Browse Topic: Fuel consumption

Items (7,030)
In this study, the combustion and emission characteristics of a single-cylinder direct injection (DI) diesel engine fueled with Spirulina biodiesel along with diesel blends were examined using a combined CFD and thermodynamic simulation framework. Three test fuels, including pure diesel (D100), Spirulina biodiesel blends (B20 and B40), and pure Spirulina biodiesel (B100), were analysed at 1500 rpm under full load. In the first stage, CFD simulations were performed in ANSYS Fluent, where the Discrete Phase Model (DPM) was applied to capture spray atomization and droplet evaporation, while a non-premixed combustion model coupled with the RNG k-ε turbulence model was employed to resolve in-cylinder flow and heat release dynamics. Subsequently, the Diesel-RK software was utilised to predict engine performance and exhaust emissions based on compression ratios (18.5) and injection timings. Results from the CFD analysis revealed faster atomization and reduced ignition delay for biodiesel
Kumar, B Varun
In commercial vehicles, conventional engine-driven hydraulic steering systems result in continuous energy consumption, contributing to parasitic losses and reduced overall powertrain efficiency. This study introduces an Electric Powered Hydraulic Steering (EPHS) system that decouples steering actuation from the engine and operates only on demand, thereby optimizing energy usage. Field trials conducted under loaded conditions demonstrated a 3–6% improvement in fuel economy, confirming the system’s effectiveness in real-world applications. A MATLAB-based simulation model was developed to replicate dynamic steering loads and vehicle operating conditions, with results closely aligning with field data, thereby validating the model’s predictive accuracy. The reduction in fuel consumption directly translates to lower CO₂ emissions, supporting regulatory compliance and sustainability goals, particularly in the context of tightening emission norms for commercial fleets. These findings position
T, Aravind Muthu SuthanMani, KishoreAyyappan, RakshnaD, Senthil KumarS, Mathankumar
This study investigates the potential of using a dual green alternative fuel combination, the one is hydrogen fuel and another one is biodiesel for enhancing the Performance, combustion and emission profile of a compression ignition engine. The kapok oil biodiesel was blended with Diesel in proportions of 20% (K20) and 40% (K40) by volume. The hydrogen gas was supplied at a constant flow of 4 liter per minute (LPM). The experimental fuels are neat diesel D100, K20 (80% Diesel and 20 % kapok methyl ester), K40 (60% Diesel + 40 % Kapok methyl ester), K20 + H4L (K20 with 4 LPM hydrogen) and K40+H4L (K40 with 4 LPM hydrogen). These test blends are investigated in a single cylinder direct injection CI engine under 0% to 100% load conditions at a fixed speed of 1500 rpm combustion, and emissions characteristic were evaluated and compared with base fuel. The outcomes indicated that the use of B20 and B40 blends without hydrogen led to reduced BTE because of their lower cetane number and
Anbarasan, BM, KumaresanBalamurugan, SRajesh, Munnusamy
Turbocharging is a common and simple method to utilize the exhaust heat of an internal combustion engine. However, conventional turbocharging exhibits the drawback of exhaust gas backpressure and thus increased residual gas mass in the cylinder. A promising concept to increase optimum efficiency is found in the TwinAV concept, which assigns divided exhaust valve cam timing and exhaust manifold configuration. This concept is hypothesized to reduce the static backpressure in the gas exchange loop and the residual exhaust gas amount in the gas exchange phase. In this article, a 1D simulation model was adapted to an existing 4-cylinder gasoline TC engine. Subsequently, the engine concept was applied to this engine model, whereas the focus was to achieve an engine layout for the entire engine speed range applicable for use in passenger vehicles. The results were compared at the full RPM range. Also, a load variation was conducted and benchmarked. The found results show an additional
Gotter, AndreasGotter, Alexander
Meeting the stringent emissions norms of CEV stage V for medium BMEP engines, CI engines present significant challenges. These stringent norms call for a highly efficient DPF. With the increasing demands for high-performance DPFs, the issue of soot accumulation and cleaning presents significant hurdles for DPF longevity. This paper explores the potential of passive DPF regeneration, which leverages naturally occurring exhaust gas conditions to oxidize accumulated soot, offering a promising approach to minimize fuel penalty and system complexity compared to active regeneration methods. The study investigates engine calibration techniques aimed at enhancing passive regeneration performance, emphasizing the optimization of thermal management strategies to sustain DPF temperatures within the passive regeneration range. Furthermore, the paper aims to expand the applicability of passive regeneration across diverse engine loads common in off-highway applications with effective passive
Saxena, HarshitGandhi, NareshLokare, PrasadShinde, PrashantPatil, AjitRaut, Ashish
Growing global warming and the associated climate change have expedited the need for adoption of carbon-neutral technologies. The transportation sector accounts for ~ 25 % of total carbon emissions. Hydrogen (H2) is widely explored as an alternative for decarbonizing the transport sector. The application of H2 through PEM Fuel Cells is one of the available technologies for the trucking industry, due to their relatively higher efficiency (~50%) and power density. However, at present the cost of an FCEV truck is considerably higher than its diesel equivalent. Hence, new technologies either enabling cost reduction or efficiency improvement for FCEVs are imperative for their widespread adoption. FCEVs have a system efficiency around 40-60% implying that around half of the input energy is lost to the environment as waste heat. However, recapturing this significant amount of waste heat into useful work is a challenge. This paper discusses the feasibility of waste heat recovery (WHR
P V, Navaneeth
Today, passenger car makers around the world are striving to meet the increasing demand for fuel economy, high performance, and silent engines. Corporate Average Fuel Economy (CAFE) regulations implemented in India to improve the fuel efficiency of a manufacturer's fleet of vehicles. CAFE goal is to reduce fuel consumption and, by extension, the emissions that contribute to climate change. CNG (Compressed Natural Gas) engines offer several advantages that help manufacturers meet and exceed these standards. The demand for CNG vehicles has surged exponentially in recent years, CNG engine better Fuel efficiency and advantage in CAFÉ norms make good case for OEM & Customer to use more CNG vehicle. CNG is dry fuel compared to gasoline. These dry fuels lack lubricating properties, unlike conventional fuels like petrol, diesel and biofuels, which are wet and liquid. Consequently, the operations and failures associated with these fuels differ. The materials and designs of engine parts, such as
Poonia, SanjayKumar, ChandanSharma, ShailenderKhan, PrasenjitBhat, AnoopP, PrasathNeb, Ashish
This paper presents the methodology and outcomes of modifying a 1.2L naturally aspirated (NA) engine to enable flex-fuel compatibility, targeting optimal performance with ethanol blends ranging from E20 to E100. Ethanol is being increasingly promoted due to its potential to reduce greenhouse gas emissions and to provide an additional source of income for farmers. As per the road map for Ethanol blending released by Govt. of India, there has been continuous increase in blending of ethanol in gasoline. An initial target of 20% ethanol blending in gasoline by April 2025 has already been achieved. This work is in alignment with the broader push for development of flex-fuel vehicles, which necessitates engine adaptations capable of operating on varying ethanol blends. The primary objective was to upgrade the engine, which can give optimum performance with both lower range of ethanol blends starting from E20 as per IS 17021:2018 standard till higher blends of up to E100 as per IS 17821:2022
Tyagarajan, SethuramalingamPise, ChetanKavekar, PratapAgarwal, Nishant Kumar
With introduction of Diesel Particulate Filter to achieve CEV/TREM V Emission Limits for off-highway segment, there is a requirement of DPF regeneration at defined intervals depending on time of operation and soot loading in DPF. This can be achieved by two methods. First is the frequent regeneration or Active regeneration, wherein fuel is injected before DOC (Diesel Oxidation Catalyst) at specific temperature to burn the soot in the DPF. The second method is the continuous or Passive regeneration, where soot is burnt based on NO2. DPF frequent regeneration (Active Regeneration) requires soot load estimation in DPF over entire engine operation range as well as vehicle operation in different climatic conditions. Frequent regeneration leads to oil dilution and penalty in the fuel consumption. More frequent regeneration promotes the chemical aging of DOC, leading to the poor performance of DOC which results in deteriorating performance of SCR(Selective Catalytic Reduction) situated
Sharma, RakshitGarg, VarunDhiman, NitishGrauenfels, Attila
In India, fuel economy is one of the most critical factors influencing a customer's decision to own a passenger car. Beyond consumer preference, fuel consumption also plays a significant role in the nation's energy security. In line with this, the government promotes fuel-efficient vehicles and technologies through various regulations, policies, and mandates. Vehicle manufacturers, in response, focus on designing vehicles that align with both customer expectations and regulatory requirements. Fuel economy certification is typically based on standardized laboratory tests that simulate controlled environmental conditions, driving cycle (MIDC), vehicle load, and operation of electrical and electronic systems. However, actual on-road driving conditions by end user vary significantly due to factors such as traffic conditions, ambient temperature, air conditioning use, driving behavior and variable loading of the vehicle. With implementation of Bharat Stage VI, Real Driving Emission (RDE
Singh, Abhay PratapBathina, Revanth KumarTijare, Shantanu
Air suction in a naturally aspirated engine is a crucial influencing parameter to dictate the specific fuel consumption and emissions. For a multi-cylinder engine, a turbocharger can well address this issue. However, due to the lack of availability of continuous exhaust energy pulses, in a single or two-cylinder engine, the usage of turbocharger is not recommended. A supercharger solution comes handy in this regard for a single or two-cylinder engine. In this exercise, we explore the possibility of the usage of a positive displacement type supercharger, to enhance the air flow rate of a single cylinder, naturally aspirated, diesel engine for genset application, operating at 1500 rpm. The supercharger parametric 3D CAD model has been prepared in Creo, with three design parameters i.e. (a) Generating radius, (b) depth of blower and (c) clearance between lobes & lobe and casing. The optimum roots blower design is expected to fulfil the target boost pressure, power consumption and
Satre, Santosh DadasahebMukherjee, NaliniRajput, SurendraNene, Devendra
Customers in off-highway industry are increasingly seeking high-performance capabilities for their tractors due to increasing penetration of mechanisation and labour scarcity. One effective solution to achieve enhanced performance is turbocharging of engines, while meeting emission and highly dynamic transient response of tractor field applications. The process of selecting and validating a suitable turbocharger for tractor field application suitability is significantly time and resources consuming activity due to extensive testbed and field trials. This study focuses on the selection of turbocharger for tractor engines through analytical calculations to freeze key parameters like lambda, boost pressure ratio & temperature within boundaries of exhaust temperature and turbo efficiency maps to deliver best field transient performance and fuel consumption. The selected parameters are further validated under real-world transient operating conditions, involving tractors and their implements
Kumar, Harish KumarRawat, SaurabhDogra, DaljitSinghSingh, SachleenSingh, Amarinder
This paper compares carbon dioxide, carbon monoxide, methane, and oxides of nitrogen emissions from medium and heavy-duty buses using diesel, diesel-hybrid, and CNG powertrains. Comparisons are made using results from chassis dynamometer-based tests with driving cycles intended to simulate a wide range of operating conditions. Tail pipe emissions are measured by diluting the vehicle’s exhaust in a full-scale dilution tunnel by mixing with conditioned air. Samples are drawn through probes of raw exhaust, diluted exhaust and measured using laboratory grade emission analyzers. Fuel consumption of diesel is measured using a weighing scale, while a gas flow meter is used for measuring CNG consumption. Experimental data from 19 buses tested on a chassis dynamometer over the last 8 years has been analyzed and a comparison of results from similar buses with the differently fueled powertrains is presented. Based on these test results, it is shown that replacing diesel engines with CNG engines
Iyer, Suresh
This paper is a new approach to improve road safety and traffic flow by combining vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. The Study is focused on a system that connects vehicles with each other and with traffic light to share real-time data about speed and position. This work is aimed to discuss the methodology adopted for developing a system which predicts and advises the optimal speed for vehicles approaching an intersection. Inspired by the Green Light Optimized Speed Advisory (GLOSA) , the proposed system is designed to help drivers approach traffic signals at speeds that minimize unnecessary stops, reduce delays, and improve traffic efficiency. This paper contains the approach taken, the decision-making algorithm, and the simulation framework built in MATLAB/Simulink to validate the concept under real traffic conditions. Simulation results are presented to demonstrate how the system generates speed recommendations based on vehicle parameters
Pinto, Colin AubreyShah, RavindraKarle, Ujjwala
The Mahindra XUV 3XO is a compact SUV, the first-generation of which was introduced in 2018. This paper explores some of the challenges entailed in developing the subsequent generation of this successful product, maintaining exterior design cues while at the same time improving its aerodynamic efficiency. A development approach is outlined that made use of both CFD simulation and Coastdown testing at MSPT (Mahindra SUV proving track). Drag coefficient improvement of 40 counts (1 count = 0.001 Cd) can be obtained for the best vehicle exterior configuration by paying particular attention to: AGS development to limit the drag due to cooling airflow into the engine compartment Front wheel deflector optimization Mid underbody cover development (beside the LH & RH side skirting) Wheel Rim optimization In this paper we have analyzed the impact of these design changes on the aerodynamic flow field, Pressure plots and consequently drag development over the vehicle length is highlighted. An
Vihan, Nikhil
In alignment with its carbon reduction commitments, India is transitioning towards higher ethanol-blended fuels, with E20 set for nationwide implementation by 2025. Ethanol is a renewable, domestically produced biofuel produced through fermentation of biomass such as sugarcane, corn. It possesses a higher octane rating and oxygen content compared to conventional gasoline, making it a favorable additive for improving engine performance and reducing emissions. This study investigates the impact of E20 fuel on performance parameters of a 694 cc MPFI , water-cooled, twin-cylinder gasoline engine. For deriving maximum benefits of increased Octane rating of E20, compression ratio was increased to 12.5:1. Experimental analysis was conducted to assess the changes in combustion behavior, brake specific fuel consumption (BSFC), torque output, engine out emissions and thermal efficiency when operating on E20 compared to baseline gasoline (E10). Base results indicate that E20 promotes more
Kulkarni, DeepakMalekar, Hemant AThonge, RavindraKanchan, Shubham
Rising environmental concerns and stringent emissions norms are pushing automakers to adopt more sustainable technologies. There is no single perfect solution for any market and there are solutions ranging from biofuels, green hydrogen to electric vehicles. For Indian market, especially in the passenger car segment, hybrid vehicles are favoured when it comes to manufacturers as well as with consumer because of multiple reasons such as reliability, performance, fuel efficiency and lower long-term cost of ownership. For automakers planning to upgrade their fleets in the context of upcoming CAFE III (91.7 g CO2 / km) & CAFE IV (70 g CO2/km) norms, hybridization emerges as the next natural step for passenger cars. Lately, various state governments have also promoted hybrid vehicle sales by offering certain targeted tax breaks which were previously reserved for EVs exclusively. Current study focuses on various parallel hybrid topologies for an Indian compact SUV, which is the highest
Warkhede, PawanKeizer, RubenSandhu, RoubleEmran, Ashraf
Any agricultural operation (such as cultivation, rotavation, ploughing, and harrowing) includes both productive and non-productive activities (like transportation, stops, and idling) in the field. Non-productive work can mislead the actual load profile, fuel consumption, and emissions. In this project, a machine learning-based methodology has been developed to differentiate between effective operations and non-productive activities, utilizing data collected in the field from data loggers installed on the machinery. Measurements were conducted on various machines across the country in all major applications to minimize the influence of any individual sample deviation and to account for variability in customer operating practices. Few critical parameters such as Engine Speed, Exhaust Gas Temperature, Actual Engine Percentage Torque, GPS Speed etc.) were selected after screening and analyzing more than 100 CAN and GPS parameters. The critical parameters were subsequently integrated with
Maharana, Devi prasadGangsar, Purushottamgokhale, VarunPandey, Anand Kumar
The diversification of the energy matrix, combined with the use of renewable and less polluting fuels in internal combustion engines, has encouraged numerous research efforts both nationally and internationally. In this context, the utilization of waste for biofuel production stands out as a promising alternative, offering a clean and economically viable energy source. Biogas is one of the most sustainable options and has been widely used in the industry. However, it presents low lower heating values (LHV) and difficulties in burning stoichiometric mixtures, which compromise engine performance, resulting in higher specific fuel consumption and lower power output compared to fossil fuels. To address this challenge, this study aimed to improve biogas combustion in internal combustion engines by investigating the application of a new pre-chamber ignition system in the combustion process and engine performance parameters. For this, experimental tests were conducted with two biofuel
Siqueira, Caio Henrique MoreiraÁzara, Luiz Eduardo MartinsRibeiro, José Vitor PuttiniSoares, Gabriel FariaSilva, Fábio MoreiraAlvarez, Carlos Eduardo Castilla
The deployment of autonomous trucks in off-road environments poses significant engineering challenges due to terrain variability and dynamic operating conditions. While recent advancements in perception, planning, and control architectures have improved vehicle autonomy, experimental validations comparing autonomous and manual control particularly regarding propulsion efficiency remain limited. This study addresses this gap by conducting structured field experiments to evaluate the performance of a heavy-duty truck operating in autonomous and manual modes. Tests were performed on a dedicated proving ground using a multi-sensor autonomous system. Key performance indicators included vehicle speed stability, engine speed regulation, and fuel consumption. The results show that autonomous driving achieved a 4.5% reduction in fuel consumption compared to manual operation. This gain is attributed to the system’s ability to maintain lower speed variance and more consistent engine behavior
Paula Silva, CiriloYoshioka, Leopoldo RidekiKitani, Edson CaoruAndré, Fatec SantoSilva, Nouriandres Liborio
Agrícola Cana Caiana and Grunner have developed an innovative vehicle for sugarcane harvesting, focused on reducing fuel consumption. This optimization is vital and relevant for similar operations in the largest global producers: Brazil (724 mi t - 37%), India (439 mi t - 22%), China (103 mi t - 5.3%), Thailand (92 mi t - 4.7%), Pakistan (88 mi t - 4.5%), Mexico (55 mi t - 2.8%), Colombia (35 mi t - 1.8%), Indonesia (32 mi t - 1.6%), USA (31 mi t - 1.6%), and Australia (28 mi t - 1.4%). In Brazil, São Paulo leads with 383.4 mi t (54.1% of the 23/24 harvest), followed by Minas Gerais (81.3 mi t). This innovative agricultural machinery, a result of the owners' experience, has already sold over a thousand units, proving its impact on the efficiency of the sugar-alcohol sector. The Belei family's expertise generated this solution that optimizes resources and increases harvesting productivity, with the potential to advance sustainability and profitability globally, driving agricultural
Ferreira, Antonio Eustáquio Sirolli
In response to increasing environmental awareness and the automotive industry's push for sustainability, the development of lightweight and robust components has become a key area of focus. This paper presents a multidisciplinary approach to the design and optimization of an aluminum parking brake lever, leveraging advanced structural optimization techniques to enhance performance while meeting stringent environmental standards. Traditional manufacturing processes for automotive components, such as stamping, often rely on steel due to its strength and ease of processing. However, the high density of steel can significantly impact the overall weight of the vehicle, leading to increased fuel consumption and emissions. In contrast, aluminum’s superior strength-to-weight ratio offers a promising alternative. This study employs Finite Element Analysis (FEA) to model the initial stress history of the lever, followed by the application of structural optimization tools to refine its geometry
Filho, William Manjud MalufCarriero, Emily AmaralRequena, Felipe Carlos GarciaScatolin, Felipe MandichMarini, Vinicius KasterAlves1, Marcelo Augusto LealFerreira, Wallace Gusmão
Growing interest in cleaner energy has spurred progress in engine technology, focusing on greater efficiency and lower emissions. Methane-based fuels, like compressed natural gas (CNG), have become an alternative for spark-ignition engines, especially in Brazil. Among performance strategies, dethrottled operation stands out by reducing intake restrictions and minimizing pumping losses, a major inefficiency in conventional spark ignition engines. This improves thermal efficiency and reduces both fuel consumption and emissions. This study experimentally examines the performance and combustion of a CNG-powered Hyundai HR 2.5 16V engine, converted from diesel to spark ignition with natural gas, comparing factory (omega) and custom (reentrant) piston geometries under both conventional and dethrottled modes. The research evaluates how piston design affects combustion stability, efficiency, and emissions across different load strategies. Tests were conducted at 7, 8, and 9 bar loads, as well
Silva, Cristian Douglas Rosa daGarlet, Roberto AntonioDapper, Jackson MayerFagundez, Jean Lucca SouzaLanzanova, Thompson Diórdinis MetzkaMartins, Mario Eduardo Santos
In recent decades, interest in alternative fuels has grown exponentially. Hydrogen has been researched as total or partial substitutes for gasoline in light vehicles, showing great potential. However, this fuel has unique characteristics and properties that can bring improvements or limitations in engine performance. Therefore, a quick analysis of the pressure and HRR curve can highlight changes in combustion and performance. To this end, the aim of this work is to develop a visual interface generated by MATLAB capable of showing the performance parameters of a spark ignition engine when using hydrogen as fuel, initially. This graphic interface is supported with a zero-dimensional model based on the Wiebe function and Woschni correlation to estimating the pressure and HRR values. The interface is designed to receive operating conditions and geometry of the engine, as well as combustion angles. From the information entered, it is possible to visualize mass fraction burned, heat transfer
Rincon, Alvaro Ferney AlgarraAlvarez, Carlos Eduardo CastillaOliveira Notório Ribeiro, Jéssica
This paper presents the design and implementation of a test bench intended for the development and validation of control strategies applied to a hybrid-electric powertrain. The setup combines a 48 V SEG BRM electric machine with a small-displacement internal combustion engine (ICE), the HONDA GX160, operating in a parallel hybrid configuration. The platform was developed to improve energy efficiency in comparison to a conventional ICE-only system. Modifications were carried out on an existing test bench at Instituto Mauá de Tecnologia, including the fabrication of a new enclosure for the battery pack and its battery management system (BMS), as well as the integration of a Vector VN8911 real-time controller. A custom control strategy was implemented and experimentally evaluated using a predefined drive cycle under two conditions: (I) ICE-only operation and (II) hybrid-electric operation with the proposed strategy. Results showed a fuel consumption reduction of approximately 13% with the
Polizio, YuriZabeu, ClaytonPasquale, GianPinheiro, GiovanaVieira, Renato
Transmission systems play a crucial role in vehicle performance, efficiency, and adaptability. Conventional transmissions, such as Continuously Variable Transmissions (CVTs) and Manual Transmissions (MTs), each offer distinct advantages—CVTs provide smooth gear transitions and optimized fuel efficiency, whereas MTs deliver superior driver control, mechanical simplicity, durability, and high torque efficiency. This study explores the feasibility of integrating a dual-mode CVT-MT transmission into passenger vehicles to enhance driving dynamics and fuel efficiency. The proposed system uses the first gear to improve initial acceleration, a critical factor in urban driving, stop-and-go traffic, and high-load scenarios where CVTs struggle with torque delivery. After launch, the drivetrain transitions into CVT mode, leveraging its continuously adjustable gear ratios for efficiency and smooth power delivery. A simulation model based on MATLAB / Simulink will analyze the performance of the
Baldi, EduardoLopes, Matheus Carlos Sinobio Elias DRodrigues, Gustavo Simão
The growing concern regarding global warming pushes the contribution of all emitting sources to mitigate greenhouse gases. The significant light passenger vehicle fleet deserves continued attention, both in the implementation of more efficient new technologies and in the optimization of conventional technologies, which are still widely used. The vehicle’s energy efficiency is directly influenced by the coupling of the internal combustion engine to the transmission system. Engines have a restricted operation region of maximum efficiency that must be adequately explored by the transmission system in the different conditions of vehicle use. Thus, this paper analyzes and quantifies the sensitivity of the vehicle’s energy efficiency of two distinct engine technologies, naturally aspirated and turbocharged, coupled to an automatic transmission system with six discrete or continuously variable gears. Experimental data on the overall efficiency of the engines and the transmission concepts
Rovai, Fernando FuscoMenezes Lourenço, Maria Augusta deRohrig, Marcelo
Flex-fueled vehicles (FFV) dominate the Brazilian market, accounting for over 75% of the national fleet. Ethanol fuel is widely used, primarily in the form of hydrated ethyl alcohol fuel (HEAF). Given the similar physicochemical properties of ethanol and methanol, fuel adulteration is a growing concern, often involving the addition of anhydrous ethanol, methanol, or even water to hydrated ethanol. These adulterants are visually imperceptible and can only be detected through analyses conducted by regulatory agencies using specialized instruments. However, they can significantly affect vehicle performance and accelerate engine component deterioration. The experiment was performed with a small displacement 3-cylinder port fuel injection flex-fuel engine on an engine test bench (dynamometer) and compared when fueled with ethanol and methanol. Data acquisition included combustion pressure, spark plug temperature, torque, air-fuel ratio, fuel flow, spark maps, and the overall effects of
Mascarenhas, Giovana RebellatoGomes, EdersonCruz, DiegoDuque, Edson Luciano
Vehicles powered by internal combustion engines play a crucial role in urban mobility and still represent the vast majority of vehicles produced. However, these vehicles significantly contribute to pollutant emissions and fossil fuel consumption. In response to this challenge, various technologies and strategies have been developed to reduce emissions and enhance vehicle efficiency. This paper presents the development of a solution based on optimized gear-shifting strategies aimed at minimizing fuel consumption and emissions in vehicles powered exclusively by internal combustion engines. To achieve this, a longitudinal vehicle dynamics model was developed using the MATLAB/Simulink platform. This model incorporates an engine combustion simulation based on the Advisor (Advanced Vehicle Simulator) tool, which estimates fuel consumption and emissions while considering catalyst efficiency under transient engine conditions. Based on these models, an optimization method was employed to
Da Silva, Vitor Henrique GomesCarvalho, Áquila ChagasLopez, Gustavo Adolfo GonzalesCasarin, Felipe Eduardo MayerDedini, Franco GiuseppeEckert, Jony Javorski
The rapid growth of the civil aviation industry has placed significant pressure on limited airport runway resources, leading to increased taxiing delays and excessive fuel consumption. These challenges are exacerbated by the constant rise in air traffic, which necessitates more efficient management of airport operations. To mitigate these issues, this study proposes a flexible management approach that categorizes busy periods based on airport traffic density, taking into account the fluctuating load demand at different times of the day. This approach ensures that resource allocation aligns with actual traffic conditions, optimizing operational efficiency. Additionally, leveraging the existing dynamic pushback control framework, this research develops a cosine-based dynamic pushback control model, which incorporates parking stand waiting penalties. This model aims to reduce departure costs by dynamically adjusting the pushback rate according to congestion levels. To further optimize the
Wu, YingziLian, GuanLuo, WeizhenLi, WenyongZhao, YeqiZhang, Hao
This paper integrates the theoretical models of Transformer and BiGRU to construct the Transformer BiGRU Global Attention model, with the aim of enhancing the model’s ability to extract key information. Through the implementation of a cross-attention mechanism to amalgamate features and enhance feature representation, the model attains exact prediction of main engine fuel consumption for vessels. Compared to the Transformer and BiGRU models, our model achieves 86% higher prediction accuracy, enabling more accurate prediction of ship main engine fuel consumption. This furnishes data support for the purpose of comparison with original factory data, thereby facilitating the assessment of engine fault conditions.
Liu, ZicongZhang, DefuLv, HongbinZhu, Wei
In order to improve the operational efficiency of a multi-runway airport, an aircraft pushback and taxiing cooperative departure operation control method is proposed. First, a Markov decision process (MDP) model for dynamic pushback control is established based on the two-runway model. Then, the genetic simulated annealing algorithm is used as the optimization algorithm, and the DPC-GSAA algorithm solution model is proposed to find the conflict-free path with the least fuel consumption for the aircraft and runway selection. Finally, the effectiveness of the model and algorithm is verified by simulation experiments in Beijing International Airport, and the results show that the method can significantly reduce the taxiing waiting time of aircraft and improve the overall operational efficiency of the airport.
Luo, WeizhenLian, GuanWu, YingziLi, WenyongHuang, Haifeng
Items per page:
1 – 50 of 7030