Browse Topic: Fuel consumption

Items (6,998)
Anticipated NOX emission standards will require that selective catalytic reduction (SCR) systems sustain exhaust temperatures of 200°C or higher for effective conversion performance. Maintaining these temperatures becomes challenging during low-load conditions such as idling, deceleration, and coasting, which lower exhaust heat and must be addressed in both regulatory test cycles and day-to-day operation. Cylinder deactivation (CDA) has proven effective in elevating exhaust temperatures while also reducing fuel consumption. This study investigates a flexible 6-cylinder CDA system capable of operating across any combination of fixed firing modes and dynamic skip-firing patterns, where cylinders transition between activation states nearly cycle-by-cycle. This operational flexibility extends the CDA usable range beyond prior implementations. Data was primarily collected from a test cell engine equipped with the dynamic CDA system, while a matching engine in a 2018 long-haul sleeper cab
Baltrucki, JustinMatheaus, Andrew CharlesJanak, Robb
Off-highway vehicles (OHVs) routinely navigate unstable and varied terrains—mud, sand, loose gravel, or uneven rock beds—causing increased rolling resistance, reduced traction, and high energy expenditure. Traditional rigid chassis systems lack the flexibility to adapt dynamically to changing surface conditions, leading to inefficiencies in vehicle stability, maneuverability, and fuel economy. This paper proposes an adaptive terrain morphing chassis (ATMC) that can actively modify its structural geometry in real-time using embedded sensors, hydraulic actuators, and soft robotic elements. Drawing inspiration from nature and recent advances in adaptive materials, the ATMC adjusts vehicle ground clearance, track width, and load distribution in response to terrain profile data, thereby optimizing fuel efficiency and performance. Key contributions include: A multi-sensor fusion system for real-time terrain classification Hydraulic actuators and morphing polymers for variable chassis
Vashisht, Shruti
As global energy demands continue to grow and environmental challenges intensify, Biodiesel stands out as an environmentally sound and technically feasible alternative to curb fossil fuel use and emissions. This study provides an in-depth analysis of the performance and emissions profile of a compression ignition (CI) engine running on a renewable diesel fuel blend made from ethanol and cottonseed (Cs) combinations enhanced with aluminium oxide (Al2O3) nanoparticles. The experimental fuel blends, consisting of 10%, 20%, and 30% cottonseed biodiesel with 5% ethanol and remaining with conventional diesel, were analyzed under varying engine load conditions. The inclusion of ethanol improved fuel atomization due to its lower viscosity and higher volatility, while Al2O3 nanoparticles acted as advanced combustion catalysts, promoting enhanced oxidation rates and thermal efficiency. Among the blends, B10 (10% cottonseed biodiesel) exhibited superior performance metrics, achieving a brake
T, KarthiG, ManikandanSaminathan, SathiskumarM E, ChandhuruS, BavanyaS, Arunkumar
A large number of research studies have raised global concerns about the rapid depletion of traditional energy sources like petroleum. These fuels, being largely non-renewable, are being consumed at a rate much faster than they can be replenished. This growing imbalance between demand and supply has led to fears that, in the near future, the world could face a serious energy crisis if alternative sources are not developed and adopted in time. The use of alternative fuels plays an important role in lowering harmful emissions, including those that contribute to ozone formation and other toxic pollutants. It is a well-established scientific understanding that the continued combustion of fossil fuels is a key driver of global atmospheric warming. As environmental awareness grows, many individuals across the globe believe that shifting toward cleaner and more sustainable fuel sources is essential for protecting and improving the health of our planet. Extensive research is being conducted to
G, ManikandanSubbaiyan, GunasekharanSaminathan, SathiskumarT, KarthiS, GokulJ, Sanmuganathan
Turbocharging is a vital technology for enhancing internal combustion engine (ICE) performance and efficiency while enabling engine downsizing to reduce fuel consumption and emissions. This research analyzes turbocharger systems by examining their components—turbine, compressor, intercooler, and waste-gate—and their roles in boosting engine efficiency. It explores how exhaust energy drives the turbine to compress intake air, improving power output. The study evaluates turbocharger impact on fuel economy, emissions, and engine response under various driving conditions. It also considers wheel design, material selection, and durability under high temperatures and speeds. Advanced simulations using CFD and FEA analyze airflow, pressure, and thermal behavior to optimize performance. This research affirms turbocharging’s role in creating high-performance, fuel-efficient, and environmentally sustainable engines, offering insights that support the design of next-generation automotive
Chandrashekar, B. AdityaBhaduria, Abhishek
For the achievement of Net Zero Emission goals, various corporates have started with the planning towards the achievement of short-term goals which are well defined with the implementation of energy conservation and efficiency. In this direction, high cetane diesel is an optimized combination of diesel fuel with higher Cetane Number fortified with Novel & Optimized multi-functional additives (MFAs) formulation for improved performance and specially designed for heavy duty diesel engines & off-highway applications. This innovative concept is based on enhancement of fuel economics by enhancement in fuel combustion, injector cleaning characteristics and reduction of frictional losses. The benefits associated with high cetane diesel include superior cleanliness to keep high pressure diesel injectors clean, better lubricity providing longer injector life, superior combustion leading to lower noise and products formulated for benefits in overall reduction in emissions specially developed for
Kumar, PrashantMayeen, HafizSaroj, Shyamsher
Traditionally, off-highway vehicles like tractors and construction machinery have relied on hydraulic, viscous, or fixed fans to meet the cooling demands of diesel engines. These fans draw power from the engine, impacting fuel consumption and contributing to noise levels that affect operator comfort. Recently, the adoption of electric fans in off-highway applications has increased due to their energy efficiency, lower noise, and flexible design. Electric fans can cool various components, such as radiators and condensers, and can be positioned for optimal performance. They are easily selected from established supplier catalogs based on application requirements like machine voltage, fan size, and type. This study explores various fan arrangements, including pusher and puller types, and multiple electrical fan banking based on cooler zones to improve cooling system performance without changing cooler size or specifications. A mathematical flow model was developed for both setups: the
Durairaj, RenganathanDewangan, NitinAnand, KetanBhujbale, Sagar
The growing demand for improved fuel efficiency and reduced emissions in diesel engines has led to significant advancements in power management technologies. This paper presents a dual-mode functional strategy that integrates electrified turbochargers to enhance engine performance, provide boost and generate electrical power. This helps in optimizing the overall engine efficiency. The engine performance is enhanced with boosting mode where the electric motor accelerates the turbocharger independent of exhaust flow, effectively reducing turbo lag and provides immediate boost at low engine speeds. This feature also improves high altitude performance of the engine. Conversely, in generating mode, the electric turbocharger recovers or harvest energy from exhaust gases depending on engine operating conditions, converting it into electrical energy for battery recharging purpose. Advanced control systems enable real-time adjustments to boost pressure and airflow in response to dynamic driving
Borle, ShraddhaPrasad, LakshmiCouvret, SebastienFournier, HugoChenuet, Laurent
Heavy-duty mining is a highly demanding sector within the trucking industry. Mining companies are allocated coal mine sites, and fleet operators are responsible for efficiently extracting ore within the given timeframe. To achieve this, companies deploy dumper trucks that operate in three shifts daily to transport payloads out of the site. Consequently, uptime is crucial, necessitating trucks with exceptionally robust powertrains. The profitability of mining operations hinges on the efficient utilization of these dumper trucks. Fuel consumption in these mines constitutes a significant portion of total expenses. Utilizing LNG as a fuel can help reduce operational fuel costs, thereby enhancing customer profitability. Additionally, employing LNG offers the potential to lower the CO2 footprint of mining operations. This paper outlines the creation of a data-driven duty cycle for mining vehicles and the simulation methodology used to accurately size LNG powertrain components, with a focus
John, Ann VeenaPendharkar, Koustubh
In recent years, diesel engine emissions regulations have been strengthened worldwide, necessitating the evaluation of regulatory values under transient conditions. Consequently, the need to assess transient states in the development of diesel engines has increased significantly. The evaluation using MBD (Model Based Development) is considered a promising method for achieving both low fuel consumption and simultaneous reduction of NOx and soot emissions. However, the mechanism of soot formation is complex, making it challenging to model mathematically directly. In this paper, hybrid machine learning approaches combining a physical model and a machine learning model are used to validate the prediction of soot emissions under transient conditions in a diesel engine with an EGR system. Various parameters such as fuel consumption and emissions predicted by the physical model are compared with measurements to validate the accuracy of the physical model. The prediction of soot emissions by
Kitamura, TakahiroMatsuoka, AyanoSuematsu, KosukeOkano, Hiroaki
In general-purpose small SI engines, it is necessary to reduce fuel consumption under operating conditions involving repeated starts and stops. In other words, the energy distribution during the transition from 0 rpm to idling speed is a crucial factor. At startup, the SI engine must be driven by a motor, and the electrical energy required should be minimized. However, the engine must accelerate during this process, and the required electrical energy is influenced by factors such as compression, friction, and moments of inertia. The purpose of this research is to experimentally clarify the conditions for minimum energy starting in SI engines. Specifically, the effect of the moment of inertia was eliminated by using a motor to maintain a constant engine speed, thereby enabling the isolation and measurement of electrical energy consumed by friction. The electrical energy required to overcome the moment of inertia can be determined by comparing it with the energy consumed when
Matsuura, YusukeTanaka, Junya
This paper presents measurement results of emissions and fuel economy on real-world driving of two-wheelers in India using a state-of-the-art FTIR PEMS technology. The study aimed to characterize the emissions profiles of a small motorcycle under typical Indian driving conditions, including congested urban traffic and highway driving. This is the continuation of the study conducted previously on bigger motorcycle using gas analyzer [1], with necessary adaptations to suit the specific conditions of Indian roads and traffic. Key parameters such as NOx, CO, CO2 and Fuel consumption were measured during real-world driving cycles and comparison is done with standard WMTC emission testing cycle. The findings of this study provide valuable insights into the actual on-road emissions of two-wheelers in India, which can be used to develop more accurate emission models and guide the development of cleaner and more efficient two-wheeler technologies. Key Considerations: Specifics of Indian Driving
Agrawal, RahulJaswal, RahulYadav, Sachin
There is growing demand for energy utilization due to stricter environmental emission norms to reduce greenhouse gases and other threats posed due to the emissions are major motivation factors for researchers to adopt on strategic plans to decrease the usage of energy and reduce the carbon contents of fuels, the usage of hydrogen or blend of hydrogen with CNG as a fuel in internal combustion engines is the best option. As hydrogen has lower volumetric energy density and higher combustion temperature, pure hydrogen-fueled engines produce lower power output and much higher NOx emissions than gasoline-fueled engine at stoichiometric air-fuel ratio. Blending of hydrogen with CNG provides a blended gas termed as hydrogen-enriched natural gas (hCNG). hCNG stands for hydrogen enriched compressed natural gas and it combines the advantages of both hydrogen and methane. The addition of Hydrogen to CNG has potential to even lower the CNG emissions and is the first step towards promotion of a
Syed, KaleemuddinChaudhari, SandipKhairnar, GirishSajjan lng, Suresh
Evaluating the impact of software changes on fuel consumption and emissions is a critical aspect of transmission development. To evaluate the trade-offs between performance improvements and potential negative effects on efficiency, a forward-looking Software-in-the-Loop (SiL) simulation has been developed. Unlike backward calculations that derive fuel consumption based solely on cycle speed and engine speed, this approach executes complete driving cycles as the Worldwide Harmonized Light-Duty Vehicle Test Cycle (WLTC) within a detailed SiL environment. By considering all relevant influencing factors in a dynamic simulation, the method provides a more accurate assessment of fuel consumption and emission differences between two versions of the transmission software. The significant contribution of this work lies in the high-fidelity integration of a real virtual Transmission Control Unit (vTCU) software within a comprehensive, validated forward-looking SiL environment. This approach
Kengne Dzegou, Thierry JuniorSchober, FlorianRebesberger, RonHenze, Roman
With the publication of the Renewable Energy Directive (RED) III in 2022, the European Union increased its renewable energy consumption target to 42.5% by 2030. Consequently, gaseous fuels derived from renewable electricity, particularly green hydrogen, are expected to play a pivotal role in the decarbonization of the energy sector. One promising application of green hydrogen is its integration into combined heat and power (CHP) plants, where it can replace natural gas to reduce CO2 emissions. Pure hydrogen as fuel or blended with natural gas has demonstrated potential for lowering both pollutant emissions and fuel consumption while maintaining or even enhancing engine performance. But it is expected, that the amount of available green hydrogen will be limited in the beginning. So new engine systems with hydrogen and natural gas for CHP plants are required, that offer more CO2-benefit and NOx reductioon than from fuel substitution only. In the LeanStoicH2 project, a novel approach was
Salim, NaqibBeltaifa, YoussefKettner, Maurice
In response to the growing demand for environmental performance, the mobility industry is actively developing electrification, and in particular, the use of Battery Electric Vehicles (BEV) in commuting motorcycles is advancing. However, in the case of vehicles for leisure, which require high riding performance, there are problems such as cruising range and charging time, and there are currently few mass-produced models. Therefore, we proposed a Hybrid Electric Vehicle (HEV) type Motorcycle (MC) to achieve both environmental performance and high riding performance by means other than BEV. The proposed vehicle is equipped with a strong type hybrid system in which an engine and a drive motor are connected in parallel via a hydraulic electronically controlled clutch. It is possible to drive only by motor (EV driving) or by hybrid driving powered by both the engine and the motor (HEV driving). In order to improve environmental performance, it is necessary to develop a function for switching
Obayashi, KosukeTerai, ShoheiJino, KenichiKawai, Daisuke
The calibration of automotive electronic control units is a critical and resource-intensive task in modern powertrain development. Optimizing parameters such as transmission shift schedules for minimum fuel consumption traditionally requires extensive prototype testing by expert calibrators. This process is costly, time-consuming, and subject to variability in environmental conditions and human judgment. In this paper, an artificial calibrator is introduced – a software agent that autonomously tunes transmission shift maps using reinforcement learning (RL) in a Software-in-the-Loop (SiL) simulation environment. The RL-based calibrator explores shift schedule parameters and learns from fuel consumption feedback, thereby achieving objective and reproducible optimizations within the controlled SiL environment. Applied to a 7-speed dual-clutch transmission (DCT) model of a Mild Hybrid Electric Vehicle (MHEV), the approach yielded significant fuel efficiency improvements. In a case study on
Kengne Dzegou, Thierry JuniorSchober, FlorianRebesberger, RonHenze, Roman
This numerical study investigates a spark-ignited, two-stroke engine employing uniflow scavenging, flathead cylinder head design, and an exhaust valve system to identify the optimal bore-to-stroke (B/S) ratio for maximizing brake efficiency at fixed displacement. A single-cylinder prototype engine was constructed, and its experimental data validated a 1D GT-SUITE simulation model. This validated model was then utilized to simulate a full-scale, 1.5-liter displacement, horizontally opposed four-cylinder engine with supercharger-assisted boosting, intended for small aircraft propulsion. The simulations explored a range of B/S ratios from undersquare (0.7) to oversquare (1.5), maintaining a consistent brake power output of 60 kW at 3000 rpm and lambda 0.9. Results showed that increasing the B/S ratio enhanced brake efficiency from 26.0% at B/S=0.7 to 27.0% at B/S=1.5, largely due to reduced frictional losses attributed to shorter stroke and lower piston speeds, decreased heat transfer
Zanchin, GuilhermeHausen, RobertoFagundez, Jean LuccaLanzanova, ThompsonMartins, Mario
Real Driving Emission (RDE) testing for motorcycles presents unique challenges due to the motorcycle’s lightweight construction, limited mounting space, and sensitivity to added mass and aerodynamic drag. Full-functional automotive Portable Emission Measurement Systems (PEMS), while highly accurate, are often impractical for two-wheelers as their weight and size can alter driving resistances, fuel consumption, and emission profiles, but also complicate installation and probably effect the drivability of the vehicle. To address these limitations, lightweight alternatives such as Mini-PEMS and ultralightweight alternatives such as Sensor-based Emission Measurement Systems (SEMS) offer compact, low-power solutions tailored for small vehicles. SEMS are typically equipped with lower cost sensors and low-tech gas conditioning systems compared to PEMS. Due to this these systems may not meet regulatory homologation requirements. Nevertheless, they provide justifiable accuracy for many real
Schurl, SebastianLienerth, PeterJaps, LeonidSchroeder, MatthiasSchmidt, StephanKirchberger, Roland
Rotary engines offer a highly attractive solution for uncrewed aerial vehicles (UAVs) and portable power generation, thanks to their compact design, high power-to-weight ratio, fewer moving parts, and ability to operate on multiple fuels. Despite their promising advantages, these engines still require significant improvements to match the efficiency and lifespan of traditional reciprocating internal combustion engines. In particular, fuel consumption is impacted by heat losses due to the high surface-to-volume ratio of the combustion chamber, as well as the unfavorable interaction between the rotor and stator, which slows down flame propagation. To address these challenges, computational fluid dynamics (CFD) has become an important tool for the study and optimization of Wankel engines, providing insight into how fuel efficiency is influenced by the complex interactions between combustion chamber design, flame dynamics, flow characteristics, and turbulence distribution. This work
Lucchini, TommasoGianetti, GiovanniRamognino, FedericoCerri, TarcisioMarmorini, LucaButtitta, Marco
In automotive systems, efficient thermal management is essential for refining vehicle performance, enhancing passenger comfort, and reducing MAC Power Consumption. The performance of an air conditioning system is linked to the performance of its condenser, which in turn depends on critical parameters such as the opening area, radiator fan ability and shroud design sealing. The opening area decides the airflow rate through the condenser, directly affecting the heat exchange efficiency. A larger opening area typically allows for greater airflow, enhancing the condenser's ability to dissipate heat. The shroud, which guides the airflow through the condenser, plays a vital role in minimizing warm air recirculation. An optimally designed shroud can significantly improve the condenser's thermal performance by directing the airflow more effectively. Higher fan capacity can increase the airflow through the condenser, improving heat transfer rates. However, it is essential to balance fan
Nayak, Akashlingampelly, RajaprasadNeupane, ManojMittal, SachinKumar, MukeshUmbarkar, Shriganesh
As an important bridge connecting cities and rural areas, highway transportation has an irreplaceable role in regional economic development [1]. Accompanied by the booming development of long-distance transportation industry, strengthening highway transportation is of great significance to improve people's living standards [2], but because of the special characteristics of truck transportation, fuel theft is frequent, seriously endangering the driver's life and the safety of goods transportation, although the police in the severe crackdown, but fuel theft seems to be in addition to inexhaustible, truck drivers lose oil incidents still occur from time to time, due to the increasingly serious energy problems, the world's countries have Due to the increasingly serious energy problems, countries around the world have formulated strict automotive fuel consumption rate (hereinafter referred to as fuel consumption) regulations [3], in the transportation process to prevent fuel theft is of
Liu, YuzhenDuan, ShuWen
In order to further understand the effect of twin-scroll turbocharging on the engine performance, this paper adopts a combination of one-dimensional numerical simulation and experimental research methods to compare the effects of two-scroll and single-scroll turbocharging on the power and fuel economy of direct injection gasoline engine. The research results show that, compared with the single-scroll turbocharger, twin-scroll turbocharger increased the low-end torque for 16% and 32% at 1000 r/min and 1500 r/min, respectively. However, the average fuel consumption has increased 1.3% at part load with twin-scroll turbocharger due to the pumping loss. Compared with a turbocharged port injection engine with a displacement 1.2 times that of the former, the twin-scroll turbocharged engine saved 11% fuel economy at part loads. The fuel consumption is saved 11% at part loads with twin-scroll turbocharger. This research first establishes the 1D simulation capability in twin-scroll turbocharger
Yu, Xiaocao
Fuels that can be produced in a sustainable manner are of high interest because they can provide an essential step toward net zero emissions vehicles. This study examines the combustion of one such fuel, Dimethyl Ether (DME), in a compression ignition, 4-cylinder, 2.2L engine. Testing was conducted using the Federal Test Procedure (FTP) certification cycle from the US Environmental Protection Agency (EPA). Different sets of calibration maps were designed to target low-NOx (30-50ppm) by using high EGR and intake throttle and high-NOx (approximately 1000ppm) using no EGR. An intermediate, mid-NOx calibration was also evaluated. Varying calibration approaches yielded total integrated engine out emissions ranging from 118 to 145gCO2/km, all below the 191gCO2/km from the baseline diesel. The corresponding NOx+UHC and CO emissions were also evaluated. The mid-NOx calibration was overall more favorable, as it met TIER 3-Bin 20 emissions requirements with the current efficiencies of the base
De Ojeda, WilliamWu, Simon (Haibao)Harrison, ChristopherHall, CarrieArslan, ElahehPulpeiro Gonzalez, Jorge
Hybrid powertrain technology serves to improve performance, enable new functional capabilities, decrease fuel consumption, increase operational reach, and increase lethality by supporting advanced weapons systems. Several demonstrators have been developed for the Army, including those recently commissioned and tested by numerous programs over the last decade. This work examines the results of one of these demonstrators for a Light Tactical Vehicle (LTV) and analyzes tradeoffs in the components’ characteristics, including the battery size, energy, and power capabilities, specifically regarding the system’s ability to meet key performance and power generation requirements. This work was completed through test data analysis coupled with a vehicle 1D simulation. Results show design implementation impacts and tradeoffs between vehicle weight, performance, EV-only range, and fuel consumption that can be utilized for system-level optimization.
Worm, Zander ThomasGoodenough, BryantSchmidt, HenryPutrus, JohnathonNaber, Jeffrey
Due to strengthened CO2 regulations, the automotive industry is facing the challenge of reducing greenhouse gas emissions. In response, the industry has focused on developing various technologies that enhance fuel economy and reduce greenhouse gas emissions. Hybrid electric powertrains have demonstrated significant potential to improve fuel economy and reduce greenhouse gas emissions. The improvements resulting from hybrid electric powertrains depend on the degree of electrification, which is closely related to the sizing of the motor and battery. However, hybridization increases the complexity of the powertrain. As multiple power sources are involved, complex control algorithms must be developed to allocate power usage among various driving scenarios while fulfilling driver requests. One way to simplify hybrid power management control is to implement optimization strategies that determine the operating states for each component during different driving scenarios, aiming to minimize
Echeverri Marquez, ManuelBhoge, MaheshLago, RafaelEngineer, NayanBhadra, KaustavWhitney, ChristopherBaur, Andrew
The objective of this trial was to compare the energy efficiency and performance of battery electric and conventional diesel tractors. Controlled road tests replicating normal operations were conducted using two electric and two diesel day-cab tractors. The test protocol was based on the TMC - Type III RP 1103A and SAE J1526 test procedures. The tests were conducted on a 110 km long route that included a 59 km hilly portion with a maximum altitude difference of 307 m. The tractors were divided into test groups of two vehicles. Trailers and drivers were switched throughout the trial between the tractors in a test group. The tests found that the two electric trucks consumed 60% and 63% less energy than their counterpart diesel trucks, respectively. Considering the average emission factor for production of electricity in Canada, the electric trucks emitted on average 82% less GHG emissions than the conventional diesel-powered tractors. The two diesel trucks showed similar fuel consumption
Surcel, Marius-DorinPartington, MarkTanguay-Laflèche, MaximeSchumacher, Richard
Air pollution is a significant long-term public health issue, with on-road traffic emissions being a primary contributor, especially in urban areas. Remote emission sensing (RES) is an innovative method for large-scale monitoring of vehicle emissions. It not only enables accurate detection of pollutants from vehicles under real-world driving conditions but also offers actionable insights to optimize engine performance. The point sampling-based RES technique involves sampling the vehicle exhaust plume along the roadside with a sampling line and using exhaust analyzers. In this method, the sampling line is placed alongside the road for sample extraction. Thus, the sampling position and knowledge regarding the spread of the exhaust plumes are crucial. Other modern RES systems utilize laser absorption spectroscopy to measure the pollutants in vehicle exhaust. For accurate absorption measurements, the laser’s height must align with the height of the exhaust plume, and the absorption length
Imtiaz, Hafiz HashimLiu, YingjieSchaffer, PaulKupper, MartinBergmann, Alexander
As the pressure increases to move to renewable carbon-neutral fuel sources, especially in heavy-duty diesel engine applications, hydrotreated vegetable oil (HVO) has shown to be an attractive alternative fuel to fossil diesel. Therefore, this study investigated the impacts of HVO used as a drop-in fuel on performance and emissions of a nonroad heavy-duty diesel engine by running back-to-back D2 ISO 8178 cycles with ultra-low sulfur diesel (ULSD) and HVO. The measurement results showed that brake specific fuel consumption with respect to mass reduced by 1.1%–3.6% switching from ULSD to HVO due to greater heating values of HVO, which is supported by 0.7%–3.5% lower CO2 emissions recorded with HVO. Conversely, brake specific fuel consumption with respect to volume increased by 0.3%–2.9% with HVO because of its smaller density. Combustion analysis revealed that combustion of both fuels is comparable at high loads while HVO ignites earlier at low power. Thus, lesser reductions in NOx
Duva, Berk CanAbat, BryanEngelhardt, Jens
Items per page:
1 – 50 of 6998