Browse Topic: Vehicle handling

Items (483)
Generally, in an electric sports utility vehicle with rear mounted powertrain the mass distribution is greater in the rear compared to front. This higher rear to front weight distribution results in oversteer behavior during high-speed cornering deteriorating vehicle handling & risking passenger safety. To compensate this inherent oversteer nature of such vehicles & produce understeer behavior, the steering rack is placed frontwards of the front wheel center for toe-out behavior due to lateral compliance during cornering. This compensation measure results in lower Ackermann percentage resulting in higher turning circle diameter deteriorating vehicle maneuverability. This paper proposes a design to obtain ideal understeer gradient with minimal turning circle diameter through utilization of split link technology with a McPherson Strut based suspension framework & frontwards placed steering rack. This suspension is utilized in our Mahindra Inglo platform. This paper elaborates on how
Nadkarni, Ameya RavindraMhatre, NitijPatnala, AvinashNAYAK, Bhargav
In traditional commercial vehicles with leaf spring suspension and Recirculating Ball Joint (RCBT) steering systems often experience undesirable pulling due to unsymmetrical steering mechanism during braking, especially when the suspension and steering hardpoints are not properly tuned. This work analyzes the mechanisms responsible for pulling tendencies, primarily addressing brake steer and bump steer, which occur due to misalignments in the suspension and steering geometries. Brake steer occurs when braking forces create an imbalance in torque, resulting in the vehicle deviating to one side. On the other hand, bump steer refers to the unwanted changes in the wheel alignment when the suspension undergoes travel, leading to instability or unintended steering input. These two phenomena, if not controlled, can result in undesirable vehicle handling, especially under heavy braking conditions. This work focuses on evaluating these mechanisms and suggests strategies for minimizing their
Pandhare, Vinay RamakantM, Anantha PadmnabhanNizampatnam, BalaramakrishnaLondhe, AbhijitDoundkar, Vikas
Vehicle dynamics is a vital area of automotive engineering that focuses on analyzing how a vehicle responds to driver inputs and external factors like road conditions and environmental influences. Achieving optimal performance, safety, and ride comfort requires a detailed understanding of longitudinal, lateral, and vertical dynamic behavior. The objective of this paper is to develop and validate the model of a concept Race car and evaluate its vehicle dynamics behavior using IPG CarMaker, a high-fidelity virtual testing environment widely used in industry. The model incorporates a range of vehicle parameters, including suspension parameters like spring and damper characteristics, mass distribution, tire properties and powertrain parameters. The performance evaluation is done as per standard guidelines, including Constant Radius turn test, Sine Steer test and other standard tests like Acceleration, Braking along with Ride and Comfort classification. The key parameters that are
Agrewale, Mohammad Rafiq B.Vaish, Ujjwal
The handling of a vehicle is crucial to the perception of its dynamic characteristics, such as comfort, stability, composure, sportiness, and precision. Kinematics and Elasto-kinematics, also known as Kinematics and Compliance (K&C), form the basis of an automobile's handling characteristics. Kinematics focuses on the movement of suspension components, including wheels, axles, and linkages, and how these movements relate to the vehicle's body motion. Compliance refers to the suspension's ability to deform under load, primarily due to the flexibility of springs, bushings, and other elastic components. Elastomer bushings, as flexible elements in the kinematic chain, significantly impact K&C and require a detailed study. Suspension bush stiffness is typically measured through static and dynamic tests, in various directions – radial, axial, torsional, etc. Tests involve applying a force or torque and measuring the resulting deflection and/or rotation. These measurements are used to
Avhad, Anish
With increased deterioration of road conditions worldwide, automotive OEMs face significant challenges in ensuring the durability of structural components. The tyre being the primary point of contact with the road is expected to endure harshest of impacts while maintaining the other performance functions such as Ride & Handling, Rolling resistance, Braking. Thus, it is considered as the most challenging component in terms of design optimization for durability. The current development method relies on physical testing of initial samples, followed by iterative construction changes to meet durability requirements, often giving trade-off in Ride & Handling performance. To overcome these challenges, a frugal simulation-based methodology has been developed for predicting tyre curb impact durability before vehicle-level testing so that corrective action can be taken during the design stage.
Sundaramoorthy, RagasruobanLenka, Visweswara
Vehicles with a high center of gravity (CG) and moderate wheel track, like compact Sport Utility Vehicles (SUVs), have a relatively low Static Stability Factor (SSF) and thus are inherently less stable and more susceptible to rollover crashes. Moreover, to be more maneuverable in highly populated urban areas, a smaller Turning Circle Diameter (TCD) is necessary. Here, Variable Gear Ratio (VGR) steering systems have major benefits over traditional Constant Gear Ratio (CGR) systems in terms of enhancing both roll stability and agility. To adapt VGR steering systems to a particular vehicle dynamic, Full Vehicle (FV) and Driver-in-the-Loop (DIL) simulations are utilized. Using this method, exact calibration is possible according to realistic driving conditions so that the VGR steering C-factor curve is properly tuned for optimal handling in on-center, off-centre, and transitional areas of the Steering Wheel Angle (SWA). Primary performance measures—e.g., SWA gradients at different lateral
Rewale, PratikKopiec, JakubKumar, DevaRasal, ShraddheshHussain, InzamamNehal, S B
Model-based optimal control has been widely adopted for vehicular stability enhancement. However, existing schemes still suffer from unmodelled external disturbances such as road adhesion variations, which leads to significant performance degradation. The recent progress in X-by-wire chassis brings promising solution to address this challenge. Utilizing independent steering along with distributed driving systems, this paper proposes a vehicular control programs that actively distribute tire forces in both longitudinal and lateral directions to minimize the impact of external parameter perturbations. Firstly, an adhesion disturbance modeling approach integrating composite slip and single-wheel reachability analysis is developed to accurately characterize the feasible region of tire forces under adhesion disturbances. Secondly, based on the disturbance propagation mechanism, the sensitivity differences of various tire force distribution strategies to key vehicle states are systematically
Lv, HaoranTang, ChenZhang, PengjunXiong, Lu
Four-wheel independent steering four-wheel independent drive electric vehicles have an independent steering motor and an independent driving motor for each wheel, for a total of eight motors. About 28 works in this emerging field have shown path-tracking control algorithms for these vehicles, 18 of them explicitly or implicitly aspire for a condition known as optimal tire usage. This article first defines this optimality condition and explains its significance. Second, this article identifies three indicators of tire usage that aid in assessing the existing algorithms. Third, this article performs block diagram examination of four of the 18 works, revealing significant commonalities across the 28 works and identifying areas for improvement in three of the four algorithms. Lastly, this article suggests motor control systems to fill these gaps. Furthermore, it employs these motor control systems in one of the four algorithms, and illustrates path-tracking and achievement of the
Kumar, DileepPotluri, Ramprasad
Trajectory tracking and lateral stability under extreme conditions are critical yet conflicting control objectives due to nonlinear tire dynamics and road adhesion limitation, where accurate characterization of vehicle dynamics for each objective is essential to enable coordinated performance. This article proposes a coordinated control strategy based on switched envelope and composite evaluation to improve both tracking accuracy and stability. Unlike previous stability envelope methods that rely solely on the vehicle’s rear tire saturation boundary to prevent instability, the switched envelope approach incorporates both front and rear tire saturation boundaries to simultaneously mitigate steering loss and instability in trajectory tracking. A critical steering angle, derived from tire slip dynamics and phase plane stability analysis, is formulated as the switching criterion. Additionally, a composite stability evaluation is developed by combining a future disturbance resistance index
Shi, WenboWang, JunlongDing, HaitaoXu, Nan
Years ago, Hyundai hosted a Palisade drive program for journalists consisting mostly of driving on a gravel road for a few hours. It was weird, and many a journalist told them so. It may not be a direct reaction to that feedback, but on a recent drive program of the new 2026 Palisade, Hyundai made sure that we drove the well-equipped SUV on regular, albeit twisty roads in the Napa region of Northern California. The automaker also took us off-road again. This time, with boulders. Hyundai's Palisade has long found itself in the shadow of Kia's Telluride. Built on the same platform, design-wise, the Kia always tended to turn more heads. With the 2026 upgrade, the Palisade is coming into its own looks-wise, while being outfitted with upgrades that keep the SUV punching above its weight class.
Baldwin, Roberto
Vehicle behavior is strongly influenced by tire performance, as tires serve as the primary interface between the vehicle and the road surface. Since identical vehicles equipped with different tire sets—or even the same tires operating under varying thermal and wear conditions—can exhibit significantly different handling characteristics, this study aims to quantify their impact on both steady-state and transient cornering responses through a dedicated evaluation methodology. To demonstrate the generalization of the proposed approach, three completely different validated vehicle digital twins—a passenger car, a sports car, and a formula car—are analyzed in a virtual environment, employing Vi-Car Real Time for vehicle and scenario representations, and RIDEsuite for tire modeling, considering thermal and wear effects. The simulations were designed using a structured design of experiments approach, resulting in 15 predefined combinations of tire temperature and wear states. Results show
Aratri, RobertoRomagnuolo, FabioDe Pinto, StefanoFarroni, FlavioDe Bellis, SergioBottiglione, FrancescoMantriota, GiacomoSakhnevych, Aleksandr
The article investigates how to detect as quickly as possible whether the driver will lose control of a vehicle, after a disturbance has occurred. Typical disturbances refer to wind gusts, obstacle avoidance, a sudden steer, traversing a pothole, a kick by another vehicle, and so on. The driver may be either human or non-human. Focus will be devoted to human drivers, but the extension to automated or autonomous cars is straightforward. Since the dynamic behavior of vehicle and driver is described by a saddle-type limit cycle, a proper theory is developed to use the limit cycle as a reference trajectory to forecast the loss of control. The Floquet theory has been used to compute a scalar index to forecast stable or unstable motion. The scalar index, named degree of stability (DoS), is computed very early, in the best case, in a few milliseconds after the disturbance has ended. Investigations have been performed at a dynamic driving simulator. A 14 DoF vehicle model, virtually driven by
Della Rossa, FabioFontana, MatteoGiacintucci, SamueleGobbi, MassimilianoMastinu, GiampieroPreviati, Giorgio
The steering system is one of the most important assemblies for the vehicle. It allows the vehicle to steer according to the driver’s intention. For an ideal steering system, the steering angle for the wheel on the left and right side should obey the Ackman equation. To achieve this goal, the optimization method is usually initiated to determine the coordinates of the hard points for the steering system. However, the location of hard points varies due to the manufacturing error of the components and wear caused by friction during their working life. To decrease the influence of geometry parameter error, and system mass, and improve the robust performance of the steering system, the optimization based on Six Sigma and Monte Carlo approach is used to optimize the steering system for an off-road vehicle. At last, the effect is proved by the comparison of other methods. The maximum error of the steering angle is decreased from 7.78° to 2.14°, while the mass of the steering system is
Peng, DengzhiDeng, ChaoZhou, BingbingZhang, Zhenhua
This paper presents an analytical approach for identifying suspension kingpin alignment parameters based on screw axis theorem and differential calculation model. The suspension kingpin caster and inclination alignment parameters can produce additional tire force, which affects vehicle handling dynamics. In wheel steering process, the multi-link suspension control arms lead to movement of the imaginary kingpin, which can cause change in suspension kingpin alignment parameters. According to the structure mechanism of commercial vehicle multi-link independent suspension, the kinematics characteristics of imaginary kingpin were analyzed based on the screw axis theorem. The angular velocity and translation velocity vectors were calculated. In order to avoid the influence of bushing deformation, the unique differential identification model was established to evaluate the suspension kingpin alignment parameters, and the identification results were compared with the ADAMS/Car data. The
Ding, JinquanHou, JunjianZhao, DengfengGuo, Yaohua
The wheel hub motor–driven electric vehicle, characterized by its independently controllable wheels, exhibits high torque output at low speeds and superior dynamic response performance, enabling in-place steering capabilities. This study focuses on the control mechanism and dynamic model of the wheel hub motor vehicle’s in-place steering. By employing differential torque control, it generates the yaw moment needed to overcome steering resistance and produce yaw motion around the steering center. First, the dynamic model for in-place steering is established, exploring the various stages of tire motion and the steering process, including the start-up, elastic deformation, lateral slip, and steady-state yaw. In terms of control strategy, an adaptive in-place steering control method is designed, utilizing a BP neural network combined with a PID control algorithm to track the desired yaw rate. Additionally, a control strategy based on tire/road adhesion ellipse theory is developed to
Huang, BinCui, KangyuZhang, ZeyangMa, Minrui
In order to effectively improve the chassis handling stability and driving safety of intelligent electric vehicles (IEVs), especially in combing nonlinear observer and chassis control for improving road handling. Simultaneously, uncertainty with system input, are always existing, e.g., variable control boundary, varying road input or control parameters. Due to the higher fatality rate caused by variable factors, how to precisely chose and enforce the reasonable chassis prescribed performance control strategy of IEVs become a hot topic in both academia and industry. To issue the above mentioned, a fuzzy sliding mode control method based on phase plane stability domain is proposed to enhance the vehicle’s chassis performance during complex driving scenarios. Firstly, a two-degree-of-freedom vehicle dynamics model, accounting for tire non-linearity, was established. Secondly, combing with phase plane theory, the stability domain boundary of vehicle yaw rate and side-slip phase plane based
Liao, YinshengWang, ZhenfengGuo, FenghuanDeng, WeiliZhang, ZhijieZhao, BinggenZhao, Gaoming
This study is to demonstrate a vehicle dynamics simulation process to assess vehicle vibration performance. A vehicle dynamics model including non-linear tuning elements and flexible vehicle body is simulated on ride roads. The goal of the simulation is acceleration responses at the passenger locations in frequency domain. Body interface loads are recovered from the vehicle dynamic simulations. Frequency response function (FRF) of the body structure is ready in a fashion that input forces are applied to all body interface locations to the suspension and powertrains. This will give acceleration response sensitivity of the body structure to each body interface. The sum of body interface loads multiplied by FRF at each interface produces acceleration responses in frequency domain. A mid-size sedan model was used to demonstrate the process. A full vehicle dynamics model using Ansys Motion was simulated on a virtual ride road at a constant speed. The body loads were recovered in time domain
Hong, Hyung-JooMaddula, Pavan KumarJun, Hyochan
Vehicle handling is significantly influenced by aerodynamic forces, which alter the normal load distribution across all four wheels, affecting vehicle stability. These forces, including lift, drag, and side forces, cause complex weight transfers and vary non-linearly with vehicle apparent velocity and orientation relative to wind direction. In this study, we simulate the vehicle traveling on a circular path with constant steering input, calculate the normal load on each tire using a weight transfer formula, calculate the effect of lift force on the vehicle on the front and rear, and calculate the vehicle dynamic relation at steady state because the frequency of change due to aerodynamic load is significantly less than that of the yaw rate response. The wind velocity vector is constant while the vehicle drives in a circle, so the apparent wind velocity relative to the car is cyclical. Our approach focuses on the interaction between two fundamental non-linearity’s: the nonlinear
Patil, HarshvardhanWilliams, Daniel
In order to manage the serious global environmental problems, the automobile industry is rapidly shifting to electric vehicles (EVs) which have a heavier weight and a more rearward weight distribution. To secure the handling and stability of such vehicles, understanding of the fundamental principles of vehicle dynamics is inevitable for designing their performance. Although vehicle dynamics primarily concerns planar motion, the accompanying roll motion also influences this planar motion as well as the driver's subjective evaluation. This roll motion has long been discussed through various parameter studies, and so on. However, there is very few research that treats vehicle sprung mass behavior as “vibration modes”, and this perspective has long been an unexplored area of vehicle dynamics. In this report, we propose a method to analytically extract the vibration modes of the sprung mass by applying modal analysis techniques to the governing equations of vehicle handling and stability
Kusaka, KaoruYuhara, Takahiro
Trajectory tracking control is a key component of vehicle autonomous driving technology. Compared with traditional vehicles, Distributed Driven Electric Vehicle (DDEV) is an ideal vehicle for trajectory tracking control because of its high space utilization, redundant control freedom and fast system response. However, the chassis execution system of DDEV has a relatively large number of sensors, which significantly increases its probability of failure. In this paper, we propose a trajectory tracking fault-tolerant control method for DDEV considering steering actuator faults. Firstly, we establish the dynamic model of the steering actuator and the trajectory tracking model of DDEV. The model is linearized and discretized by using Taylor series expansion and forward Euler method. Next, considering multi-objective constraints such as motion comfort, actuator saturation and road adhesion boundary, the trajectory tracking control strategy of DDEV is designed by using model predictive
Wang, DepingLi, LunTeng, YuhanZhu, BingChen, Zhicheng
With the continuous development of automobile technology, vehicle handling performance and safety have become increasingly critical research areas. The active rear-wheel (ARW) steering system, a technology that significantly enhances vehicle dynamics and driving stability, has garnered widespread attention. By coordinating front-wheel steering with rear-wheel angle adjustments, ARW improves handling flexibility and stability, particularly during high-speed driving and under extreme conditions. Therefore, designing an efficient ARW control algorithm and optimizing its performance are vital to enhancing a vehicle's overall handling capability. This study delves into the control algorithm design and performance optimization of ARW. First, a comprehensive vehicle dynamics model is constructed to provide a solid theoretical basis for developing control algorithms. Next, optimal control theory is applied to regulate the rear-wheel steering angle, and an LQR control strategy with variable
Zhang, YiZheng, HongyuKaku, ChuyoZong, ChangfuZhang, Yuzhou
The electric vehicle market, vehicle ECU computing power, and connected electronic vehicle control systems continue to grow in the automotive industry. The results of these advanced and expanded vehicle technologies will provide customers with increased cost savings, safety, and ride quality benefits. One of these beneficial technologies is the tire wearing prediction. The improved prediction of tire wear will advise a customer the best time to change tires. It is expected that this prediction algorithms will be essential part for both the optimization of the chassis control systems and ADAS systems to respond to changed tire performance that varies with a tire’s wear condition. This trend is growing, with many automakers interested in developing advanced technologies to improve product quality and safety. This study is aimed at analyzing the handling and ride comfort characteristics of the tire according to the depth of tire pattern wear change. The handing and ride comfort
Kim, ChangsuKwon, SeungminSung, Dae-UnRyu, YonghyunKo, Younghee
As a crucial tool for lunar exploration, lunar rovers are highly susceptible to instability due to the rugged lunar terrain, making control of driving stability essential during operation. This study focuses on a six-wheel lunar rover and develops a torque distribution strategy to improve the handling stability of the lunar rover. Based on a layered control structure, firstly, the approach establishes a two-degree-of-freedom single-track model with front and rear axle steering at the state reference layer to compute the desired yaw rate and mass center sideslip angle. Secondly, in the desired torque decision layer, a sliding mode control-based strategy is used to calculate the desired total driving torque. Thirdly, in the torque distribution layer, the optimal control distribution is adopted to carry out two initial distributions and redistribution of the drive torque planned by the upper layer, to improve the yaw stability of the six-wheeled lunar rover. Finally, a multi-body dynamics
Liu, PengchengZhang, KaidiShi, JunweiYang, WenmiaoZhang, YunqingWu, Jinglai
Distributed electric vehicles, equipped with independent motors at each wheel, offer significant advantages in flexibility, torque distribution, and precise dynamic control. These features contribute to notable improvements in vehicle maneuverability and stability. To further elevate the overall performance of vehicles, particularly in terms of handling, stability, and comfort, this paper introduces an coordinated control strategies for longitudinal, lateral, and vertical motion of distributed electric vehicles. Firstly, a full-vehicle dynamics model is developed, encompassing interactions between longitudinal, lateral, and vertical forces, providing a robust framework for analyzing and understanding the intricate dynamic behaviors of the vehicle under various operating conditions. Secondly, a vehicle motion controller based on Model Predictive Control is designed. This controller employs a sophisticated multi-objective optimization algorithm to manage and coordinate several critical
Jia, JinchaoYue, YangSun, AoboLiu, Xiao-ang
Recreational Off-Highway Vehicles (ROVs) also referred to as “side-by-side” vehicles are involved in accidents / crashes due to driver error. This can often be attributed to an operator’s inexperience and failure to differentiate vehicle handling characteristics from that of a traditional automobile. Decelerating testing of ROVs on various surfaces has not been published for these types of vehicles. This work presents test data for use in accident reconstruction and examines the dynamic performance of two exemplar ROVs on various driving surfaces including asphalt, packed dirt, loose gravel and loose, deep sand. Exemplar vehicles, specifically a 4-person “pure-sport” ROV and a single bench utility ROV, are used to gather practical deceleration performance data. Deceleration data comparing tests with fully-locked brakes to tests where the operator manually modulates the brakes to achieve maximum deceleration without brake lockup are also included. The data presented herein is
Swensen, GrantWarner, WyattWarner, Mark
This paper presents a complete approach to the optimized design and analysis of a trach-focused quad bike suitable for the Indian market. The process of design integrates several analytical factors, including driver ergonomics, aesthetics, and strategic component placement, to establish optimum vehicle dimensions. The primary objective is to address the unique demands of the Indian terrain and user preferences through ensure comfort, functionality, and visual appeal. The selection process for tires and suspension geometry is precisely conducted with the advanced OptimumKinematics software. This optimization provides greater performance and stability that the vehicle can accurately manage a variety of road conditions. The space frame chassis of a vehicle’s core structure features, engineered to minimalize tubing and facilitate ease of fabrication, contributing to both structural integrity and weight reduction. A robust 600cc four-cylinder engine is selected that emphasizing an optimal
Thanikonda, Praveen KumarShaik, AmjadTappa, RajuRatlavath, RamuNavar, AdarshChalla, Ajith Kumar
The braking system is an essential element for ensuring the safe operation of vehicles. This research investigates the influence of electronic mechanical brakes on the control performance of permanent magnet synchronous motors, with a particular focus on variations in the load torque and inertial load. This study addresses challenges such as delayed responses in the clamping force and diminished control accuracy. To mitigate these issues, a Luenberger load torque observer is utilized for the real-time identification of load torque. The identified load torque is subsequently converted into a compensation current, which is integrated into the current loop as a feed-forward compensation signal to enhance the control performance. Additionally, to reduce the impact of variations in inertial load on the overall control system, this study employs a model reference adaptive algorithm for the online identification of rotational inertia, with the identification results being fed back to the load
Wan, XiaoboShang, RuipengLi, Yingchun
The increased popularity of electric vehicles featuring distributed powertrains is enabling an easy and cost-effective implementation of torque vectoring. This is a renowned technique for controlling vehicle lateral dynamics having the objective of improving both vehicle handling and stability. Nevertheless, the application of torque vectoring at the front axle can increase the difficulty of usual driving tasks. This is because differential longitudinal forces at front tires generate a steering wheel torque, which can be badly perceived by the driver, up to the point of jeopardizing the benefits of having a torque vectoring control. The aim of this article is thus to study in detail the steering torque corruption caused by front axle torque vectoring for proposing some electric power steering control strategies compensating for this effect. Indeed, the electric power steering controllers developed in this study are designed based on the analytical derivation of the torque steer theory
Asperti, MicheleVignati, MicheleSabbioni, Edoardo
The tire is one of the components that is most influent on vehicle dynamics behavior and is a part that suffer wear and needs to be replaced. In this case what a doubt is always recurrent, keep the same tire or change the model or brand but keeping the sizes. Some vehicle owners want to change not only the worn-out tire but change its sizes for aesthetic proposals. There is a belief on the tire market if keeps the same outer diameter is acceptable. The proposal for this study is to compare the handling performance considering different sizes and models or brands of tires. For this study a vehicle modeled in multibody representing the vehicle mass inertias, suspension mechanisms kinematics and components dampers and stiffness will be the adopted tool. The constant radius and constant speed steady state maneuver defined by standard SAE J266 [1] was performed, on the virtual environment, changing the tire properties and comparing the key handling performance metrics as understeer gradient
Terra, Rafael TedimChaves, MariliaSantos, Alex Cardoso
The parametrized twist beam suspension is a pivotal component in the automotive industry, profoundly influencing the ride comfort and handling characteristics of vehicles. This study presents a novel approach to optimizing twist beam suspension systems by leveraging parametric design principles. By introducing a parameter-driven framework, this research empowers engineers to systematically iterate and fine-tune twist beam designs, ultimately enhancing both ride quality and handling performance. The paper outlines the theoretical foundation of parametrized suspension design, emphasizing its significance in addressing the intricate balance between ride comfort and dynamic stability. Through a comprehensive examination of key suspension parameters, such as twist beam profile, material properties, and attachment points, the study demonstrates the versatility of the parametric approach in tailoring suspension characteristics to meet specific performance objectives. To validate the
Pakala, Pradeep KumarGanesh, Lingadalu
The estimation of vehicle handling and control parameters in dynamic conditions is challenging due to errors and delays in real-time data logging with low-resolution onboard sensors. These issues significantly impact the performance of vehicle stability and control algorithms, particularly in vehicles under testing. This study presents error mapping concept parallel to statistical error method for real-time vehicle state estimation that addresses the limitations of low-resolution sensors with errors and delays in measured signal. In this study, a real-time (RT) model is developed and trained with in-house electric SUV to estimate yaw velocity and slip angle. The model leverages other measured signals available from the vehicle’s onboard sensor setup. It integrates an error and delay function with error predictive model to estimate the targeted parameter signal response in real time. The RT model introduces an error function method that enhances prediction accuracy by combining the
Kumar, AvinashAsthana, ShivamRasal, ShraddheshM, SudhanVellandi, Vikraman
Geometric methods based on Reeds–Shepp (RS) curves offer a practical approach for the parking path planning of unmanned mining truck, but discontinuous curvature can cause tire wear and road damage. To address this issue in mine scenario, a continuous curvature parking path planning method based on transition curve and model predictive control (MPC) is proposed for mine scenarios. Initially, according to the shovel position information issued by the cloud dispatching platform, a reference line is planned using RS curves. In order to mitigate the wear and tear of the tires and the damage to unstructured roads due to the in situ steering caused by the sudden change of the curvature, a transition curve consisting of clothoid–arc–clothoid that satisfies the kinematics of continuous vehicle steering is designed on the basis of RS curves to achieve the continuity of road curvature, which will contribute to the economy of tire and handling performance. The calculation of Fresnel integral
Zhang, HaosenChen, QiushiWu, Guangqiang
In recent years, there has been an increased emphasis on autonomous driving technologies to improve vehicle road safety amidst rising traffic congestion and the complexities of intersection jaywalking and diverse road conditions. Therefore, improving the vehicle's handling ability is crucial for safe and efficient traffic navigation, particularly emphasising collision prevention and safety in unforeseen circumstances. Evaluating safety perspectives in such situations, the lane change event serves as an important measure for addressing the matter and forms the focus of this paper. However, for such new-age technology, conducting proving ground tests replicating urban conditions is a costly endeavour. Hence, simulation is a better approach, which can mimic real traffic conditions, develop control systems, and simulate vehicle handling behaviour all working together within a closed-loop system. An autonomous lane change manoeuvre event of a four-wheeled vehicle is created in a simulation
Mudaliyar, RuthranKarthikeyan, Vikram RajGumma, MuralidharGopakumar, Sreekanth
The automobile industry strives to develop high-quality vehicles quickly that fulfill the buyer’s needs and stand out within the competition. Full utilization of simulation and Computer-Aided Engineering (CAE) tools can empower quick assessment of different vehicle concepts and setups without building physical models. This research focuses on optimizing vehicle ride and handling performance by utilizing a tuning specifications range. Traditional approaches to refining these aspects involve extensive physical testing, which consumes both time and resources. In contrast, our study introduces a novel methodology leveraging virtual Subjective Rating through driving simulators. This approach aims to significantly reduce tuning time and costs, consequently streamlining overall development expenditures. The core objective is to enhance vehicle ride and handling dynamics, ensuring a superior driving experience for end-users. By meticulously defining and implementing tuning specifications, we
Ganesh, Lingadalu
To enhance vehicle dynamic stability during driving, we developed a three-dimensional phase space model that incorporates the sideslip angle of center of mass, yaw rate, and lateral load transfer rate. This model enabled real-time evaluation and active control of vehicle stability. First, longitudinal and lateral controllers were implemented to ensure precise vehicle trajectory. Second, a hierarchical control strategy was designed to actively manage the desired sideslip angle, yaw rate, and roll angle based on the vehicle’s destabilizing conditions, thereby maintaining the vehicle within a stable state space. We simulated and tested the stability analysis methods and integrated control strategies for both cars and trucks under DLC (double lane change) and CDC (circular driving condition) scenarios using joint simulations with CarSim/TruckSim and Simulink. The proposed integrated stability control strategy, which combined MPC-based trajectory tracking with direct yaw moment control and
Lai, FeiXiao, HaoHuang, Chaoqun
In order to meet the driving characteristics and needs of different types of drivers and to improve driving comfort and safety, this article designs personalized variable transmission ratio schemes based on the classification results of drivers’ steering characteristics and proposes a switching strategy for selecting variable transmission ratio schemes in response to changes in driver types. First, data collected from driving simulator experiments are used to classify drivers into three categories using the fuzzy C-means clustering algorithm, and the steering characteristics of each category are analyzed. Subsequently, based on the steering characteristics of each type of driver, suitable speed ranges, steering wheel travel, and yaw rate gain values are selected to design the variable transmission ratio, forming personalized variable transmission ratio schemes. Then, a switching strategy for variable transmission ratio schemes is designed, using a support vector machine to build a
Chen, ChenZheng, HongyuZong, Changfu
This SAE Recommended Practice establishes a rating scale for subjective evaluation of vehicle ride and handling. The scale is applicable for the evaluation of specific vehicle ride and handling properties for specified maneuvers, road characteristics and driving conditions, and on proving ground and public roads. The validity of the evaluation is restricted to the individual ride and handling disciplines defined by these maneuvers and to the particular combination of conditions of the vehicle (e.g., equipment, degree of maintenance) and of the environment (e.g., road, weather). This rating scale may not be suitable for some applications, such as specific types of ride or handling qualities, driver populations and market segments, or for correlating with objective measures. Appendix A discusses rating scales that better suit such applications. This document is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Vehicle Dynamics Standards Committee
VI-grade introduced a Driver-in-Motion Full-Spectrum Dynamic Simulator for multi-attribute virtual tests. Despite rainy skies above northeastern Italy in mid-May, the mood at VI-grade's 2024 Zero Prototype Summit (ZPS) was decidedly sunny. VI-grade's partners from around the world were on hand to see the world premiere of the company's new Driver-in-Motion Full-Spectrum Dynamic Simulator (DiM FSS) that allows for multi-attribute applications. An update to VI-grade's advanced DiM units, the DiM FSS is a carbon fiber cockpit with shakers that can be mounted on top of VI-grade's existing dynamic simulators to provide NVH simulations at the same time as dynamic simulations.
Blanco, Sebastian
Surrounded by celebrities in Beverly Hills, Mercedes-Benz unveiled the 2025 G 580 with EQ Technology on a dock in the middle of a reservoir. That mouthful of a name is met with a large offering of technology packed into the luxury off-roader. Sitting atop a 116-kWh capacity battery pack, four motors (one for each wheel), a redesigned rear axle system, and a sound system feature called G-Roar, the German utility vehicle is ready to tackle the great outdoors as well as Rodeo Drive. While its target audience in the United States will unlikely use any of the following features more than a few times a year, the transition from gas to battery has done nothing to reduce the vehicle's off-road capabilities. If anything, it's enhanced them.
Baldwin, Roberto
Taking the semi-active suspension system as the research object, the forward model and inverse model of a continuous damping control (CDC) damper are established based on the characteristic test of the CDC damper. A multi-mode semi-active suspension controller is designed to meet the diverse requirements of vehicle performance under different road conditions. The controller parameters of each mode are determined using a genetic algorithm. In order to achieve automatic switching of the controller modes under different road conditions, a method is proposed to identify the road roughness based on the sprung mass acceleration. The average of the ratio between the squared sprung mass acceleration and the vehicle speed within a specific time window is taken as the identification indicator for road roughness. Simulation results show that the proposed road roughness identification method can accurately identify smooth roads (Class A–B), slightly rough roads (Class C), and severely rough roads
Feng, JieyinYin, ZhihongXia, ZhaoWang, WeiweiShangguan, Wen-BinRakheja, Subhash
As the automotive industry accelerates its virtual engineering capabilities, there is a growing requirement for increased accuracy across a broad range of vehicle simulations. Regarding control system development, utilizing vehicle simulations to conduct ‘pre-tuning’ activities can significantly reduce time and costs. However, achieving an accurate prediction of, e.g., stopping distance, requires accurate tire modeling. The Magic Formula tire model is often used to effectively model the tire response within vehicle dynamics simulations. However, such models often: i) represent the tire driving on sandpaper; and ii) do not accurately capture the transient response over a wide slip range. In this paper, a novel methodology is developed using the MF-Tyre/MF-Swift tire model to enhance the accuracy of ABS braking simulations. The methodology – developed between Hyundai Motor Company and Siemens Digital Industries Software – is validated on a full-vehicle level by comparing ABS braking
Kim, ChangsuO'Neill, AlexanderLugaro, Carlo
Items per page:
1 – 50 of 483