Browse Topic: Fuel economy
As automotive manufacturers have tried to set themselves apart by reducing emissions, and increasing vehicle range/fuel economy by eliminating any energy loss from inefficiencies on the vehicle, the brake corners have been an area of interest to reduce off-brake torque to zero in all conditions. Caliper designers can revise some attributes like piston seal grooves, and pad retraction features to reduce drag, but even if a caliper is designed perfectly in all aspects, trying to measure it in a reliable and repeatable manner proves to be difficult. There are many ways to measure brake drag all with ranging complexity. Some of the simplest measurements are the most repeatable, but it excludes the majority of the vehicle inputs. The most vehicle representative testing requires the most complex equipment and comes with the most challenges. This paper will focus mainly on the different ways residual brake drag can be measured, the benefits and challenges to each of them, the problems trying
The growing demand for improved air quality and reduced impact on human health along with progress in vehicle electrification has led to an increased focus on accurate Emission Factors (EFs) for non-exhaust emission sources, like tyres. Tyre wear arises through mechanical and thermal processes owing to the interaction with the road surface, generating Tyre Road Wear Particles (TRWP) composed of rubber polymers, fillers, and road particles. This research aims to establish precise TRWP airborne EFs for real-world conditions, emphasizing in an efficient collection system to generate accurate PM10 and PM2.5 EFs from passenger car tyres. Particle generation replicates typical driving on asphalt road for a wide selection of tyres (different manufacturers, price ranges, fuel economy rating). Factors such as tyre load, speed and vehicle acceleration are also considered to cover various driving characteristics. The collection phase focuses on separating tyre wear particles from potential
The American Petroleum Institute's (API) Proposed Category 12 (PC-12) is currently under development. A target first license date has been set for January 2027, and industry stakeholders are currently at work on PC-12's testing requirements, limits and other criteria that will make up the final performance category. That means change is coming to the heavy-duty diesel lubricants space. The introduction of a new category provides opportunities for enhanced lubricant performance in areas such as improved drain intervals, fuel economy and engine deposit protection. However, one major area of focus for next-generation lubricants will be greater protection and enablement of aftertreatment devices, helping heavy-duty OEMs comply with stringent new emissions standards set by the U.S. Environmental Protection Agency in 2022.
Items per page:
50
1 – 50 of 7869