Browse Topic: Vehicle handling
The parametrized twist beam suspension is a pivotal component in the automotive industry, profoundly influencing the ride comfort and handling characteristics of vehicles. This study presents a novel approach to optimizing twist beam suspension systems by leveraging parametric design principles. By introducing a parameter-driven framework, this research empowers engineers to systematically iterate and fine-tune twist beam designs, ultimately enhancing both ride quality and handling performance. The paper outlines the theoretical foundation of parametrized suspension design, emphasizing its significance in addressing the intricate balance between ride comfort and dynamic stability. Through a comprehensive examination of key suspension parameters, such as twist beam profile, material properties, and attachment points, the study demonstrates the versatility of the parametric approach in tailoring suspension characteristics to meet specific performance objectives. To validate the
This SAE Recommended Practice establishes a rating scale for subjective evaluation of vehicle ride and handling. The scale is applicable for the evaluation of specific vehicle ride and handling properties for specified maneuvers, road characteristics and driving conditions, and on proving ground and public roads. The validity of the evaluation is restricted to the individual ride and handling disciplines defined by these maneuvers and to the particular combination of conditions of the vehicle (e.g., equipment, degree of maintenance) and of the environment (e.g., road, weather). This rating scale may not be suitable for some applications, such as specific types of ride or handling qualities, driver populations and market segments, or for correlating with objective measures. Appendix A discusses rating scales that better suit such applications. This document is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances
VI-grade introduced a Driver-in-Motion Full-Spectrum Dynamic Simulator for multi-attribute virtual tests. Despite rainy skies above northeastern Italy in mid-May, the mood at VI-grade's 2024 Zero Prototype Summit (ZPS) was decidedly sunny. VI-grade's partners from around the world were on hand to see the world premiere of the company's new Driver-in-Motion Full-Spectrum Dynamic Simulator (DiM FSS) that allows for multi-attribute applications. An update to VI-grade's advanced DiM units, the DiM FSS is a carbon fiber cockpit with shakers that can be mounted on top of VI-grade's existing dynamic simulators to provide NVH simulations at the same time as dynamic simulations
Surrounded by celebrities in Beverly Hills, Mercedes-Benz unveiled the 2025 G 580 with EQ Technology on a dock in the middle of a reservoir. That mouthful of a name is met with a large offering of technology packed into the luxury off-roader. Sitting atop a 116-kWh capacity battery pack, four motors (one for each wheel), a redesigned rear axle system, and a sound system feature called G-Roar, the German utility vehicle is ready to tackle the great outdoors as well as Rodeo Drive. While its target audience in the United States will unlikely use any of the following features more than a few times a year, the transition from gas to battery has done nothing to reduce the vehicle's off-road capabilities. If anything, it's enhanced them
The pursuit of maintaining a zero-sideslip angle has long driven the development of four-wheel-steering (4WS) technology, enhancing vehicle directional performance, as supported by extensive studies. However, strict adherence to this principle often leads to excessive understeer characteristics before tire saturation limits are reached, resulting in counter-intuitive and uncomfortable steering maneuvers during turns with variable speeds. This research delves into the phenomenon encountered when a 4WS-equipped vehicle enters a curved path while simultaneously decelerating, necessitating a reduction in steering input to adapt to the increasing road curvature. To address this challenge, this paper presents a novel method for dynamically regulating the steady-state yaw rate of 4WS vehicles. This regulation aims to decrease the vehicle's sideslip angle and provide controlled understeer within predetermined limits. As a result, the vehicle can maintain a zero-sideslip angle during turns with
Front axle is one of the major load-carrying members of Heavy Commercial Buses. With the conversion of the Power train from ICE to Battery electric vehicle, there is a marginal increase in front axle weight due to the Electric and Fuel Cell Electric vehicle architecture. This paper describes various methodologies deployed in front axle design to enhance the Axle durability performance, improve vehicle handling, and lower the total cost of ownership. A Lightweight heavy-duty front axle beam has been designed and validated, digitally and at test bench level for a 12m long low floor EV and FCEV Bus used for mass transportation. Also, major components like stub axle, hub, steering arm, tie rod arm, and tie rod assembly are analyzed for strength, durability, fatigue life, and joint analysis. Fatigue behavior is evaluated in differently manufactured components. Also, the strength of the axle beam is compared for different cross sections for weight optimization and durability improvement. The
The new corner-based architecture of electrified road vehicles requires a redesign of vehicle suspension components. The design protocol must satisfy the target parameters derived from dynamics requirements. The roll stiffness of the anti-roll bar is a crucial parameter for the handling performance of a vehicle. During the development of a new suspension, the design of the anti-roll bar needs to be modified. To this aim, two-dimensional beam theory models can quickly provide a preliminary design of this component. However, the simplified models might be inaccurate due to the three-dimensional and complex shapes of the bars. The present study aims to overcome this limitation. An analytical beam model based on the spline description of the bar has been developed, which is accurate even for complex geometries of the bars. Assuming a hollow and closed circular cross-section, the model returns the average diameter and the radial thickness needed to achieve the stiffness performance. Three
Items per page:
50
1 – 50 of 459