Browse Topic: Alternative fuels

Items (8,317)
This study aims to investigate the effect of ethanol blends on flame propagation and auto-ignition under high pressure and high temperature conditions. Experimental investigations are conducted using n-C7H16 / ethanol blends at various blending ratios (0, 5, 10, 20, 40, 70, and 100 vol%). The blends are premixed with air at stoichiometric ratios and ignited centrally in a cylindrical constant-volume combustion chamber (20-mm inner diameter, 80-mm long) under elevated temperature (500 K) and pressure (1.0 MPa) conditions. The results show that auto-ignition occurs at an ethanol blend ratio of 10% or less and ceases above 20%. Increasing the ethanol blend to 70% results in a slight change in flame propagation speed, with a noticeable delay at 100%. The pressure measurements show a peak of about 5.6 MPa at a blend ratio of 5%, which gradually decreases with increasing ratios. High-pass filtering reveals the maximum pressure fluctuation amplitude at the 5% blend ratio, indicating increased
Tateishi, TokuaYamaguchi, RikiShimokuri, DaisukeTerashima, HiroshiHara, TakayaHonda, YuyaKawano, Michiharu
In order to rapidly achieve the goal of global net-zero carbon emissions, ammonia (NH3) has been deemed as a potential alternative fuel, and reforming partial ammonia to hydrogen using engine exhaust waste heat is a promising technology which can improve the combustion performance and reduce the emission of ammonia-fueled engines. However, so far, comprehensive research on the correlation between the reforming characteristic for accessible engineering applications of ammonia catalytic decomposition is not abundant. Moreover, relevant experimental studies are far from sufficient. In this paper, we conducted the experiments of catalytic decomposition of ammonia into hydrogen based on a fixed-bed reactor with Ru-Al2O3 catalysts to study the effects of reaction temperature, gas hour space velocity (GHSV) and reaction pressure on the decomposition characteristics. At the same time, energy flow analysis was carried out to explore the effects of various reaction conditions on system
Li, ZeLi, TieChen, RunLi, ShiyanZhou, XinyiWang, Ning
One way to decarbonize spark-ignition (SI) engines is to use alternative fuels to improve thermal efficiency. Compressed biomethane gas (CBG), mainly composed of methane and carbon dioxide produced from food waste, has attracted attention as an alternative fuel, but its carbon dioxide content is indeterminate. This study investigates the effects of carbon dioxide content on engine performance (thermal efficiency, etc.), emission characteristics, and turbulent burning velocity using a CBG surrogate fuel mixed with methane and carbon dioxide. A single-cylinder SI engine is used as the test engine, and experiments are conducted under different load conditions with a constant crank angle of 50% mass fraction burned (CA50). Engine performance is analyzed based on heat balance from in-cylinder pressure analysis. Emission characteristics are measured using an emission gas analyzer. Using the boundary conditions obtained from the experiments, parameters such as unstretched laminar burning
Kobayashi, TakumaShimizu, TaketoshiYoshimura, KeiSok, RatnakKusaka, Jin
Flex fuel vehicles (FFV) can operate effectively from E5 (Gasoline 95%, ethanol 5%) fuel to E100 (Gasoline 0%, ethanol 100%) fuel. It is necessary to meet the performance, drivability, emission targets and regulatory requirements irrespective of fuel mixture combination. This research work focuses on optimizing the combustion efficiency and conversion efficiency of catalytic converter of a spark-ignited less than 200 cc engine for FFV using Taguchi methods robust optimization technique. The study employs an eight-step robust optimization approach to simultaneously minimize engine out emissions and maximize catalytic converter efficiency. Six control factors including type of fuel, catalyst heating rpm, lambda (excess-air ratio), injection end angle, lambda controller delay, and ignition timing are optimized. Four noise factors like compression ratio, clearance volume, catalyst noble metal loading, and catalyst aging are also considered. Through approximately 100 physical experiments on
Vaidyanathan, BalajiArunkumar, PraveenkumarShunmugasundaram, PalaniMurugesan, ManickamJayajothijohnson, Vedhanayagam
Ozone (O3) was introduced into the intake air in a natural gas fueled engine ignited by micro-pilot of diesel fuel, to utilize the reactive O-radicals decomposed from the O3 for the promotion of the combustion and for improvements in the thermal efficiency and exhaust emissions. Experiments were carried out in a single cylinder engine to elucidate the effects of the ozone addition under the lean burn conditions. A supercharger was employed to increase the intake air amount and vary the equivalence ratio of natural gas. The experimental results showed that the O3 addition has a limited effect on the ignition of the diesel fuel injected near top dead center, while the heat release during the flame propagation in the natural gas/air mixture was increased at the lower equivalence ratio of natural gas. Further the ignition of natural gas was promoted, resulting in the increase of the combustion efficiency and the degree of constant volume heat release. The cooling loss and the NOx emissions
Kobashi, YoshimitsuMiyata, ShokiKawahara, NobuyukiInagaki, Ryuya
The use of hydrogen as a sustainable fuel in the short term is hampered by the impossibility of large scale use due low availability. In order to promote decarbonization, complementary solution for a smooth transition is to dilute it in a mixture with methane, in a current Port Fuel Injection (PFI) internal combustion engine (ICE). This can be done as a retrofit after limited structural modifications, such as the introduction of a passive prechamber. Such a solution allows a reduction of the carbon footprint of traditional ICEs through more efficient combustion (both the prechamber technology and the hydrogen fuel properties promote an increase in combustion speed) and a reduced carbon content in the fuel. The present research activity has been carried out through numerical investigation based on three-dimensional CFD analyses to simulate the behavior of a natural gas engine fueled with CH4-H2 blends. The combustion mechanism for the fuel blend was validated against measurements of the
Balduzzi, FrancescoFerrara, GiovanniDi Iorio, SilvanaSementa, Paolo
Reducing CO2 emissions is now a major focus in India heading towards net zero emissions by 2070. India is the 3rd largest automobile market in the world and the transportation sector is the 3rd largest CO2 emitter. In this direction, it is necessary to reduce the carbon footprint from the automobile sector to combat climate change. The adoption of sustainable biofuels such as ethanol will enable us to reduce emissions, as ethanol is carbon neutral fuel. However, vehicle manufacturers are facing challenges in manufacturing flex fuel compatible parts in the vehicle mainly fuel systems. Ethanol has both nonpolar and polar bonds, making it miscible to both gasoline and water, thereby water contamination is inevitable in ethanol blend fuels. In addition, control of ethanol contamination by sulfates and chlorides during ethanol production is challenging. Thus, ethanol blend fuels are considered more corrosive and tendency towards deposit formation than normal gasoline fuels. Design and
Pandi, Dinesh BabuShanmugam, Gomathy PriyaNagarkatti, ArunGopal, ManishAnbalagan, Prathap
In the ongoing effort to decarbonize energy supply, a notable shift involves the conversion or retrofitting of combined heat and power plants to operate on hydrogen as an alternative to natural gas. In this transformative landscape, extensive research is underway to develop and explore innovative combustion processes for hydrogen-fueled engines, aiming to comprehend and optimize combustion processes concerning both engine performance and emissions. Among the various methods available for monitoring the combustion process and engine control, ion current sensing presents itself as a viable option. A unique feature of this research lies in utilizing the engine's spark plug itself as an electrical sensor, measuring the ion current generated during the flame development and combustion processes. Given the limited research on ion current sensing for hydrogen combustion processes, a series of experiments were conducted and presented in this work. These experiments involved sweeps of water-to
Salim, NaqibBeltaifa, YoussefKettner, MauriceLoose, OliverWeißgerber, Tycho
The use of small 2-stroke crankcase scavenged engines running on hydrogen is very attractive for low power rates, when low cost and compact dimensions are the fundamental design constraints. However, achieving optimal performance with hydrogen fuel presents challenges, including uneven air-fuel mixtures, fuel losses, and crankcase backfiring. This research focuses on a small 50cc 2-stroke loop-scavenged engine equipped with a patented Low-Pressure Direct Injection (LPDI) system, modified for hydrogen use. Experimental results demonstrate performance comparable to the gasoline counterpart, but further optimizations are needed. Consequently, CFD-3D simulations are employed to analyses the injection process and guide engine development. The numerical analysis focuses on a fixed operating condition: 6000 rpm, Wide Open Throttle (WOT), with a slightly lean mixture and injection pressure fixed at 5 bar. A numerical model of the entire engine is set up with the primary objective of improving
Caprioli, StefanoSchoegl, OliverOswald, RolandKirchberger, RolandMattarelli, EnricoRinaldini, Carlo Alberto
The spark ignited two-stroke engine, as a cost-efficient power unit with low maintenance demand, is used millionfold for the propulsion of hand-held application, motorcycles, scooters, boats and others. The outstanding power to weight ratio is the key advantage for two-stroke engines. However, poor exhaust emissions, caused by high scavenge losses, especially on port controlled two-stroke engines, and a low efficiency are disadvantages of this combustion process. Under the aspect of increasing environment- and health awareness, the two-stroke technology driven with fossil resources, shows no future advantage. The anthropogenic climate change force for sustainable development of combustion engines whereby reduction of fuel consumption or usage of alternative fuels is an important factor. Best way of a decarbonization to fulfil future climate goals is the utilization of non-carbon fuels. In this field of fuels, hydrogen, with its high energy content and close inexhaustible availability
Yasuda, TerutakaOswald, RolandKirchberger, Roland
Since proportion of wall heat loss takes as high as 20-30% of the total engine heat loss, the reduction of wall heat loss is considered as an effective way to improve the engine thermal efficiency. The heat transfer near the wall boundary layer plays a significant role on the exploration about the mechanism of wall heat transfer which contributes to figuring out the approach to the reduction of wall heat loss. However, the near wall characteristics of heat transfer are still unclear. In this study, the premixed lean methane flame propagation was captured by the high-speed schlieren and the flame behavior in the near-wall region was investigated by the micro CH* chemiluminescence. The temporal histories of the wall temperature and the heat flux are measured by the co-axial thermocouple. The factors including the convective heat transfer coefficient and non-dimensionless numbers, Nusselt number and Reynolds number, were used to characterize the near wall characteristics. Also, the
Xuefeng, XueRun, ChenTie, Li
The LSPI (Low Speed Pre-Ignition) is one of the consecutive abnormal combustion cycles of supercharged SI engine with direct injection fuel supply system [1]. The LSPI occurs when the engine is running at low speed and high load condition. It is important for the SI engine to control essentially with alternative fuel, e-fuel and hydrogen in the future. It is considered that the LSPI would be caused by the autoignition of the deposit, the lubricating oil from ring crevice, the lubricating oil from piston crown and so on [2, 3, 4, 5]. Among of these causes, this research focuses on the scattering lubricating oil from piston crown. The previous our research has reported on the two points. One is about the frequency and quantity of the lubricating oil scattering from piston crown [6]. Another is about the frequency of abnormal combustion by the engine test [7]. As the result, it has been cleared that the frequency of abnormal combustion is 1/10 of scattering frequency of the lubricating
Omori, TakayaTanaka, Junya
Different approaches are undertaken to mitigate the impact of the transport sector on climate change. Alongside electrifying powertrains, sustainable e-fuels such as polyoxymethylene dimethyl ethers (OME) are considered a promising bridging technology for different applications. However, this requires that the engines are optimized for the new fuels. Accordingly, this study aims to optimize the numerical spray modeling of OME in CONVERGE. Based on the KH–RT break-up model, the spray simulations of three different commercial injectors for heavy-duty applications are analyzed regarding the predictability of the liquid and gaseous penetration lengths and the total simulation time. A sensitivity analysis is conducted for the turbulence model, mesh size, and spray parameters prior to optimizing the spray model and validating it with experimental results. While each parameter individually influences the different phases of the injection event, the sensitivity analysis reveals that the break
Zepf, AndreasHärtl, MartinJaensch, Malte
Increasing global pressure to reduce anthropogenic carbon emissions has inspired a transition from conventional petroleum-fueled internal combustion engines to alternative powertrains, including battery electric vehicles (EVs) and hybrids. Hybrids offer a promising solution for emissions reduction by addressing the limitations of pure EVs such as slow recharge and range anxiety. In a previous research endeavor, a prototype high-power density generator was meticulously designed, fabricated, and subjected to testing. This generator incorporated a compact permanent magnet brushless dynamo and a diminutive single-cylinder two-stroke engine with low-technology constructions. This prototype generated 8.5 kW of electrical power while maintaining a lightweight profile at 21 kg. This study investigates the performance and emissions reduction potential by adapting the prototype to operate on methanol fuel. Performance and emissions were experimentally evaluated under varying operating conditions
Gore, MattNonavinakere Vinod, KaushikFang, Tiegang
Controlling the combustion phasing of a multi-fuel compression ignition engine in varying ambient conditions, such as low temperature and pressure, is a challenging problem. Traditionally, engine control is achieved by performing experiments on the engine and building calibration maps. As the number of operating conditions increase, this becomes an arduous task, and model-based controllers have been used to overcome this challenge. While high-fidelity models accurately describe the combustion characteristics of an engine, their complexity limits their direct use for controller development. In recent years, data-driven models have gained much attention due to the available computation power and ease of model development. The accuracy of the developed models, which, in turn, dictates the controller’s performance, depends on the dataset used for building them. Several actuators are required to achieve reliable combustion across different operating conditions, and obtaining extensive
Govind Raju, Sathya AswathSun, ZongxuanKim, KennethKweon, Chol-Bum
Depletion of petroleum crude oil and its environmental impacts challenge future generations. Vegetable oils provide a sustainable alternative with benefits like anti-wear properties, biodegradability, and renewability. Kusum oil's ability to lower carbon emissions significantly and promote sustainable industrial practices highlights its potential as a viable green alternative. This research paper presents a comprehensive and comparative analysis of a sustainable, environmentally friendly bio-lubricant and nonedible vegetable oil like Kusum oil. Bio-lubricant is produced by transesterification followed by epoxidation, which is known as epoxidized kusum oil lubricant or dehydrated kusum oil (DKO). The process of epoxidation significantly enhances the properties of Kusum oil, making it a promising alternative to conventional lubricants. It is compared with a widely used conventional mineral oil lubricant like SAE10W40. DKO exhibits comparable density, viscosity index, pour point, and
Prabhakaran, JPali, Harveer SinghSingh, Nishant K.
In addition to electric vehicles (EVs), hydrogen fuel cell systems are gaining attention as energy-efficient propulsion options. However, designing fuel cell vehicles presents unique challenges, particularly in terms of storage systems for heavy hydrogen tanks. These challenges impact factors such as NVH (noise, vibration, and harshness) and safety performance. This study presents a topology optimization study for Hydrogen Energy Storage System (HESS) tank structure in Class 5 trucks, with a focus on enhancing the modal frequencies. The study considers a specific truck configuration with a HESS structure located behind the crew cab, consisting of two horizontally stacked hydrogen tanks and two tanks attached on both sides of the frame. The optimization process aimed to meet the modal targets of this hydrogen tank structure in the fore-aft (X) and lateral (Y) directions, while considering other load cases such as a simplified representation of GST (global static torsion), simplified
Yoo, Dong YeonChavare, SudeepViswanathan, SankarMouyianis, Adam
The majority of transportation systems continue to rely on internal combustion engines powered by fossil fuels. Heavy-duty applications, in particular, depend on diesel engines due to their high brake efficiency, power density, and robustness. Despite significant advancements in diesel engine technology that have reduced emissions and improved efficiency, complex and costly after-treatment systems remain necessary to meet the stringent emission regulations. Dimethyl ether (DME), which can be produced from various renewable feedstocks and possesses high chemical reactivity, is a promising alternative for heavy-duty applications, particularly in compression ignition direct injection engines. Its high reactivity, volatility, and oxygenated composition offer significant potential to address emission challenges while reducing reliance on after-treatment systems. However, DME’s lower energy density requires adjustments in injection parameters (such as injection pressure and duration) or
Cong, BinghaoLeblanc, SimonTjong, JimiTing, DavidYu, XiaoZheng, Ming
The Tour engine is a novel split-cycle internal combustion engine (ICE) that divides the four-stroke Otto cycle of a conventional ICE between two separate cylinders, an intake and compression cylinder and a second expansion and exhaust cylinder, interconnected by an innovative charge transfer mechanism. The engine working fluid, air and fuel, is inducted into the engine and compressed by a dedicated compression cylinder, transferred with minimal pressure loss via an input port to a specifically designed combined spool shuttle transfer mechanism and combustion chamber. It is then ignited and then transferred from the combustion chamber via an exit port to a separate expansion cylinder where it is expanded and exhausted from the engine. The primary advantage of the Tour engine is that it provides the engineering freedom to independently design, control and optimize the compression, combustion, and expansion processes within a slider-crank piston engine. By decoupling the compression
Tour, OdedCho, KukwonHofman, YehoramAnderson, BradleyKemmet, RyanMorris, DanielWahl, MichaelBhanage, PratikSivan, EhudTour, GiladAtkinson, ChrisTour, Hugo
Aluminum oxide (Al₂O₃) nanoparticles are considered a promising fuel additive to enhance combustion efficiency, reduce emissions, and improve fuel economy. This study investigates the spray characteristics of diesel fuel blended with aluminum oxide nanoparticles in a constant volume chamber. The blends were prepared by dispersing Al₂O₃ nanoparticles in diesel at varying concentrations (25, 50, and 100 mg of aluminum oxide nanoparticles into 1 L of pure diesel, respectively) using a magnetic stirrer and ultrasonication to ensure stable suspensions. Spray characterization was conducted in a high-pressure and high-temperature constant volume chamber, simulating actual engine conditions. The ambient temperatures for this experiment were set from 800 to 1200 K, and the oxygen concentrations were set from 21% to 13%. The study focused on key spray parameters such as spray penetration length, spray angle, and spray area, analyzed using high-speed imaging and laser diffraction techniques
Ji, HuangchangZhao, Zhiyu
To study the real driving emission characteristics of light-duty vehicles fueled with liquefied petroleum gas (LPG) and gasoline in a high-altitude city, experimental investigations were performed on two LPG taxis and three gasoline passenger cars in Lhasa using a portable emission measurement system (PEMS). The results reveal that the emission factors of CO2, CO, NOx, and HC of LPG taxis are 159.19±11.81, 18.38±9.73, 1.53±0.46, and 1.27±0.99 g/km, and those of gasoline cars are 223.51±23.1, 1.51±0.68, 0.27±0.16, and 0.06±0.04 g/km, respectively. The emissions show strong relationships with driving mode, which is considerably affected by driving behavior. Furthermore, as vehicle speed increases, the emission factors of both LPG taxis and gasoline cars decrease. The emission rates of both types of vehicles are low and change slightly at a vehicle specific power (VSP) of 0 kW/t or below; After that, the rates slowly increase initially and then increase rapidly with increasing VSP. These
Lyu, MengXu, YanHuang, MeihongWang, Yunjing
This research experimentally investigates the spray vaporization of high-pressure dimethyl ether (DME) using a single-hole research injector focusing on nominal operating conditions from the Engine Combustion Network (ECN). DME is a synthetic alternative to diesel fuel, offering both high reactivity and potential reductions in particulate emissions. Because DME only features half of the energy density of diesel fuel, a specifically designed fuel system with a high mass flow rate to meet the energy delivery requirements is needed. The unique physical properties of DME, including higher vapor pressure and lower viscosity, introduce challenges like cavitation and unique evaporation characteristics that deviate from typical diesel fuel. These features are likely to lead to differences in fuel mixing and combustion. This study aims to provide detailed experimental data on DME spray characteristics under engine-like conditions, helping the development of predictive CFD models for optimal
Yi, JunghwaWan, KevinPickett, LyleManin, Julien
Decarbonized or low carbon fuels, such as hydrogen/methane blends, can be used in internal combustion engines to support ambitious greenhouse gas (GHG) emission reduction goals worldwide, including achieving carbon neutrality by 2045. However, as the volumetric concentration of H2 in these fuel blends surpasses 30%, the in-cylinder flame propagation and combustion rates increase significantly, causing an unacceptable increase in nitrogen oxides (NOx) emissions, which is known to have substantial negative effects on human health and the environment. This rise in engine-out NOx emissions is a major concern, limiting the use of H2 fuels as a means to reduce GHG emissions from both mobile and stationary power generation engines. In this study, an experimental investigation of the combustion performance and emissions characteristics of a 4th generation Tour split-cycle engine was undertaken while operating on 100% methane and various hydrogen/methane fuel blends (30%, 40%, and 50% by volume
Bhanage, PratikCho, KukwonAnderson, BradleyKemmet, RyanTour, GiladAtkinson, ChrisTour, HugoTour, Oded
Dimethyl ether (DME) is widely regarded as a suitable energy source for compression ignition power systems because of its high reactivity. It has been widely reported that DME possesses a significantly low propensity to form soot, hindering the innate NOx-soot trade-off encountered with diesel fuel operation. Beyond the fuel-borne oxygen content of DME, its unique physical properties present a contrasting combustion behavior which may be advantageous to direct injection systems, especially concerning the mixing-controlled combustion mode. This work aims to detail the energy conversion efficacy of DME through heat release characterization and exhaust emission speciation. The tests were controlled within a single-cylinder research engine with an off-board high-pressure injection system to handle liquified DME up to 1000bar. To mitigate interference in fuel additives over the combustion behavior, the high-pressure fuel system specifically managed neat DME. The in-cylinder pressure was the
Leblanc, SimonCong, BinghaoLeach, JaceYu, XiaoReader, GrahamZheng, Ming
As part of decarbonization, alternative fuels are likely to be used in compression ignition internal combustion engines as a substitute for diesel fuel. There have been many studies on the effect of these alternative fuels on emissions and catalytic aftertreatment systems. Past research has reported lower particulate matter (PM) and higher oxides of nitrogen (NOx) with biofuels. However, there are limited studies on the effect of PM on the performance of diesel particulate filters (DPFs), especially in its effectiveness of PM filtration. PM emissions from four (4) types of fuels and five (5) of their blends, a total of nine fuels, were investigated using PM2.5 mass, soot mass, solid particle number (> 10 nm SPN10 and > 23 nm SPN23) and size distribution (6 nm to 560 nm) measurements at inlet and outlet of a DPF. The PM emissions were measured over a non-road regulatory cycle sequence consisting of five (5) non-road transient cycles (NRTCs) and five (5) non-road steady-state cycles
Lakkireddy, VenkataKhalek, ImadBuffaloe, Gina
Methanol is one of the most promising fuels for the decarbonization of the off-road and transportation sectors. Although methanol is typically considered an alternative fuel for spark ignition engines, mixing-controlled compression ignition (MCCI) combustion is typically preferred in most off-road and medium-and heavy-duty applications due to its high reliability, durability and high-efficiency. In this paper, methanol MCCI combustion was enabled using ignition improvers and the potential benefits of this approach compared to conventional diesel combustion were investigated. Methanol was blended with 7%vol of 2-ethylhexyl nitrate (EHN) and experiments were performed in a single-cylinder production-like diesel engine with a displacement volume of 0.8315 L and a compression ratio of 16.5:1. The conditions of the ISO 8178 C1 regulatory cycle for off-road engines were tested, and performance and emissions over the cycle were calculated. Methanol MCCI shows 5.3% lower fuel consumption (in
Lee, SangukLopez Pintor, DarioMacDonald, JamesNarayanan, AbhinandhanChan, Adrian
In order to reduce the environmental impact of transportation, the adoption of low and zero carbon fuel is needed to reduce the greenhouse gas emissions from engines, both from tailpipe and well-to-wheel perspectives. However, for some of the promising fuels, such as renewable natural gas and ammonia, the relatively low chemical reactivity and laminar flame speed bring challenge to a rapid and efficient combustion process, especially under lean or diluted conditions to suppress NOx emissions, leading to reduced combustion and thermal efficiencies. To tackle the challenge, high in-cylinder flow speed is needed to shorten the combustion duration, together with strong ignition sources to support the initial flame kernel development. In this paper, an ignition energy modulation system is developed to enhance both discharge current and discharge energy of a spark event to secure the ignition process. Moreover, a rapid compression machine is employed to compress the fuel-air mixture to the
Jin, LongYu, XiaoZhou, QingReader, GrahamLi, LiguangZheng, Ming
Renewable and alternative liquid fuels are being evaluated for their equivalence with ultra-low sulfur diesel (ULSD) in terms of engine and emission control system performance. Our previous research showed an elevated lightoff temperature for diesel oxidation catalyst (DOC) and lower DOC thermal efficiency for biodiesel blends into ULSD with more than 20% biodiesel. Here we report a similar DOC performance study to gage the performance of blends of biodiesel and hydrocarbon renewable diesel (RD) also made from fats and oils feedstocks. The same DOC used previously was used to evaluate RD blends with biodiesel up to 60 vol% (B60R40) in decrements of 10%. The performance of the DOC was evaluated on a steady-state performance cycle and a transient lightoff curve. Similar to previous results, the performance of the DOC is significantly affected by even low blend levels of biodiesel. At low flow rates 50% (B50R50) and higher biodiesel blends have a poor performance defined as the lightoff
Lakkireddy, VenkataWeber, PhillipMcCormick, RobertHowell, Steve
The low emission of carbon and minimum level of soot formation in combustion engines and turbines strategy is adopted by many countries to counteract global warming and climate change. The use of ammonia with hydrocarbon fuels can limit the formation of soot and carbon emissions due to non-carbon atoms. The current study explores the use of ammonia with air at coflow flame conditions, which was not tested before. It may give the choice for diesel cycle engines to use the ammonia either with air or fuel. The combustion and emission characteristics of methane coflow flame were studied at low pressure and air polluted by ammonia conditions. The results showed that a significant decline in carbon formation was observed when ammonia was boosted, 5-10%. The impact of sub-atmospheric pressure, 90-70 KPa, on COx development was higher than that of NH3 addition, 0-5%, thanks to the lower formation of hydroxymethylium, formaldehyde, and aldehyde radical. In the environment of lower pressure, the
Hina, AnamAkram, M ZuhaibShafa, AmnaAkram, M Waqar
Ammonia is a carbon-free fuel alternative for the internal combustion engine decarbonization. However, its toxicity and less advantageous combustion characteristics including higher nitrogen-based engine-out emissions have delayed its use in power generation applications. Therefore, the use of a secondary and also carbon-free fuel such as hydrogen was proposed in the literature as a solution to promote and improve ammonia combustion while minimizing any modifications in engine parameters and control strategy that may be required when compared to using conventional hydrocarbon-based fuels. In addition, the higher resistance to autoignition of ammonia can allow operation at higher compression ratios in spark ignition applications, therefore increasing the thermal efficiency. The study presented here used a single-cylinder heavy-duty research engine converted to spark ignition operation to investigate medium load engine operation with ammonia-hydrogen blends in which hydrogen represented
Alvarez, LuisSaenz Prado, StefanyTrujillo Grisales, JuanDumitrescu, Cosmin
Low-carbon alternatives to diesel are needed to reduce the carbon intensity of the transport, agriculture, and off-grid power generation sectors, where compression ignition (CI) engines are commonly used. Acid-catalysed alcoholysis produces a potentially tailorable low-carbon advanced biofuel blend comprised of mixtures of an alkyl levulinate, a dialkyl ether, and the starting alcohol. In this study, model mixtures based on products expected from the use of n-butanol (butyl-based blends) as a starting alcohol, were blended with diesel and tested in a Yanmar L100V single-cylinder CI engine. Blends were formulated to meet the flash point, density, and kinematic viscosity limits of fuel standards for diesel, the 2022 version of BS 2869 (off-road). No changes to the engine set-up were made, hence testing the biofuel blends for their potential as “drop-in” fuels. Changes in engine performance and emissions were determined for a range of diesel/biofuel blends and compared to a pure diesel
Wiseman, ScottLi, HuTomlin, Alison S.
Since the obvious difficulties in realizing a lightweight long-range full electric powertrain, Internal Combustion Engines (ICEs) are still the most suitable solution for heavy-duty mobility. In a fossil fuel free scenario, bioethanol is one of the most interesting alternative fuels. Its high-octane number, high latent heat of vaporization and high laminar flame speed guarantee high performance with reduced pollutant emissions compared to other Spark Ignition (SI) engine fuels. However, ethanol evaporation and corrosivity represent quite serious challenges. This work aims at investigating the actual performance of a heavy-duty turbocharged SI ICE fueled with ethanol at full load and different engine speeds. A 1-D numerical model that includes fuel evaporation sub-models was developed in order to evaluate the engine performance, ensuring ethanol evaporation in each operating condition. The 1-D numerical model was validated through an experimental campaign carried out with the above
Falbo, BiagioPerrone, DiegoCastiglione, Teresa
Fuel economy and the ability to maintain the state of charge (SOC) of the battery are two key metrics for the energy management of a full-power fuel cell hybrid vehicle fitted with a small-capacity battery pack. To achieve stable maintenance of SOC and near-optimal fuel consumption, this paper proposes an adaptive equivalent consumption minimization strategy (PA-ECMS) based on power prediction. The strategy realizes demand power prediction through a hybrid deep learning model, and periodically updates the optimal equivalent factor (EF) based on the predicted power to achieve SOC convergence and ensure fuel economy. Simulation results show that the hybrid deep learning network model has high prediction accuracy with a root mean square error (RMSE) of only 0.733 m/s. Compared with the traditional ECMS based on SOC feedback, the PA-ECMS effectively maintains the battery SOC in a more reasonable range, reduces the situation of the fuel cell directly charging the power cell in the high
Gao, XinyuJu, FeiChen, GangZong, YuhuaWang, Liangmo
The rapid advancement of alternative energy and energy-saving technologies in China underscores the importance of conducting a comprehensive analysis of the total cost of ownership (TCO) for commercial vehicles such as buses and trucks. To address the challenges of quantifying time-sensitive and implicit costs, this study has developed an extensive database and a web-based modeling tool to evaluate the TCO of these vehicles for the period 2020–2040. The tool allows for user-customized inputs and generates TCO estimates across multiple technology evolution scenarios, encompassing nearly 200 vehicle types categorized by class, intended use, and powertrain technology, within diverse technology development pathways. The model integrates critical cost factors, including vehicle purchase costs, financing costs, energy expenditures, and inconvenience costs, providing a detailed assessment of long-term ownership costs. Key findings indicate that under the reference scenario, battery electric
Tan, XiaoluOu, Shiqi(Shawn)Wu, ShuhongChen, YongjianLin, Zhenhong
Prior study with biodiesel and its blends with ultra-low sulfur diesel (ULSD) and renewable diesel (RD) showed that a commercial diesel oxidation catalyst (DOC) is unable to effectively oxidize neat biodiesel (B100) or high-level biodiesel blends injected into the exhaust of a diesel engine at challenging conditions of low temperature, high exhaust flow rate and high dosing rate. In steady-state performance tests, the performance of blends up to B50 in ULSD or RD was nearly equivalent to ULSD at the lowest exhaust flow rate or for exhaust temperature over 340°C for medium and high flows. ULSD blends above 50 vol% biodiesel exhibited reduced thermal efficiency and DOC outlet temperature with increasing dosing rate and required exhaust temperatures over 400°C to achieve similar performance as ULSD. For RD blends at higher flow rates and temperatures below 300°C even B10 blends showed some loss in performance at the highest dosing rates. Data showed an increase in lightoff temperature
Lakkireddy, VenkataWeber, PhillipMcCormick, RobertHowell, Steve
The paper documents the modeling and experimental work on a common rail fuel injection system for Dimethyl Ether, a potential diesel substitute with a low carbon intensity signature. The DME fuel system is deployed on a light duty 2.2L compression ignition engine. The paper describes the injector optimization to shift to higher flows to account for the lower heating value and density of the DME when compared to diesel. The type of the injection system used for the DME application is an advanced rendering of the Common rail noted for a one-piece piston-needle injector construction and a solenoid driven spill valve featuring a pressure balanced poppet. A dedicated high-pressure fuel pump designed to pressurize DME is used. The design results in a fast acting open and close injection event, reduced leakage, with reduced cavitation in the fuel injector volume. Design parameters for system optimization included fill and spill orifices, needle lift, bias spring, and injector hole size. The
De Ojeda, WilliamWu, Simon (Haibao)
Items per page:
1 – 50 of 8317