. The accuracy of the model was verified by comparing the simulation results with experimental data. The established cab suspension system model was further used to evaluate human vibration comfort within the cab, following national standards for subjective human perception. A piecewise polynomial function was employed to fit the stiffness-damping characteristics of the integrated damper air spring
Hao, QiZhu, YuntaoSun, WenSun, KaiSun, ZhiyongHuang, YuZhen, RanShangguan, Wen-Bin
Magnetorheological (MR) dampers, known for their remarkable dependability and cost-effectiveness, have established themselves as prime semi-active vibration control devices in engineering systems. MR dampers are categorized as adaptive devices because their features may be readily adjusted by applying a regulated voltage signal. Their ability to offer superior performance while mitigating the drawbacks of fully active actuators underscores their practical significance. This research is to investigate some system hybrid controllers using a combination state derivative feedback and a linear-quadratic regulator for use in conjunction with the damper controller of a semi-active suspension of a Quarter vehicle model to improve ride comfort and vehicle stability. The mathematical model of 3 degrees of freedom for semi-active suspension using MR dampers will be derived and simulated using MATLAB and SIMULINK software. In order to quantify the effectiveness of the suggested control strategies
M.Faragallah, MohamedMetered, HassanEssam, Mahmoud A.
Intelligent transportation systems and connected and automated vehicles (CAVs) are advancing rapidly, though not yet fully widespread. Consequently, traditional human-driven vehicles (HDVs), CAVs, and human-driven connected and automated vehicles (HD-CAVs) will coexist on roads for the foreseeable future. Simultaneously, car-following behaviors in equilibrium and discretionary lane-changing behaviors make up the most common highway operations, which seriously affect traffic stability, efficiency and safety. Therefore, it’s necessary to analyze the impact of CAV technologies on both longitudinal and lateral performance of heterogeneous traffic flow. This paper extends longitudinal car-following models based on the intelligent driver model and lateral lane-changing models using the quintic polynomial curve to account for different vehicle types, considering human factors and cooperative adaptive cruise control. Then, this paper incorporates CAV penetration rates, shared autonomy rates
Wang, TianyiGuo, QiyuanHe, ChongLi, HaoXu, YimingWang, YangyangJiao, Junfeng
To effectively improve the performance of chassis control of a four in-wheel motor (IWM)-driven electric vehicles (EVs), especially in combing nonlinear observer and chassis control for improving road handling and ride comfort, is a challenging task for the IWM-driven EVs. Simultaneously, inaccurate state-based control and uncertainty with system input, are always existing, e.g., variable control boundary, varying road input or control parameters. Due to the higher fatality rate caused by variable factors, how to precisely chose and enforce the reasonable chassis prescribed performance control strategy of IWM-driven EVs become a hot topic in both academia and industry. To issue the above mentioned, the paper proposes a novel observer-based prescribed performance control to improve IWM-driven EVs chassis performance under the double lane change steering. Firstly, a nonlinear nine degree-of-freedom of full-car model is developed to describe vehicle chassis dynamics, and the proposed
Wang, ZhenfengLong, JiarongLi, ShengchongZhang, XiaoyangZhao, Binggen
The suspension system could transmit and filter the forces between the body and road surface, which affects vehicle ride comfort and road maintenance capability. Compared to traditional passive and semi-active suspension, Active Suspension Systems (ASS) could automatically adjust the suspension stiffness, damping force, and body height according to changes in the vehicle's load distribution, travelling speed, and braking action through the addition of a power source such as a linear motor. Although the existing advanced control methods could help to effectively improve the driving quality of vehicles equipped with ASS, the conflict between ride comfort and road maintenance capacity is still a difficult problem to be solved. Therefore, an Active Suspension System optimal control strategy considering vehicle ride comfort and road maintenance capability is proposed in this paper. Firstly, a quarter ASS model and a road model are respectively developed based on the system dynamics
Zhu, BingZhang, ChaohuiSun, JihangWang, ShiweiDing, ShuweiLi, LunChen, Zhicheng
Electric vehicles (EVs) are particularly susceptible to high-frequency noise, with rubber eigenmodes significantly influencing these noise characteristics. Unlike internal combustion engine (ICE) vehicles, EVs experience pronounced variations in dynamic preload during torque rise, which are substantially higher. This dynamic preload variation can markedly impact the high-frequency behaviour of preloaded rubber bushings in their installed state. This study investigates the effects of preload and amplitude on the high-frequency dynamic performance of rubber bushings specifically designed for EV applications. These bushings are crucial for vibration isolation and noise reduction, with their role in noise, vibration, and harshness (NVH) management being more critical in EVs due to the absence of traditional engine noise. The experimental investigation examines how preload and excitation amplitude variations influence the dynamic stiffness, damping properties, and overall performance of
Hazra, SandipKhan, Arkadip Amitava
This study focuses on the dynamic behavior and ride quality of three different modes of oil-gas interconnected suspension systems: fully interconnected mode, left-right interconnected mode, and independent mode. A multi-body dynamics model and a hydraulic model of the oil-gas suspension were established to evaluate the system's performance under various operating conditions. The research includes simulations of pitch and roll excitations, as well as ride comfort tests on different road surfaces, such as Class B roads and gravel roads. The analysis compares the effectiveness of the modes in suppressing pitch and roll movements and their impact on overall ride comfort. Results show that the independent mode outperforms the other two in minimizing roll, while the fully interconnected mode offers better pitch control but at the cost of reduced comfort. These findings provide valuable insights for the future design and optimization of oil-gas interconnected suspension systems, especially in
Xinrui, WangChen, ZixuanZhang, YunqingWu, Jinglai
This study introduces an innovative torque vectoring control strategy designed to enhance ride comfort in autonomous electric vehicles. The approach seamlessly integrates steering and rear axle force control within a model predictive control (MPC) framework, enabling real-time optimization of comfort and handling performance. The proposed control method is applied to a two-rear-motor vehicle model, where the MPC algorithm adjusts steering angles and tire forces to minimize discomfort caused by yaw rate and lateral acceleration. Simulation results from a lane-change scenario demonstrate significant improvements in comfort metrics compared to conventional torque vectoring control strategies. The findings highlight the ability of the proposed method to significantly enhance ride comfort without compromising vehicle dynamics. This integrated and adaptive control strategy offers a promising solution for improving passenger satisfaction in autonomous electric vehicles, with potential
Zhao, BolinLou, BaichuanHe, XianqiXue, WanyingLv, Chen
This study investigates the influence of magnetorheological (MR) dampers in semi-active suspension systems (SASSs) on ride comfort, vehicle stability, and overall performance. Semi-active suspension systems achieve greater flexibility and efficacy by combining MR dampers with the advantages of active and passive suspension systems. The study aims to measure the benefits of MR dampers in improving ride comfort, vehicle stability, and overall system performance. The dynamic system model meets all required performance criteria. This study demonstrates that the proposed artificial intelligence approach, including a fuzzy neural networks proportional-integral-derivative (FNN-PID) controller, significantly enhances key performance criteria when tested under various road profiles. The control performance requirements in engineering systems are evaluated in the frequency and time domains. A quarter-car model with two degrees of freedom (2 DOF) was simulated using MATLAB/Simulink to assess the
M.Faragallah, MohamedMetered, HassanAbdelghany, M.A.Essam, Mahmoud A.
Adverse weather conditions such as rain and snow, as well as heavy load transportation, can cause varying degrees of damage to road surfaces, and untimely road maintenance often results in potholes. Perception sensors equipped on intelligent vehicles can identify road surface conditions in advance, allowing each wheel’s suspension to actively adjust based on the road information. This paper presents an active suspension control strategy based on road preview information, utilizing a newly designed dual-chamber active air suspension system. It addresses the issue of point cloud stratification caused by vehicle body vibrations in onboard LiDAR data. The point cloud is processed through segmentation, filtering, and registration to extract real-time road roughness information, which serves as preview information for the suspension control system. The MPC algorithm is applied to actively adjust the nonlinear stiffness and damping of the suspension’s dual-chamber air springs, enhancing
Dong, FuxinShen, YanhuaWang, KaidiLiu, ZuyangQian, Shuo
Distributed electric vehicles, equipped with independent motors at each wheel, offer significant advantages in flexibility, torque distribution, and precise dynamic control. These features contribute to notable improvements in vehicle maneuverability and stability. To further elevate the overall performance of vehicles, particularly in terms of handling, stability, and comfort, this paper introduces an coordinated control strategies for longitudinal, lateral, and vertical motion of distributed electric vehicles. Firstly, a full-vehicle dynamics model is developed, encompassing interactions between longitudinal, lateral, and vertical forces, providing a robust framework for analyzing and understanding the intricate dynamic behaviors of the vehicle under various operating conditions. Secondly, a vehicle motion controller based on Model Predictive Control is designed. This controller employs a sophisticated multi-objective optimization algorithm to manage and coordinate several critical
Jia, JinchaoYue, YangSun, AoboLiu, Xiao-ang
This study aims to develop a design method that tailors the ride comfort and design variables of vehicle components according to individual differences in vibration perception. In conventional development, variations in vibration perception have been recognized; however, quantification methods remain undeveloped, preventing designs from being adapted to individual driver perceptions. The two unresolved problems include the uniformization of vibration perception in sensory performance modeling, which predicts sensory scores from vehicle vibrations, and design approaches that focus on minimizing vehicle vibrations without considering vibration perception. First, the authors’ previous study quantified the existence of individual differences in vibration perception through sensory scores obtained from ride simulator experiments involving 24 non-expert drivers using vibrations derived from a uniform vibration perception. Hierarchical clustering identified four perception groups; however
Kikuchi, HironobuInaba, Kazuaki
With the continuous advancement of automotive intelligence, new energy vehicles are becoming increasingly popular. These vehicles demand a steering system independent of the engine, offering better control and enhanced steering performance. The steer by wire (SBW) system, known for its high precision and fast response, fulfills these requirements by providing improved flexibility, stability, and comfort. Consequently, SBW systems have attracted significant attention in both research and application domains. As the mechanical structure of the steer-by-wire system is canceled, the road feel can not be directly transmitted to the steering wheel, and it is necessary to apply the road feel obtained according to the state of the vehicle or combined with the planning of the driving environment to the steering wheel through the road feel motor to complete the road feel simulation so that the driver can feel the feedback similar to that of the traditional steering vehicles, which can not only
Li, ShangZheng, HongyuKaku, Chuyo
This study analyzes feedback and control methods for road feel simulation in automotive steer-by-wire front steering systems based on bidirectional control. Unlike traditional road feel design methods, this research employs a force-direct feedback-position type bidirectional control structure for the SBW system. It explores the mechanism of road feel generation in Electric Power Steering systems and designs a road feel simulation algorithm based on bidirectional control. Compared to conventional methods, the force direct feedback-position type bidirectional control method enables faster and more stable simulation of road feel torque. In low-speed driving, this approach provides higher steering ease, while at high speeds, the driving stability is enhanced, and both scenarios achieve an improved road feel. In the research, a complete vehicle model is established in Simulink at first, followed by a co-simulation with CarSim. A magic formula tire model and a nonlinear two-degree-of-freedom
Wang, YuxuanZheng, HongyuKaku, ChuyoZong, Changfu
The current research landscape in path tracking control predominantly focuses on enhancing tracking accuracy, often overlooking the critical aspect of passenger comfort. To address this gap, we propose a novel path tracking control method that integrates vehicle stability indicators and road curvature variations to elevate passenger comfort. The core contributions are threefold: firstly, we conduct comprehensive vehicle dynamics modeling and analysis to identify key parameters that significantly impact ride comfort. By integrating human comfort metrics with vehicle maneuverability indices, we determine the optimal range of dynamics parameters for maximizing passenger comfort during driving. Secondly, inspired by human driving behavior, we design a path tracking controller that incorporates an anti-saturation algorithm to stabilize tracking errors and a curvature optimization algorithm to mimic human driving patterns, thereby enhancing comfort. Lastly, comparative simulations with two
Lu, JunZeng, DequanHu, YimingWang, XiaoliangLiu, DengchengJiang, Zhiqiang
Two wheelers motorcycles are used for many purposes e.g. commuting from one place to another, long highway rides, racing and off-roading. Motorcycles which are used in off-road conditions require higher suspension strokes to absorb large oscillations due to terrain conditions. These motorcycles undergo jumps of varying heights and different vehicle orientations. In some of the dynamic situations front wheel may land on the ground before the rear and in other cases it may be vice versa. To make sure that the vehicle is durable enough to withstand loads in such operating conditions, vehicle drop test was developed in test lab where vehicle is dropped from predefined heights in both front & rear wheel landing conditions. Same test case is simulated in multibody dynamics to capture loads at important connections of the frame. This paper presents the correlation exercise carried out to validate MBD model and simulation process with test data captured during lab test. Accelerations at
Jain, Arvind KumarNirala, Deepak
Handling and ride comfort optimization are key vehicle design challenges. To analyze vehicle performance and investigate the dynamics of the vehicle and its subcomponents, we rely heavily on robust experimental data. The current article proposes an outdoor cleat test methodology to characterize tire dynamics. Compared to indoor procedures, it provides an effective tire operating environment, including the suspensions and the vehicle chassis motion influence. In addition, it overcomes the main limitation of existing outdoor procedures, the need for dedicated cleat test tracks, by using a set of removable cleats of different sizes. A passenger vehicle was equipped with sensors including an inertial measurement unit, a noncontact vehicle speed sensor, and a wheel force transducer, providing a setup suitable to perform both a handling test routine and the designed cleat procedure, aimed at ride testing and analysis. Thus, the outdoor cleat test data were compared with indoor test
Gravante, GerardoNapolitano Dell’Annunziata, GuidoBarbaro, MarioFarroni, Flavio
The effectiveness of the negative suspension structure (NSS) in isolating the driver’s seat vibrations has been demonstrated based on the seat’s model or vehicle’s one-dimensional dynamic model. To fully assess the effectiveness and stability of the seat’s NSS (S-NSS) on different models of vehicles, the three-dimensional models of the vibratory rollers (VR), heavy trucks (HT), and passenger cars (PC) have been built to assess the effectiveness of S-NSS compared to the seat’s passive suspension (S-PC) and seat’s control suspension (S-CS). The effectiveness of S-NSS is then investigated under all operating conditions of vehicles. The investigation results indicate that under a same simulation condition, S-NSS improves the ride comfort and health of the driver better than both S-PS and S-CS on all VR, HT, and PC. However, the effectiveness of S-NSS on PC is lower than on both VR and HT while the effectiveness of S-CS on PC is better than on both VR and HT. Besides, the effectiveness of S
Su, BeibeiWang, QiangSong, Fengxiang
This paper presents a complete approach to the optimized design and analysis of a trach-focused quad bike suitable for the Indian market. The process of design integrates several analytical factors, including driver ergonomics, aesthetics, and strategic component placement, to establish optimum vehicle dimensions. The primary objective is to address the unique demands of the Indian terrain and user preferences through ensure comfort, functionality, and visual appeal. The selection process for tires and suspension geometry is precisely conducted with the advanced OptimumKinematics software. This optimization provides greater performance and stability that the vehicle can accurately manage a variety of road conditions. The space frame chassis of a vehicle’s core structure features, engineered to minimalize tubing and facilitate ease of fabrication, contributing to both structural integrity and weight reduction. A robust 600cc four-cylinder engine is selected that emphasizing an optimal
Thanikonda, Praveen KumarShaik, AmjadTappa, RajuRatlavath, RamuNavar, AdarshChalla, Ajith Kumar
Throughout the vehicles industry and electrification, vehicle ride comfort, road holding, and fuel/charge economy have always been important considerations for the design and development of shock absorbers. Vehicle suspension is one of the oscillating power dissipation sources in which the undesired mechanical energy is dissipated into heat waste. Therefore, in this study a regenerative MacPherson strut is modeled and validated to investigate the vehicle vertical dynamics performance as well as the harvestable power that can be used to charge batteries or power vehicle electrical loads. The optimal design parameters of the regenerative MacPherson strut (RE.M.S) is obtained by using multi-object genetic algorithm (MOGA) optimization for a better trade-off between regenerated power, ride comfort, and road holding. The results showed that RE.M.S can function as a semi-active shock absorber as change of duty cycle of charging circuit. Furthermore, the optimal selection of the design
Hegazy, Ahmed H.A.Kaldas, Mina M.Soliman, Aref M.A.Huzayyin, A.S.
In the realm of commercial vehicle design, enhancing the durability of bumpers and headlamps is paramount for ensuring safety and reducing maintenance costs. This study explores the development of a lightweight bumper design with optimized resonance frequency to improve the durability of these critical components. The research focuses on innovative design techniques to achieve a balance between weight reduction and structural integrity. The primary objective is to minimize the impact forces transmitted to the bumper and headlamp assemblies during vibrations. By employing finite element analysis (FEA) and experimental validation, the study identifies the optimal resonance frequency that mitigates the risk of resonance-induced damage. Additionally, the study examines the influence of geometric modifications on the bumper’s performance. Various design iterations are analyzed to determine the most effective configuration for enhancing durability while maintaining compliance with industry
Pandey, SudheerGanesan, Balaji
The parametrized twist beam suspension is a pivotal component in the automotive industry, profoundly influencing the ride comfort and handling characteristics of vehicles. This study presents a novel approach to optimizing twist beam suspension systems by leveraging parametric design principles. By introducing a parameter-driven framework, this research empowers engineers to systematically iterate and fine-tune twist beam designs, ultimately enhancing both ride quality and handling performance. The paper outlines the theoretical foundation of parametrized suspension design, emphasizing its significance in addressing the intricate balance between ride comfort and dynamic stability. Through a comprehensive examination of key suspension parameters, such as twist beam profile, material properties, and attachment points, the study demonstrates the versatility of the parametric approach in tailoring suspension characteristics to meet specific performance objectives. To validate the
Pakala, Pradeep KumarGanesh, Lingadalu
Born Electric SUVs generally feature a high centre of gravity (CG) with greater rear axle weight. They use sophisticated multi-link suspension, which offers large scope for ride comfort and handling optimisation. The development costs and time associated with the process will position the vehicle in a premium segment. Usually, the twist beam (RTB) is used in lower rear axle weight category vehicles due to its simple design and cost effectiveness. This study showcases exploration for implementation of RTB on higher weight category vehicles, which usually uses multi-link suspension. The limitation of the twist beam is to exhibit lateral force compliance oversteer during cornering, due to large moment arm from wheel centre to twist beam bush. Lack of lateral stiffness when compared to multi-link suspension causes delayed rear axle yaw response. It also has reduced scope in ride-handling optimization due to its simple structure and kinematics. So, in order to maximize the performance
Prabhakara Rao, VageeshRasal, ShraddheshAsthana, ShivamM, SudhanVellandi, Vikraman
Advances in vehicle sensing and communication technologies are enabling new opportunities for intelligent driver assistance systems that enhance road safety and performance. This paper provides a comprehensive review of recent research on two complementary areas: haptic/tactile interfaces for conveying road terrain and hazard information to drivers, and shared control frameworks that employ assistive automation to supplement driver inputs. Various haptic feedback techniques for generating realistic road feel through steering wheel torque overlays, pedal interventions, and alternative interface modalities are examined. Control assistance approaches integrating environmental perception to provide steering, braking, and collision avoidance support through blended human–machine control are also analyzed. The paper scrutinizes methods for road sensing using cameras, LiDAR, and radar to classify terrain for adapting system response. Evaluation practices across this domain are critically
Shata, Abdelrahman Ali AdelNaghdy, FazelDu, Haiping
In order to modify both stiffness and damping rates according to various road conditions, this research introduces a pneumatic spring in conjunction with a magnetorheological (MR) fluid damper as a single suspension unit for each wheel in the truck. Preventing weight transfer and improving riding comfort during braking, acceleration, and trajectory prediction are the main objectives. A two-axle truck has been used, consisting of three degrees of freedom for the sprung mass, including vertical, pitch, and roll motions, and four degrees of freedom for the unsprung masses, which have been redesigned according to the different types of springs and dampers. Pneumatic-controlled springs, often referred to as dynamic or classic models, replace laminated leaf springs commonly found in vehicles. Additionally, an MR damper replaces a hydraulic double-acting telescopic shock absorber. These models are studied to evaluate the effect of pneumatic spring parameters on truck dynamics. Pneumatic
Shehata Gad, AhmedEl-Zomor, Haytham M.
The automobile industry strives to develop high-quality vehicles quickly that fulfill the buyer’s needs and stand out within the competition. Full utilization of simulation and Computer-Aided Engineering (CAE) tools can empower quick assessment of different vehicle concepts and setups without building physical models. This research focuses on optimizing vehicle ride and handling performance by utilizing a tuning specifications range. Traditional approaches to refining these aspects involve extensive physical testing, which consumes both time and resources. In contrast, our study introduces a novel methodology leveraging virtual Subjective Rating through driving simulators. This approach aims to significantly reduce tuning time and costs, consequently streamlining overall development expenditures. The core objective is to enhance vehicle ride and handling dynamics, ensuring a superior driving experience for end-users. By meticulously defining and implementing tuning specifications, we
Ganesh, Lingadalu
Three dynamic models of a passenger car including the one-dimensional dynamic model, two-dimensional dynamic model, and three-dimensional dynamic model are built to evaluate the ride quality of the passenger car as well as the isolating performance of the SNS (structure of negative stiffness). The decrease of the root-mean-square (RMS) accelerations in the seat and car’s body shaking is the research goal. The investigation results indicate that under all working conditions including the various excitations of the road surface and various velocities of the passenger car, the seat’s acceleration with SNS is strongly ameliorated in comparison without SNS in all three models of the passenger car. Particularly, the RMS seat acceleration with SNS in one-, two-, and three-dimensional models is strongly reduced in comparison without SNS by 76.87%, 66.15%, and 70.59%, respectively. Thus, the seat’s SNS has a good effect in isolating the vertical vibration of the passenger car’s seat. However
Zhang, LeiLi, TaoYang, Guixing
Vibration comfort is a critical factor in assessing the overall performance of engineering machinery, with significant implications for operator health and safety. However, current evaluation methods lack specificity for construction machinery, impeding accurate prediction of vibration comfort and hindering the optimization of noise, vibration, and harshness (NVH) performance. To address this challenge, this article proposes a model that combines a random forest with a genetic algorithm (GA-RF) to enable rapid and accurate prediction of vibration comfort in construction machinery cabins. The approach begins with an improved objective evaluation methodology for extracting key features from vibration signals at five measurement points: seat, floor, back, and left and right armrests. Additionally, subjective evaluation technology, combining semantic differential and rating scales, is employed to capture operators’ personal comfort perceptions. The implementation of the GA-RF model
Zhao, JianYin, YingqiChen, JiangfeiZhao, WeidongDing, WeipingHuang, Haibo
While semi-active suspensions help improve the ride comfort and road-holding capacity of the vehicle, they tend to be reactive and thus leave a lot of room for improvement. Incorporating road preview data allows these suspensions to become more proactive rather than reactive and helps achieve a higher level of performance. A lot of preview-based control algorithms in literature tend to require high computational effort to arrive at the optimal parameters thus making it difficult to implement in real time. Other algorithms tend to be based upon lookup tables, which classify the road input into different categories and hence lose their effectiveness when mixed types of road profiles are encountered that are difficult to classify. Thus, a novel MPC (model predictive control)-based algorithm is developed which is easy to implement online and more responsive to the varying road profiles that are encountered by the vehicle. The efficacy of the algorithm is tested against a numerical methods
Thamarai Kannan, Harish KumarFerris, John B.
This SAE Recommended Practice establishes a rating scale for subjective evaluation of vehicle ride and handling. The scale is applicable for the evaluation of specific vehicle ride and handling properties for specified maneuvers, road characteristics and driving conditions, and on proving ground and public roads. The validity of the evaluation is restricted to the individual ride and handling disciplines defined by these maneuvers and to the particular combination of conditions of the vehicle (e.g., equipment, degree of maintenance) and of the environment (e.g., road, weather). This rating scale may not be suitable for some applications, such as specific types of ride or handling qualities, driver populations and market segments, or for correlating with objective measures. Appendix A discusses rating scales that better suit such applications. This document is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Vehicle Dynamics Standards Committee
In the highly competitive landscape of the automotive industry, enhancing ride comfort has become a paramount challenge for automakers. To address this challenge, a novel double damper suspension system has been investigated. This system, featuring two single dampers operating collaboratively as an integrated unit, is analyzed with a dual focus: a comprehensive comparison of various control algorithms to identify the one offering superior comfort and the experimental validation of these findings. The modeling process, executed in Simulink, encompasses the representation of pressure, discharge, and force equations, along with the development and testing of multiple control algorithms. The study employs a shock dynamometer, utilizing both the double damper and a single semi-active damper as test subjects in a pseudo-quarter-car test bed setup. Throughout the experimental phase, solenoid actuation in the dampers is guided by specific control logic, utilizing acceleration data for the
Hamedi, BehzadShrikanthan, SudarshanTaheri , Saied
The NVH performance of electric vehicles is a key indicator of vehicle quality, being the structure-borne transmission predominating at low frequencies. Many issues are typically generated by high vibrations, transmitted through different paths, and then radiated acoustically into the cabin. A combined analysis, with both finite-element and multi-body models, enables to predict the interior vehicle noise and vibration earlier in the development phases, to reduce the development time and moreover to optimize components with an increased efficiency level. In the present work, a simulation of a Hyundai electric vehicle has been performed in IDIADA VPG with a full vehicle Multi-Body (MBD) model, integrated by vibration calculations with a Finite Elements (FE) model in MSC. Nastran to analyze the comfort. Firstly, a full vehicle MBD model has been developed in MSC. ADAMS-Car including representative flexible bodies (generated from FE part models). The usage of a physical tire model and
Tonelli, RiccardoBuckert, SebastianPatrucco, AndreaBragado Perez, BeatrizGutierrez, JavierSanchez, Angel
Making a Miata feel at home off-road takes ingenuity and some help from modern 3D-printing tech. I have always loved off-road racing. I love the innovation, grit and determination it takes to get across the finish line after 250, 500 or even 1,000 miles (402, 805 or 1,609 km) of racing. I have also always loved Miatas. I bought my first NA in 1994 and never looked back. I currently own a 2004 Mazdaspeed Miata and a 2001 lifted Miata.
Hall, Emme
While there is a tendency for new vehicles to have a focus on ride, handling, performance and other dynamic elements, the model year 2024 Lincoln Nautilus team added another element to how the driver will experience the midsize SUV. Not that the ride, handling, etc. were ignored, but the global design and engineering team wanted to do something different with this two-row SUV. Recognize that this is a vehicle with a sumptuous interior that includes not only first-class seating (24-way adjustable front seats) and materials (Alpine Venetian leather available on the seats; cashmere for the headliner) but also an available high-end Revel Ultima 3D audio system with 28 speakers. What's more, there's “Lincoln Digital Scent,” small electronically activated pods containing various aromas (e.g., Mystic Forest, Ozonic Azure, Violet Cashmere). Across the top of the instrument panel there is a 48-inch backlit LCD screen and a 11.1-inch touchscreen in the center stack.
Vasilash, Gary
Taking the semi-active suspension system as the research object, the forward model and inverse model of a continuous damping control (CDC) damper are established based on the characteristic test of the CDC damper. A multi-mode semi-active suspension controller is designed to meet the diverse requirements of vehicle performance under different road conditions. The controller parameters of each mode are determined using a genetic algorithm. In order to achieve automatic switching of the controller modes under different road conditions, a method is proposed to identify the road roughness based on the sprung mass acceleration. The average of the ratio between the squared sprung mass acceleration and the vehicle speed within a specific time window is taken as the identification indicator for road roughness. Simulation results show that the proposed road roughness identification method can accurately identify smooth roads (Class A–B), slightly rough roads (Class C), and severely rough roads
Feng, JieyinYin, ZhihongXia, ZhaoWang, WeiweiShangguan, Wen-BinRakheja, Subhash
In order to efficiently predict and investigate a vehicle’s vertical dynamics, it is necessary to consider the suspension component properties holistically. Although the effects of suspension stiffness and damping characteristics on vertical dynamics are widely understood, the impact of suspension friction in various driving scenarios has rarely been studied in both simulation and road tests for several decades. The present study addresses this issue by performing driving tests using a special device that allows a modification of the shock absorber or damper friction, and thus the suspension friction to be modified independently of other suspension parameters. Initially, its correct functioning is verified on a shock absorber test rig. A calibration and application routine is established in order to assign definite additional friction forces at high reproducibility levels. The device is equipped in a medium-class passenger vehicle, which is driven on various irregular road sections as
Deubel, ClemensSchneider, Scott JarodProkop, Günther
The objective of this study is to introduce and assess a computational tool designed to facilitate product development via sensory scores, which serve as a quantifiable representation of human sensory experiences. In the context of designing ride comfort performance, the specialized terminology—either technical or sensory—often served as a barrier to comprehension among the diverse set of specialists constituting the multidisciplinary team. In a previous study by the authors introduced a tool that incorporated a model of sensory performance, utilizing sensory scores as universally comprehensible metrics. However, the tool had yet to be appraised by a genuine cross-functional team. In this study, the tool underwent evaluation through a user-testing process involving twenty-five cross-functional team members engaged in the conceptual design phase at an automotive manufacturing company. Five different suspension systems were examined, including a wheel rotational speed-driven damper
Kikuchi, HironobuInaba, Kazuaki
Designing an automotive seat, it is required to perform a detailed study of anthropometry, which deals with measurement of human individuals and understanding human physical variations. It also requires application-based movement study of driver’s hands, feet’s & overall body movement. It is very difficult to design seat curvatures based on any static manikin-based software. We at VECV, have developed a new concept using mixed reality VR technology to capture all body movements for designing best in class seat curvature to accommodate variety of drivers with different body types. We have designed a specialized static bunk, which has a wide range of seat, steering and ABC paddle adjustments, which are integrated with virtual data. We use to study and capture the data of driving position and other ergonomic postures of wide range of people with different body types on this static bunk according to their comfortable driving posture. In this comfortable driving posture, user is immersed in
Bhatnagar, ManasJain, NishantBiswal, JyotiranjanSharma, Ajay
This paper delves into the intricate realm of Formula 1 race car aerodynamics, focusing on the pivotal role played by floor flow structures in contemporary racing. The aerodynamic design of the floor of a Formula 1 car is a fundamental component that connects the flow structures from the front wing to the rear end of the car through the diffuser, thus significantly influencing the generation of lift and drag. In this work, CFD was used to predict the structure of the vortices and flow pattern underneath a Formula 1 car using a CAD model that mimicked the modern Red Bull Racing Team’s car in recent years. Through comprehensive analysis and simulation, a detailed understanding of the complex flow patterns and aerodynamic phenomena occurring beneath the floor of the car and its vicinity is presented. This entails a close examination of how air interacts with the floor of the car and how the flow around the car can be manipulated to alter the flow rate and the quality of air going into the
Shaalan, AmrAssanis, DimitrisRaman, AdityaWijeyakulasuriya, SameeraSenecal, Kelly
This paper presents an adaptive H2/H∞ control strategy for a semi-active suspension system with unknown suspension parameters. The proposed strategy takes into account the damping force characteristics of continuous damping control (CDC) damper. Initially, the external characteristics of CDC damper were measured, and a forward model and a back propagation (BP) neural network inverse model of CDC damper were proposed using the measured data. Subsequently, a seven-degree-of-freedom vehicle with semi-active suspension system and H2/H∞ controller was designed. Multiple feedback control matrices corresponding to different sprung mass parameter values were determined by analyzing time and frequency domain performance. Finally, a dual observer system combining suspension state and parameter estimation based on the Kalman filter algorithm was established. The estimated parameter was used to determine feedback control matrix, while the observed states were used to calculate the desired damping
Du, CanjieYin, ZhihongXia, ZhaoWang, WeiweiShangguan, Wen-Bin
To address the issue of PID control for automotive vibration, this paper supplements and develops the evaluation of automotive vibration characteristics, and proposes a vibration response quantity for evaluating the energy dissipation characteristics of automotive vibration. A two-degree-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined. This paper uses the Adaptive Differential Evolution (ADE) algorithm to tune the PID control parameters and introduces an adaptive mutation factor to improve the algorithm's adaptability. Several commonly used adaptive mutation factors are summarized in this paper, and their effects on algorithm improvement are compared. Design a simulation test plan for commonly used B-class road surfaces and a common speed of 60 km/h under
Jie, LiDou, LeiZhao, QiQiao, BinLiu, JiayongZhang, Wei
Bicycle computers record and store global position data that can be useful for forensic investigations. The goal of this study was to estimate the absolute error of the latitude and longitude positions recorded by a common bicycle computer over a wide range of riding conditions. We installed three Garmin Edge 530 computers on the handlebars of a bicycle and acquired 9 hours of static data and 96 hours (2214 km) of dynamic data using three different navigation modes (GPS, GPS+GLONASS, and GPS+Galileo satellite systems) and two geographic locations (Vancouver, BC, Canada and Orange County, CA, USA). We used the principle of error propagation to calculate the absolute error of this device from the relative errors between the three pairs of computers. During the static tests, we found 16 m to 108 m of drift during the first 4 min and 1.4 m to 5.0 m of drift during a subsequent 8 min period. During the dynamic tests, we found a 95th percentile absolute error for this device of ±8.04 m. This
Siegmund, Gunter P.Miller, Ian L.Booth, GabrielleLawrence, Jonathan M.
The accuracy of chassis control for intelligent electric vehicles (IEVs), especially in road-based IEVs control for improving road holding and ride comfort, is a challenging task for the intelligent transport system. Due to the high fatality rate caused by inaccurate road-based control algorithms, how to precisely and effectively choose a reasonable road-based control algorithm become a hot topic in both academia and industry. To address and improve the performance of road holding and ride comfort of IEVs by using a semi-active suspension system, an adaptive sliding mode control (ASMC) algorithm-based road information is proposed to realize the overall performance of the intelligent vehicle chassis system in the paper. Firstly, the models of road excitation and equivalent hybrid control of a quarter semi-active suspension system are established. Secondly, connecting with the minimum redundancy maximum relevance (MRMR) approach and probability neural network (PNN) theory, the method of
Wang, ZhenfengLiao, YinshengZhang, ZhijieHu, ZhimingZhao, GaomingHuang, TaishuoZhang, Lei
In today’s rapidly evolving automotive world, reduction of time to market has prime importance for a new product development. It is critical to have significant front-loading of the development activities to reduce development time while achieving best in class performance targets. Driver-in-the-loop (DIL) simulators have shown significant potential for achieving it, through real time subjective feedback at preliminary stages of the vehicle development. Recent advances in technology of driving simulators have enabled quite accurate representation steering and handling performance, also good prediction on primary ride and low frequency vibrations. In conventional damper development, the definition of the initial dampers tuning specifications typically requires a mule vehicle, or atleast, a comparable vehicle. However, this approach is associated with protracted iterations that consume substantial time and cost. This becomes even more critical when introducing new damper technology on
Rasal, ShraddheshAsthana, ShivamVellandi, VikramanArconada, Verónica SantosTosolin, Guido
Road roughness is the most important source of vertical loads for road vehicles. To capture this during durability engineering, various mathematical models for describing road profiles have been developed. The Laplace process has turned out to be a suitable model, which can describe road profiles in a more flexible way than e.g., Gaussian processes. The Laplace model essentially contains two parameters called C and ν (to be explained below), which need to be adapted to represent a road with certain roughness properties. Usually, local road authorities provide such properties along a road on sections of constant length, say, 100 m. Often the ISO 8608 roughness coefficient or the IRI (International Roughness Index) are used. In such cases, there are well known explicit formulas for finding the parameters C and ν of the Laplace process, which best fits the road under certain assumptions. Besides local road authorities there are also other sources of roughness data, for instance commercial
Speckert, MichaelDahlheimer, ThorstenFiedler, Jochen
The purpose of this paper is to investigate the efficiency of a quarter car semi-active suspension system with the state-derivative feedback controller using the Bouc-Wen model for magneto-rheological fluids. The magnetorheological (MR) dampers are classified as adaptive devices because of their characteristics can be easily modified by applying a controlled voltage signal. Semi-active suspension with MR dampers combines the benefits of active and passive suspension systems. The dynamic system captures the basic performance of the suspension, including seat travel distance, body acceleration, passenger acceleration, suspension travel distance, dynamic tire deflection and damping force. With minimal reliance on the use of sensors, the investigation aims to improve ride comfort and vehicle stability. In this study, the state derivative feedback controller and Genetic algorithm (GA) is utilized to improve the performance of semi-active suspension system. Moreover, the cost is reduced
M.Faragallah, MohamedMetered, HassanAbdelaziz, Taha H.
Whenever bicyclists ride on public roads, they ride through roadway defects which occasionally causes them to lose control of their bicycles and/or damage components. Previous research has quantified the forces experienced during general road and offroad riding, but did not study the specific influences of variables such as pothole geometry, riding speed, etc. To begin quantifying these effects, a road bike was equipped with a triaxial accelerometer and ridden over poor roadway conditions around an industrial park in Southern California. Next, in a laboratory setting, an artificial pothole was constructed that was 12 inches long and either 1 or 1.65 inches deep. A force plate was placed at the far edge to measure the horizontal loads induced by the bicycle tire riding over the edge and high-speed camera was positioned perpendicular to the path of travel to measure the speed and vertical drop of the front wheel. Lastly, two riders of differing weights rode the same road bicycle over the
Sweet, David MichaelBretting, GeraldWilhelm, Christopher
Items per page:
1 – 50 of 546