Browse Topic: Fuel economy

Items (7,913)
Transmission systems play a crucial role in vehicle performance, efficiency, and adaptability. Conventional transmissions, such as Continuously Variable Transmissions (CVTs) and Manual Transmissions (MTs), each offer distinct advantages—CVTs provide smooth gear transitions and optimized fuel efficiency, whereas MTs deliver superior driver control, mechanical simplicity, durability, and high torque efficiency. This study explores the feasibility of integrating a dual-mode CVT-MT transmission into passenger vehicles to enhance driving dynamics and fuel efficiency. The proposed system uses the first gear to improve initial acceleration, a critical factor in urban driving, stop-and-go traffic, and high-load scenarios where CVTs struggle with torque delivery. After launch, the drivetrain transitions into CVT mode, leveraging its continuously adjustable gear ratios for efficiency and smooth power delivery. A simulation model based on MATLAB / Simulink will analyze the performance of the
Baldi, EduardoLopes, Matheus Carlos Sinobio Elias DRodrigues, Gustavo Simão
Flex-fueled vehicles (FFV) dominate the Brazilian market, accounting for over 75% of the national fleet. Ethanol fuel is widely used, primarily in the form of hydrated ethyl alcohol fuel (HEAF). Given the similar physicochemical properties of ethanol and methanol, fuel adulteration is a growing concern, often involving the addition of anhydrous ethanol, methanol, or even water to hydrated ethanol. These adulterants are visually imperceptible and can only be detected through analyses conducted by regulatory agencies using specialized instruments. However, they can significantly affect vehicle performance and accelerate engine component deterioration. The experiment was performed with a small displacement 3-cylinder port fuel injection flex-fuel engine on an engine test bench (dynamometer) and compared when fueled with ethanol and methanol. Data acquisition included combustion pressure, spark plug temperature, torque, air-fuel ratio, fuel flow, spark maps, and the overall effects of
Mascarenhas, Giovana RebellatoGomes, EdersonCruz, DiegoDuque, Edson Luciano
Aerodynamics plays an important role in fuel economy and vehicle stability, aiming to deliver full performance while moving on the road. To develop the aerodynamics of vehicles at the early stages of a project, Computational Fluid Dynamics (CFD) simulations and wind tunnel test are the main tools used by automakers to help achieve the desired aerodynamic performance. One of the most relevant factors of CFD and wind tunnel test is how the floor under the vehicle is represented, which may lead to different aerodynamic behaviors. This work aims to investigate the effect of two types of floor configuration on a generic vehicle, with open geometry using CFD simulations. The DrivAer model has been widely studied both numerically and experimentally and provides an interesting source of comparison for 5-belt and static floor configurations, proposed by the study. In addition to the floor configuration analysis, the study also presents a comparison of ground heights for the previous cases
Buscariolo, Filipe FabianSchaffazick, LuizCamargo, DanielBedante, MurilloPeres, MatheusLattari, MateusKelley, MichaelSilveira, Rafael
Large-spacing truck platooning offers a balance between operational safety and fuel savings. To enhance its performance in windy environments, this study designs a control system integrating both longitudinal and lateral motions. The longitudinal control module regulates the inter-vehicle spacing within a desired range while generating a fuel-optimal torque profile by minimizing unnecessary decelerations and accelerations. The lateral control module ensures lateral stability and maintains alignment between the trucks to achieve the expected fuel savings. A two-truck platoon is simulated with a 3-sec time gap under varying wind conditions, using experimental data from the on-road cooperative truck platooning trials conducted in Canada. The control system effectively remains spacing errors within the preset safety buffer and limits lateral offsets to 0.07 m, ensuring safe and stable platooning in windy environments. Additionally, the smoother speed profiles and reduced lateral offsets
Jiang, LuoShahbakhti, Mahdi
Komatsu has launched a new excavator, the PC220LCi-12, that features its latest intelligent machine control technology. IMC 3.0 incorporates automation enhancements and a reported “construction-industry first” technology - factory-integrated 3D boundary control - designed to boost operator productivity. The intelligent machine, displayed previously at Bauma 2025 in Munich, Germany, has many of the same features as the new PC220LC-12 excavator, including a cab that is 28% larger, with 30% more legroom and 50% improved visibility compared to the PC210LC-11 model. Other advantages the new machines offer are up to a 20% increase in fuel efficiency thanks to a new electrohydraulic system and 129-kW (173-hp) next-generation engine, and up to a 20% reduction in maintenance costs due to longer replacement intervals for hydraulic oil and oil filters and longer cleaning intervals for the particulate filter.
Gehm, Ryan
The wing-in-ground effect (WIG) vehicle represents a significant advancement in aerodynamics and vehicle design, leveraging the ground effect phenomenon to enhance lift and reduce drag when flying close to the surface. This unique capability allows WIG vehicles to achieve higher payloads, longer range, and greater fuel efficiency compared to traditional aircraft, making them an attractive option for modern military and global disaster response applications. Wing-in-Ground Effect Vehicles: From Modern Military and Commercial Development to Global Disaster Response discusses future disaster response, logistics, and military applications for WIG vehicles, including the ongoing development of aerospace and transportation technology. Relavant advancements in materials and propulsion systems holds promise for further enhancing WIG performance and operational range. Additionally, cost-effective and powerful flight computers with various types of mission-enabling sensor suites from the
Doo, Johnny
Anticipated NOX emission standards will require that selective catalytic reduction (SCR) systems sustain exhaust temperatures of 200°C or higher for effective conversion performance. Maintaining these temperatures becomes challenging during low-load conditions such as idling, deceleration, and coasting, which lower exhaust heat and must be addressed in both regulatory test cycles and day-to-day operation. Cylinder deactivation (CDA) has proven effective in elevating exhaust temperatures while also reducing fuel consumption. This study investigates a flexible 6-cylinder CDA system capable of operating across any combination of fixed firing modes and dynamic skip-firing patterns, where cylinders transition between activation states nearly cycle-by-cycle. This operational flexibility extends the CDA usable range beyond prior implementations. Data was primarily collected from a test cell engine equipped with the dynamic CDA system, while a matching engine in a 2018 long-haul sleeper cab
Baltrucki, JustinMatheaus, Andrew CharlesJanak, Robb
In the present work, the effect of HHO addition to gasoline was investigated using HHO produced via the HydroBoost™ electrolysis technology—a system specifically designed to overcome the limitations of conventional electrolysis methods, such as electrode degradation, low efficiency, and safety concerns. Engine performance, fuel behavior, and emission characteristics were evaluated both with and without HHO enrichment. A comprehensive four-phase testing protocol was adopted to simulate various real-world driving conditions. Through a multi-parameter assessment—including fuel economy (FE), engine response under different load conditions, fuel savings accounting for parasitic load, total volatile organic compounds (TVOC), and greenhouse gas (GHG) emissions—it was demonstrated that HHO addition significantly enhances both the performance and emission characteristics of a gasoline-powered internal combustion engine. Statistical significance of these parameters was assessed across four
Sherman, GregorySingh, Amit Pratap
Transmission tuning involves adjusting parameters within a vehicle's transmission control unit (TCU) or transmission control module (TCM) to optimize performance, efficiency, and driving experience. Transmission tuning is beneficial for optimizing performance, improving fuel efficiency, smoother shifting and enhancing drivability particularly when a vehicle's power output is increased or for specific driving conditions. Especially in offroad and agricultural machines, transmission tuning is vital to significantly improve vehicle performance during different operations. The process of transmission tuning is quite time consuming as multiple tuning iterations are required on the actual vehicle. A significant reduction in tuning time can be achieved using a simulation environment, which can mimic the actual vehicle dynamics and the real time vehicle behavior. In this paper, tuning during the forward and reverse motion of the tractor is described. A two-level PI control-based shift strategy
Varghese, Nithin
Off-highway vehicles (OHVs) are vital for India’s construction, mining, agriculture, and infrastructure sectors. With growing demand for productivity and sustainability, the need for efficient customer support and precise diagnostic techniques has become paramount. This paper presents a comprehensive study of challenges faced in India, current and emerging diagnostic technologies, troubleshooting techniques, and strategies for effective customer support. Case studies, tables, and diagrams illustrate practical solutions.
Mulla, TosifThakur, AnilTripathi, Ashish
As global energy demands continue to grow and environmental challenges intensify, Biodiesel stands out as an environmentally sound and technically feasible alternative to curb fossil fuel use and emissions. This study provides an in-depth analysis of the performance and emissions profile of a compression ignition (CI) engine running on a renewable diesel fuel blend made from ethanol and cottonseed (Cs) combinations enhanced with aluminium oxide (Al2O3) nanoparticles. The experimental fuel blends, consisting of 10%, 20%, and 30% cottonseed biodiesel with 5% ethanol and remaining with conventional diesel, were analyzed under varying engine load conditions. The inclusion of ethanol improved fuel atomization due to its lower viscosity and higher volatility, while Al2O3 nanoparticles acted as advanced combustion catalysts, promoting enhanced oxidation rates and thermal efficiency. Among the blends, B10 (10% cottonseed biodiesel) exhibited superior performance metrics, achieving a brake
T, KarthiG, ManikandanSaminathan, SathiskumarM E, ChandhuruS, BavanyaS, Arunkumar
Off-highway vehicles (OHVs) routinely navigate unstable and varied terrains—mud, sand, loose gravel, or uneven rock beds—causing increased rolling resistance, reduced traction, and high energy expenditure. Traditional rigid chassis systems lack the flexibility to adapt dynamically to changing surface conditions, leading to inefficiencies in vehicle stability, maneuverability, and fuel economy. This paper proposes an adaptive terrain morphing chassis (ATMC) that can actively modify its structural geometry in real-time using embedded sensors, hydraulic actuators, and soft robotic elements. Drawing inspiration from nature and recent advances in adaptive materials, the ATMC adjusts vehicle ground clearance, track width, and load distribution in response to terrain profile data, thereby optimizing fuel efficiency and performance. Key contributions include: A multi-sensor fusion system for real-time terrain classification Hydraulic actuators and morphing polymers for variable chassis
Vashisht, Shruti
For the achievement of Net Zero Emission goals, various corporates have started with the planning towards the achievement of short-term goals which are well defined with the implementation of energy conservation and efficiency. In this direction, high cetane diesel is an optimized combination of diesel fuel with higher Cetane Number fortified with Novel & Optimized multi-functional additives (MFAs) formulation for improved performance and specially designed for heavy duty diesel engines & off-highway applications. This innovative concept is based on enhancement of fuel economics by enhancement in fuel combustion, injector cleaning characteristics and reduction of frictional losses. The benefits associated with high cetane diesel include superior cleanliness to keep high pressure diesel injectors clean, better lubricity providing longer injector life, superior combustion leading to lower noise and products formulated for benefits in overall reduction in emissions specially developed for
Kumar, PrashantMayeen, HafizSaroj, Shyamsher
The growing demand for improved fuel efficiency and reduced emissions in diesel engines has led to significant advancements in power management technologies. This paper presents a dual-mode functional strategy that integrates electrified turbochargers to enhance engine performance, provide boost and generate electrical power. This helps in optimizing the overall engine efficiency. The engine performance is enhanced with boosting mode where the electric motor accelerates the turbocharger independent of exhaust flow, effectively reducing turbo lag and provides immediate boost at low engine speeds. This feature also improves high altitude performance of the engine. Conversely, in generating mode, the electric turbocharger recovers or harvest energy from exhaust gases depending on engine operating conditions, converting it into electrical energy for battery recharging purpose. Advanced control systems enable real-time adjustments to boost pressure and airflow in response to dynamic driving
Borle, ShraddhaPrasad, LakshmiCouvret, SebastienFournier, HugoChenuet, Laurent
To provide needs of food, clothing and infrastructure for growing population of the world, off-highway vehicles such as those in construction, agriculture and commercial landscaping are moving towards electrification for enhanced precision, productivity, efficiency and sustainability. It has also paved way to adopt autonomy of these vehicles to address challenges like skilled labour shortage for timely and efficient execution. There are many challenges and opportunities of electrification in off-highway domain, be it through completely replacing engine in vehicles or efficiency improvements using hybrid architecture for powertrain and auxiliary power demands, electrification being key enabler precision and speed of the complex operations, automation of complex operation. This paper explains the need of electrification in electric off-highway vehicles and shows how the electrification solves the current challenges faced by off-highway heroes like farmers, construction site owners and
Deshpande, Chinmay VasudevMujumdar, ChaitanyaBachhav, Kiran
Items per page:
1 – 50 of 7913