Browse Topic: Thermodynamics
Electric Vehicles (EVs) are rapidly transforming the automotive landscape, offering a cleaner and more sustainable alternative to internal combustion engine vehicles. As EV adoption grows, optimizing energy consumption becomes critical to enhancing vehicle efficiency and extending driving range. One of the most significant auxiliary loads in EVs is the climate control system, commonly referred to as HVAC (Heating, Ventilation, and Air Conditioning). HVAC systems can consume a substantial portion of the battery's energy—especially under extreme weather conditions—leading to a noticeable reduction in vehicle range. This energy demand poses a challenge for EV manufacturers and users alike, as range anxiety remains a key barrier to widespread EV acceptance. Consequently, developing intelligent climate control strategies is essential to minimize HVAC power consumption without compromising passenger comfort. These strategies may include predictive thermal management, cabin pre-conditioning
This Aerospace Recommended Practice (ARP) outlines the causes and impacts of moisture and/or condensation in avionics equipment and provides recommendations for corrective and preventative action.
Battery Thermal Management Systems (BTMS) play a critical role in ensuring the longevity, safety, and efficient operation of lithium-ion battery packs. These systems are designed to better dissipate the heat generated by the cells during vehicle operation, thereby maintaining a uniform temperature distribution across the battery modules, preventing overheating and mitigating the chances of thermal runaway. However, one of the primary challenges in BTMS design lies in achieving effective thermal contact between the battery cells and the cooling plate. Non-uniform or excessive application of Thermal Interface Materials (TIMs) without ensuring robustness and uniformity can increase interfacial thermal resistance, leading to significant temperature variations across the battery modules, which may trigger power limitations via the Battery Management System (BMS) and these thermal changes can cause inefficient cooling, ultimately affecting battery performance and lifespan. In this paper, a
Items per page:
50
1 – 50 of 5934