Browse Topic: Fuel consumption
Anticipated NOX emission standards will require that selective catalytic reduction (SCR) systems sustain exhaust temperatures of 200°C or higher for effective conversion performance. Maintaining these temperatures becomes challenging during low-load conditions such as idling, deceleration, and coasting, which lower exhaust heat and must be addressed in both regulatory test cycles and day-to-day operation. Cylinder deactivation (CDA) has proven effective in elevating exhaust temperatures while also reducing fuel consumption. This study investigates a flexible 6-cylinder CDA system capable of operating across any combination of fixed firing modes and dynamic skip-firing patterns, where cylinders transition between activation states nearly cycle-by-cycle. This operational flexibility extends the CDA usable range beyond prior implementations. Data was primarily collected from a test cell engine equipped with the dynamic CDA system, while a matching engine in a 2018 long-haul sleeper cab
The growing demand for improved fuel efficiency and reduced emissions in diesel engines has led to significant advancements in power management technologies. This paper presents a dual-mode functional strategy that integrates electrified turbochargers to enhance engine performance, provide boost and generate electrical power. This helps in optimizing the overall engine efficiency. The engine performance is enhanced with boosting mode where the electric motor accelerates the turbocharger independent of exhaust flow, effectively reducing turbo lag and provides immediate boost at low engine speeds. This feature also improves high altitude performance of the engine. Conversely, in generating mode, the electric turbocharger recovers or harvest energy from exhaust gases depending on engine operating conditions, converting it into electrical energy for battery recharging purpose. Advanced control systems enable real-time adjustments to boost pressure and airflow in response to dynamic driving
Heavy-duty mining is a highly demanding sector within the trucking industry. Mining companies are allocated coal mine sites, and fleet operators are responsible for efficiently extracting ore within the given timeframe. To achieve this, companies deploy dumper trucks that operate in three shifts daily to transport payloads out of the site. Consequently, uptime is crucial, necessitating trucks with exceptionally robust powertrains. The profitability of mining operations hinges on the efficient utilization of these dumper trucks. Fuel consumption in these mines constitutes a significant portion of total expenses. Utilizing LNG as a fuel can help reduce operational fuel costs, thereby enhancing customer profitability. Additionally, employing LNG offers the potential to lower the CO2 footprint of mining operations. This paper outlines the creation of a data-driven duty cycle for mining vehicles and the simulation methodology used to accurately size LNG powertrain components, with a focus
Evaluating the impact of software changes on fuel consumption and emissions is a critical aspect of transmission development. To evaluate the trade-offs between performance improvements and potential negative effects on efficiency, a forward-looking Software-in-the-Loop (SiL) simulation has been developed. Unlike backward calculations that derive fuel consumption based solely on cycle speed and engine speed, this approach executes complete driving cycles as the Worldwide Harmonized Light-Duty Vehicle Test Cycle (WLTC) within a detailed SiL environment. By considering all relevant influencing factors in a dynamic simulation, the method provides a more accurate assessment of fuel consumption and emission differences between two versions of the transmission software. The significant contribution of this work lies in the high-fidelity integration of a real virtual Transmission Control Unit (vTCU) software within a comprehensive, validated forward-looking SiL environment. This approach
The calibration of automotive electronic control units is a critical and resource-intensive task in modern powertrain development. Optimizing parameters such as transmission shift schedules for minimum fuel consumption traditionally requires extensive prototype testing by expert calibrators. This process is costly, time-consuming, and subject to variability in environmental conditions and human judgment. In this paper, an artificial calibrator is introduced – a software agent that autonomously tunes transmission shift maps using reinforcement learning (RL) in a Software-in-the-Loop (SiL) simulation environment. The RL-based calibrator explores shift schedule parameters and learns from fuel consumption feedback, thereby achieving objective and reproducible optimizations within the controlled SiL environment. Applied to a 7-speed dual-clutch transmission (DCT) model of a Mild Hybrid Electric Vehicle (MHEV), the approach yielded significant fuel efficiency improvements. In a case study on
In automotive systems, efficient thermal management is essential for refining vehicle performance, enhancing passenger comfort, and reducing MAC Power Consumption. The performance of an air conditioning system is linked to the performance of its condenser, which in turn depends on critical parameters such as the opening area, radiator fan ability and shroud design sealing. The opening area decides the airflow rate through the condenser, directly affecting the heat exchange efficiency. A larger opening area typically allows for greater airflow, enhancing the condenser's ability to dissipate heat. The shroud, which guides the airflow through the condenser, plays a vital role in minimizing warm air recirculation. An optimally designed shroud can significantly improve the condenser's thermal performance by directing the airflow more effectively. Higher fan capacity can increase the airflow through the condenser, improving heat transfer rates. However, it is essential to balance fan
As an important bridge connecting cities and rural areas, highway transportation has an irreplaceable role in regional economic development [1]. Accompanied by the booming development of long-distance transportation industry, strengthening highway transportation is of great significance to improve people's living standards [2], but because of the special characteristics of truck transportation, fuel theft is frequent, seriously endangering the driver's life and the safety of goods transportation, although the police in the severe crackdown, but fuel theft seems to be in addition to inexhaustible, truck drivers lose oil incidents still occur from time to time, due to the increasingly serious energy problems, the world's countries have Due to the increasingly serious energy problems, countries around the world have formulated strict automotive fuel consumption rate (hereinafter referred to as fuel consumption) regulations [3], in the transportation process to prevent fuel theft is of
Items per page:
50
1 – 50 of 6998