Browse Topic: Thermodynamics
In order to improve the efficiency of verification and optimization of control strategies for air-conditioning systems, a thermal management platform is established based on a rapid control prototyping (RCP) approach in the article. The platform is composed of a HVAC hardware bench, a real-time control system, and a control software model. This article describes the overall architecture of the platform, the control strategy, and an efficient method for development and optimization of air-conditioning control strategies. The cooling and heating modes of the air conditioner are tested. The results show that the control strategy can be directly modified via the platform to improve the performance of the whole system. The experimental results show that after modifying the control strategy, the cooling effect of the air conditioner is optimized and the cooling time is reduced by 10.6%. The CLTC cycle is also tested in this work to verify the dynamic control performance of the air
Electrification of vehicles plays an important role in the transformation process towards sustainable mobility in the individual and transport sector. As a result, new challenges must be met during the development process regarding the vehicles overall energy management system. A key challenge is the development of thermal management systems to optimize overall vehicle efficiency and to minimize ageing effects of the powertrain components while maintaining passenger comfort. Efficiency and ageing effects are highly dependent on the conditioning state of the powertrain components due to their high thermal sensitivity with simultaneously narrow thermal operating limits. Comfort functions like cabin air conditioning must be fulfilled as well, which must be considered by the thermal management system. To develop innovative solutions for thermal management systems at an early stage of the development process, thermal emulation can be used to substitute hardware components. Therefore
BATSS project objective is to design a safe, effective and sustainable battery pack. To achieve this, the battery system (BS) will be mechanically, electrically and thermally optimized using cutting edge technology. Consequently, the battery system includes innovative 4695 cylindrical cells and advanced thermal management, carried out with the Miba FLEXCOOLER®. This work focuses on the BS thermal optimization using system simulation tools. First a simplified version of the BS is simulated with all physical phenomena involved in thermal behavior to identify first order parameters. It appears that various BS component and heat transfer can be neglected in comparison with the heat transfer due to cooling system. Then the simulation of the full battery system is conducted under nominal condition. Cooling system appears to be performant as it allows a controlled averaged temperature and very low cell-to-cell temperature variability. Finally, impact of both design and operating parameters is
Items per page:
50
1 – 50 of 5853