Browse Topic: Fuel consumption
The Mahindra XUV 3XO is a compact SUV, the first-generation of which was introduced in 2018. This paper explores some of the challenges entailed in developing the subsequent generation of this successful product, maintaining exterior design cues while at the same time improving its aerodynamic efficiency. A development approach is outlined that made use of both CFD simulation and Coastdown testing at MSPT (Mahindra SUV proving track). Drag coefficient improvement of 40 counts (1 count = 0.001 Cd) can be obtained for the best vehicle exterior configuration by paying particular attention to: AGS development to limit the drag due to cooling airflow into the engine compartment Front wheel deflector optimization Mid underbody cover development (beside the LH & RH side skirting) Wheel Rim optimization In this paper we have analyzed the impact of these design changes on the aerodynamic flow field, Pressure plots and consequently drag development over the vehicle length is highlighted. An
Any agricultural operation (such as cultivation, rotavation, ploughing, and harrowing) includes both productive and non-productive activities (like transportation, stops, and idling) in the field. Non-productive work can mislead the actual load profile, fuel consumption, and emissions. In this project, a machine learning-based methodology has been developed to differentiate between effective operations and non-productive activities, utilizing data collected in the field from data loggers installed on the machinery. Measurements were conducted on various machines across the country in all major applications to minimize the influence of any individual sample deviation and to account for variability in customer operating practices. Few critical parameters such as Engine Speed, Exhaust Gas Temperature, Actual Engine Percentage Torque, GPS Speed etc.) were selected after screening and analyzing more than 100 CAN and GPS parameters. The critical parameters were subsequently integrated with
Agrícola Cana Caiana and Grunner have developed an innovative vehicle for sugarcane harvesting, focused on reducing fuel consumption. This optimization is vital and relevant for similar operations in the largest global producers: Brazil (724 mi t - 37%), India (439 mi t - 22%), China (103 mi t - 5.3%), Thailand (92 mi t - 4.7%), Pakistan (88 mi t - 4.5%), Mexico (55 mi t - 2.8%), Colombia (35 mi t - 1.8%), Indonesia (32 mi t - 1.6%), USA (31 mi t - 1.6%), and Australia (28 mi t - 1.4%). In Brazil, São Paulo leads with 383.4 mi t (54.1% of the 23/24 harvest), followed by Minas Gerais (81.3 mi t). This innovative agricultural machinery, a result of the owners' experience, has already sold over a thousand units, proving its impact on the efficiency of the sugar-alcohol sector. The Belei family's expertise generated this solution that optimizes resources and increases harvesting productivity, with the potential to advance sustainability and profitability globally, driving agricultural
In response to increasing environmental awareness and the automotive industry's push for sustainability, the development of lightweight and robust components has become a key area of focus. This paper presents a multidisciplinary approach to the design and optimization of an aluminum parking brake lever, leveraging advanced structural optimization techniques to enhance performance while meeting stringent environmental standards. Traditional manufacturing processes for automotive components, such as stamping, often rely on steel due to its strength and ease of processing. However, the high density of steel can significantly impact the overall weight of the vehicle, leading to increased fuel consumption and emissions. In contrast, aluminum’s superior strength-to-weight ratio offers a promising alternative. This study employs Finite Element Analysis (FEA) to model the initial stress history of the lever, followed by the application of structural optimization tools to refine its geometry
Flex-fueled vehicles (FFV) dominate the Brazilian market, accounting for over 75% of the national fleet. Ethanol fuel is widely used, primarily in the form of hydrated ethyl alcohol fuel (HEAF). Given the similar physicochemical properties of ethanol and methanol, fuel adulteration is a growing concern, often involving the addition of anhydrous ethanol, methanol, or even water to hydrated ethanol. These adulterants are visually imperceptible and can only be detected through analyses conducted by regulatory agencies using specialized instruments. However, they can significantly affect vehicle performance and accelerate engine component deterioration. The experiment was performed with a small displacement 3-cylinder port fuel injection flex-fuel engine on an engine test bench (dynamometer) and compared when fueled with ethanol and methanol. Data acquisition included combustion pressure, spark plug temperature, torque, air-fuel ratio, fuel flow, spark maps, and the overall effects of
Items per page:
50
1 – 50 of 7030