Browse Topic: Thermodynamics

Items (5,786)
Temperature segregation significantly affects the compaction of asphalt mixtures and the durability of the asphalt pavement layer. Uneven cooling of the mixture during transportation is a key factor contributing to temperature segregation. This study uses finite element simulations to analyze the temporal and spatial temperature evolution during the transportation of asphalt mixtures. A temperature segregation evaluation index (TSIv) is proposed to assess the significance of various factors affecting segregation. Support vector regression (SVR), random forest regression (RFR), and extreme gradient boosting (XGBoost) models are employed to predict temperature changes during transportation and optimize the predictive models. The results indicate that the proportion of areas with a temperature difference of less than 10°C is consistently the highest, followed by areas with a temperature difference greater than 25°C, and then those with temperature differences in the ranges of 10-16°C and
Cheng, HaoMa, TaoTang, FanlongFan, Jianwei
In this article, a finite element analysis for the passenger car tire size 235/55R19 is performed to investigate the effect of temperature-dependent properties of the tire tread compound on the tire–road interaction characteristics for four seasons (all-season, winter, summer, and fall). The rubber-like parts of the tire were modeled using the hyperelastic Mooney–Rivlin material model and were meshed with the three-dimensional hybrid solid elements. The road is modeled using the rigid body dry hard surface and the contact between the tire and road is modeled using the non-symmetric node-to-segment contact with edge treatment. At first, the tire was verified based on the tire manufacturer’s data using numerical finite element analysis based on the static and dynamic domains. Then, the finite element analysis for the rolling resistance analysis was performed at three different longitudinal velocities (10 km/h, 40 km/h, and 80 km/h) under nominal loading conditions. Second, the steady
Fathi, HaniyehEl-Sayegh, ZeinabRen, Jing
The Object of research in the article is the ventilation and cooling system of bulb hydrogenerators. The Subject of study in the article is the design and efficiency of using the cooling system of various structural types for bulb hydro units. The Purpose of the work is to carry out a three-dimensional study of two cooling systems (axial and radial) of the bulb hydro unit of the Kanivskaya HPP with a rated 22 MW. Research Tasks include analysis of the main design solutions for effective cooling of bulb-type hydrogenerators, in particular, the use of radial, axial, and mixed cooling systems; formulation of the main assumptions for the three-dimensional ventilation and thermal calculation of the bulb hydrogenerator; carrying out a three-dimensional calculation for a hydrogenerator with axial ventilation; determining airflow speeds in the channels and temperatures of active parts of the hydrogenerator under the conditions of using discharge fans and without them; carrying out a three
Tretiak, OleksiiArefieva, MariiaMakarov, PavloSerhiienko, SerhiiZhukov, AntonShulga, IrynaPenkovska, NataliiaKravchenko, StanislavKovryga, Anton
This research explores the use of salt gradient solar ponds (SGSPs) as an environmentally friendly and efficient method for thermal energy storage. The study focuses on the design, construction, and performance evaluation of SGSP systems integrated with reflectors, comparing their effectiveness against conventional SGSP setups without reflectors. Both experimental and numerical methods are employed to thoroughly assess the thermal behavior and energy efficiency of these systems. The findings reveal that the SGSP with reflectors (SGSP-R) achieves significantly higher temperatures across all three zones—Upper Convective Zone (UCZ), Non-Convective Zone (NCZ), and Lower Convective Zone (LCZ)—with recorded temperatures of 40.56°C, 54.2°C, and 63.1°C, respectively. These values represent an increase of 6.33%, 11.12%, and 14.26% over the temperatures observed in the conventional SGSP (SGSP-C). Furthermore, the energy efficiency improvements in the UCZ, NCZ, and LCZ for the SGSP-R are
J, Vinoth Kumar
This study investigates the heat transfer properties of graphene nanoplatelets (GnPs) blended with distilled water-ethylene glycol (DW-EG) mixtures, focusing on their potential application in battery thermal management systems (BTMS). Compared to other nanoparticles, carbon nanostructures exhibit higher thermal conductivity due to their low density and integrated thermal conductivity. The experimental findings are relevant in that compared with the base fluid, nanofluid samples had heat transfer capability. The physicochemical characteristics of investigated GNP were characterized using a Scanning Electron Microscope (SEM), pH and UV–Vis spectrophotometry. The thermal conductivity and physical properties of graphene platelets having the specific surface area of 500 m2/g in the base fluid of Distilled Water-Ethylene Glycol (DW-EG 70:30) and 100 % vol. of Ethylene Glycol (EG 100) were determined after 120 minutes of sonication time. The graphene nanofluids with the platelet
S, PalanisamySelvan, Arul Mozhi
Items per page:
1 – 50 of 5786