Browse Topic: Fuel economy
Flex-fueled vehicles (FFV) dominate the Brazilian market, accounting for over 75% of the national fleet. Ethanol fuel is widely used, primarily in the form of hydrated ethyl alcohol fuel (HEAF). Given the similar physicochemical properties of ethanol and methanol, fuel adulteration is a growing concern, often involving the addition of anhydrous ethanol, methanol, or even water to hydrated ethanol. These adulterants are visually imperceptible and can only be detected through analyses conducted by regulatory agencies using specialized instruments. However, they can significantly affect vehicle performance and accelerate engine component deterioration. The experiment was performed with a small displacement 3-cylinder port fuel injection flex-fuel engine on an engine test bench (dynamometer) and compared when fueled with ethanol and methanol. Data acquisition included combustion pressure, spark plug temperature, torque, air-fuel ratio, fuel flow, spark maps, and the overall effects of
Komatsu has launched a new excavator, the PC220LCi-12, that features its latest intelligent machine control technology. IMC 3.0 incorporates automation enhancements and a reported “construction-industry first” technology - factory-integrated 3D boundary control - designed to boost operator productivity. The intelligent machine, displayed previously at Bauma 2025 in Munich, Germany, has many of the same features as the new PC220LC-12 excavator, including a cab that is 28% larger, with 30% more legroom and 50% improved visibility compared to the PC210LC-11 model. Other advantages the new machines offer are up to a 20% increase in fuel efficiency thanks to a new electrohydraulic system and 129-kW (173-hp) next-generation engine, and up to a 20% reduction in maintenance costs due to longer replacement intervals for hydraulic oil and oil filters and longer cleaning intervals for the particulate filter.
The wing-in-ground effect (WIG) vehicle represents a significant advancement in aerodynamics and vehicle design, leveraging the ground effect phenomenon to enhance lift and reduce drag when flying close to the surface. This unique capability allows WIG vehicles to achieve higher payloads, longer range, and greater fuel efficiency compared to traditional aircraft, making them an attractive option for modern military and global disaster response applications. Wing-in-Ground Effect Vehicles: From Modern Military and Commercial Development to Global Disaster Response discusses future disaster response, logistics, and military applications for WIG vehicles, including the ongoing development of aerospace and transportation technology. Relavant advancements in materials and propulsion systems holds promise for further enhancing WIG performance and operational range. Additionally, cost-effective and powerful flight computers with various types of mission-enabling sensor suites from the
Anticipated NOX emission standards will require that selective catalytic reduction (SCR) systems sustain exhaust temperatures of 200°C or higher for effective conversion performance. Maintaining these temperatures becomes challenging during low-load conditions such as idling, deceleration, and coasting, which lower exhaust heat and must be addressed in both regulatory test cycles and day-to-day operation. Cylinder deactivation (CDA) has proven effective in elevating exhaust temperatures while also reducing fuel consumption. This study investigates a flexible 6-cylinder CDA system capable of operating across any combination of fixed firing modes and dynamic skip-firing patterns, where cylinders transition between activation states nearly cycle-by-cycle. This operational flexibility extends the CDA usable range beyond prior implementations. Data was primarily collected from a test cell engine equipped with the dynamic CDA system, while a matching engine in a 2018 long-haul sleeper cab
Transmission tuning involves adjusting parameters within a vehicle's transmission control unit (TCU) or transmission control module (TCM) to optimize performance, efficiency, and driving experience. Transmission tuning is beneficial for optimizing performance, improving fuel efficiency, smoother shifting and enhancing drivability particularly when a vehicle's power output is increased or for specific driving conditions. Especially in offroad and agricultural machines, transmission tuning is vital to significantly improve vehicle performance during different operations. The process of transmission tuning is quite time consuming as multiple tuning iterations are required on the actual vehicle. A significant reduction in tuning time can be achieved using a simulation environment, which can mimic the actual vehicle dynamics and the real time vehicle behavior. In this paper, tuning during the forward and reverse motion of the tractor is described. A two-level PI control-based shift strategy
The growing demand for improved fuel efficiency and reduced emissions in diesel engines has led to significant advancements in power management technologies. This paper presents a dual-mode functional strategy that integrates electrified turbochargers to enhance engine performance, provide boost and generate electrical power. This helps in optimizing the overall engine efficiency. The engine performance is enhanced with boosting mode where the electric motor accelerates the turbocharger independent of exhaust flow, effectively reducing turbo lag and provides immediate boost at low engine speeds. This feature also improves high altitude performance of the engine. Conversely, in generating mode, the electric turbocharger recovers or harvest energy from exhaust gases depending on engine operating conditions, converting it into electrical energy for battery recharging purpose. Advanced control systems enable real-time adjustments to boost pressure and airflow in response to dynamic driving
Items per page:
50
1 – 50 of 7913