Browse Topic: Alternative fuels

Items (8,301)
In this study, a strategy for MCCI combustion of a novel alcohol fuel is demonstrated. The novel fuel, “GrenOl”, is the result of the catalytic upgrade of sustainable ethanol into alcohols of higher molecular weight. The composition of GrenOl includes approximately 70% 1-butanol, 15% 1-hexanol, and 5% 1-octanol by mass, resulting in a cetane number around 18. In order to achieve mixing-controlled compression ignition with GrenOl, an exhaust rebreathing strategy is employed. In this strategy, the exhaust valve reopens for a part of the intake stroke, inducting hot exhaust into the cylinder and preheating the fresh air. This study investigates the feasibility of operating with such a valve strategy from idle to peak torque. At idle, the primary challenge is ensuring stable combustion by inducting adequate exhaust to achieve ignition. Under load, when cylinder temperatures are higher, the primary challenge is ensuring sufficient air is inducted to achieve the target torque. It was found
Trzaska, JosephXu, ZhihaoBoehman, André L.
Ethers are emerging as suitable mineral diesel replacements. A customized mechanical fuel injection system was used to investigate the dimethyl ether–fueled genset/tractor, and ~75% rated engine load was achieved over diesel. The in-cylinder pressure rise rate was about half for the dimethyl ether engine. However, the lower pressure generated in the high-pressure dimethyl ether line reduced brake thermal efficiency for the dimethyl ether engine. Dimethyl ether engines emitted lower nitrogen oxide emissions than baseline diesel except at higher loads and reduced nozzle opening pressure. Carbon monoxide emissions increased due to prolonged and incomplete combustion at higher loads with reduced nozzle opening pressure. Blowby gas leakage was lower for dimethyl ether than for baseline diesel engines. Overall, the genset/tractor engine could perform satisfactorily using a customized fuel injection system and will help achieve carbon neutrality from the various sectors using this technology.
Agarwal, Avinash KumarPal, ManojitValera, Hardikk
Due to the continuous decrease in fossil fuel resources, and drawbacks of some biofuel properties, in addition to restricted environmental concerns, it becomes a vital manner to innovate some approaches for energy saving and emission reduction. One of the promising approaches is to enhance the fuel properties via adding nanoparticles. Carbon nanotubes (CNTs) blended with biofuels get extensive investigations by researchers using conventional diesel engines at relatively limited operating regimes. The objective of this work is to extend these studies using diesel fuel, rather than biofuels, on a high-injection pressure (1400–1600 bar) common rail diesel engine at wide operating conditions and higher CNT concentrations. Experimental results show an increase in peak pressure up to 24.46% than pure diesel when using 100 ppm CNTs concentration. Also, BSFC has decreased by 33.19%, and BTE increased by 54.2% compared to pure diesel fuel at high speeds and loads. NOx and CO2 emissions raised
Moaayet, SayedNeseem, Waleed MohamedAmin, Mohamed IbrahimShahin, Motasem Abdelbaky
As the suitable substitutes for diesel in compression-ignition (CI) piston engines, hydrotreated vegetable oil (HVO), polyoxymethylene dimethyl ethers (PODEs), and bio-aviation fuel (BAF), among other oxygenated alternative fuels have been widely recognized due to higher cetane values. To explore the in-cylinder fuel spray dynamics and subsequent fuel–air entrainment of these fuels, experimental studies on near-field and full-field spray characteristics were carried out by the diffuser back-illumination imaging (DBI) method within a constant-volume chamber. The local velocity was inferred by momentum flux conservation and Gaussian radial profile assumption, and the dimensionless Jet number was introduced to qualify the strength of interaction within two-phase flow. It was found that the initial spray transitions from a “needle” to a larger spray head structure as injection pressure rises, especially with PODE3-5 exhibiting a stable “mushroom” structure due to its higher surface tension
Chen, HouchangJiang, JunxinHu, YongYu, WenbinZhao, Feiyang
Liquefied petroleum gas (LPG) is a popular alternative fuel in the transportation sector as a result of its favorable physical and chemical properties, availability, and relatively lower emissions compared to conventional fuels. However, much of its use is currently in light-duty applications, usually in manifold or port-injected configurations primarily due to their simplicity and ease of conversion. However, there are shortfalls in heavy-duty applications where decarbonization efforts are direly needed. The key reasons for this shortfall in alternative fuel adoption in the heavy-duty sector are the deficit in engine performance when compared to conventional heavy-duty diesel engines and the lack of specialized hardware to bridge this performance gap, for example, direct injectors optimized for LPG fuel operation on large-bore engines. To address this, this study evaluated the performance, emissions, and combustion characteristics of a heavy-duty single-cylinder research engine, the
Fosudo, ToluwalaseWindom, BretOlsen, Daniel
Compressed Natural Gas (CNG) engines are emerging as a viable alternative to gasoline and diesel in heavy commercial and passenger transport worldwide. They offer reduced CO₂ emissions and support energy independence in regions rich in natural gas. In India, enhanced CNG infrastructure and strict emission regulations have driven OEMs to develop CNG vehicles across all segments. Moreover, from a noise and vibration standpoint, CNG vehicles are expected to deliver cabin refinement comparable to that of their fossil fuel counterparts. However, one of the major challenges associated with CNG vehicles is the excitation due to additional components like CNG Pressure Regulator, Injector et al. The operational metallic/pulsation noises are generally higher as compared to liquid fuels like gasoline due to dry nature of the CNG fuel. This paper describes in detail the pulsation noise phenomena encountered during one of the late-stage vehicle development projects. An experimental root cause
Chatterjee, JoydeepRavindran, Mugundaram
The goal of the development of an electric aircraft engine is to create an aircraft system that achieves ultimate efficiency using hydrogen fuel instead of fossil fuels. Therefore, it is necessary to focus on reducing weight as much as possible, and this paper describes the approach to such fuel cell-powered aircraft. The authors have adopted a superconducting coreless rotating electric machine with an integrated hydrogen tank and are pursuing a target of 70kg or less for the main components of a 2MW rotating electric machine. High-temperature superconducting cables have zero electrical resistance and can carry a very high current density, but the alternating current (AC) loss generated when used in AC has been an issue in their application to rotating electric machines. In 2023, The SCSC cable was developed to be a low-AC-loss, robust, and high current cable concept, in which copper-plated multifilament coated conductors are wound spirally on a core. In addition to using this
Oyori, HitoshiSakurai, ShoKusase, ShinYoshida, YukihiroYoshinaga, SeiichiroNose, HiroyukiAmemiya, Naoyuki
Muelaner, Jody EmlynMoran, MatthewPhillips, Paul
Lin, RuiAdas, Camilo Abduch
Exhaust gas recirculation (EGR) is widely used in spark ignition engines to reduce throttling losses, decrease exhaust gas temperatures, increase efficiency, and suppress knock. However, the effectiveness of EGR as a knock suppressor is dependent on the fuel type and operating condition. In this study, the effectiveness of EGR to suppress knock was tested with E10, E30, E50, E75, and E100 at a moderately boosted condition. It was found that EGR was effective at suppressing knock with E10, but high EGR rates were required to achieve a knock suppression effect with E30 and E50. No knock suppression effect was observed with E75 and E100 across all tested EGR rates. With E30 and E50, EGR that was passed through a three-way catalyst was more effective at suppressing knock at all EGR rates. Chemkin modeling with neat ethanol revealed that nitric oxide enhanced ignition by increasing the hydroxyl radical concentration in the end gas, resulting in earlier auto-ignition. Directly seeding nitric
Gandolfo, JohnGainey, BrianLawler, Benjamin
Flex fuel vehicles (FFV) can operate effectively from E5 (Gasoline 95%, ethanol 5%) fuel to E100 (Gasoline 0%, ethanol 100%) fuel. It is necessary to meet the performance, drivability, emission targets and regulatory requirements irrespective of fuel mixture combination. This research work focuses on optimizing the combustion efficiency and conversion efficiency of catalytic converter of a spark-ignited less than 200 cc engine for FFV using Taguchi methods robust optimization technique. The study employs an eight-step robust optimization approach to simultaneously minimize engine out emissions and maximize catalytic converter efficiency. Six control factors including type of fuel, catalyst heating rpm, lambda (excess-air ratio), injection end angle, lambda controller delay, and ignition timing are optimized. Four noise factors like compression ratio, clearance volume, catalyst noble metal loading, and catalyst aging are also considered. Through approximately 100 physical experiments on
Vaidyanathan, BalajiArunkumar, PraveenkumarShunmugasundaram, PalaniMurugesan, ManickamJayajothijohnson, Vedhanayagam
Ozone (O3) was introduced into the intake air in a natural gas fueled engine ignited by micro-pilot of diesel fuel, to utilize the reactive O-radicals decomposed from the O3 for the promotion of the combustion and for improvements in the thermal efficiency and exhaust emissions. Experiments were carried out in a single cylinder engine to elucidate the effects of the ozone addition under the lean burn conditions. A supercharger was employed to increase the intake air amount and vary the equivalence ratio of natural gas. The experimental results showed that the O3 addition has a limited effect on the ignition of the diesel fuel injected near top dead center, while the heat release during the flame propagation in the natural gas/air mixture was increased at the lower equivalence ratio of natural gas. Further the ignition of natural gas was promoted, resulting in the increase of the combustion efficiency and the degree of constant volume heat release. The cooling loss and the NOx emissions
Kobashi, YoshimitsuMiyata, ShokiKawahara, NobuyukiInagaki, Ryuya
The use of hydrogen as a sustainable fuel in the short term is hampered by the impossibility of large scale use due low availability. In order to promote decarbonization, complementary solution for a smooth transition is to dilute it in a mixture with methane, in a current Port Fuel Injection (PFI) internal combustion engine (ICE). This can be done as a retrofit after limited structural modifications, such as the introduction of a passive prechamber. Such a solution allows a reduction of the carbon footprint of traditional ICEs through more efficient combustion (both the prechamber technology and the hydrogen fuel properties promote an increase in combustion speed) and a reduced carbon content in the fuel. The present research activity has been carried out through numerical investigation based on three-dimensional CFD analyses to simulate the behavior of a natural gas engine fueled with CH4-H2 blends. The combustion mechanism for the fuel blend was validated against measurements of the
Balduzzi, FrancescoFerrara, GiovanniDi Iorio, SilvanaSementa, Paolo
It is widely known that with decreasing oil reserves on a global scale there is a need for alternative energy sources. Therefore, the introduction of various alternative fuels is of utmost importance. One way of producing alternative fuels is the Thermo-catalytic Reforming (TCR) process which was developed by the Fraunhofer-Institute for Environmental, Safety and Energy Technology (UMSICHT). For an application in conventional diesel engines, however, it is important to investigate the spray behavior of such TCR Diesel fuels in comparison to conventional Diesel fuels under engine-like operating conditions. Two different batches of TCR Diesel were compared with conventional Diesel fuels. The results show batch-dependent significant differences in the penetration length of liquid and vapor as well as in the spray area, which gives clear indications of altered mixture formation quality. Furthermore, ignition timing and ignition location were evaluated for reactive conditions using OH
Seeger, JanTaschek, MarcoApfelbacher, AndreasStrauß, LukasRieß, SebastianWensing, Michael
The use of small 2-stroke crankcase scavenged engines running on hydrogen is very attractive for low power rates, when low cost and compact dimensions are the fundamental design constraints. However, achieving optimal performance with hydrogen fuel presents challenges, including uneven air-fuel mixtures, fuel losses, and crankcase backfiring. This research focuses on a small 50cc 2-stroke loop-scavenged engine equipped with a patented Low-Pressure Direct Injection (LPDI) system, modified for hydrogen use. Experimental results demonstrate performance comparable to the gasoline counterpart, but further optimizations are needed. Consequently, CFD-3D simulations are employed to analyses the injection process and guide engine development. The numerical analysis focuses on a fixed operating condition: 6000 rpm, Wide Open Throttle (WOT), with a slightly lean mixture and injection pressure fixed at 5 bar. A numerical model of the entire engine is set up with the primary objective of improving
Caprioli, StefanoSchoegl, OliverOswald, RolandKirchberger, RolandMattarelli, EnricoRinaldini, Carlo Alberto
Reducing CO2 emissions is now a major focus in India heading towards net zero emissions by 2070. India is the 3rd largest automobile market in the world and the transportation sector is the 3rd largest CO2 emitter. In this direction, it is necessary to reduce the carbon footprint from the automobile sector to combat climate change. The adoption of sustainable biofuels such as ethanol will enable us to reduce emissions, as ethanol is carbon neutral fuel. However, vehicle manufacturers are facing challenges in manufacturing flex fuel compatible parts in the vehicle mainly fuel systems. Ethanol has both nonpolar and polar bonds, making it miscible to both gasoline and water, thereby water contamination is inevitable in ethanol blend fuels. In addition, control of ethanol contamination by sulfates and chlorides during ethanol production is challenging. Thus, ethanol blend fuels are considered more corrosive and tendency towards deposit formation than normal gasoline fuels. Design and
Pandi, Dinesh BabuShanmugam, Gomathy PriyaNagarkatti, ArunGopal, ManishAnbalagan, Prathap
Since proportion of wall heat loss takes as high as 20-30% of the total engine heat loss, the reduction of wall heat loss is considered as an effective way to improve the engine thermal efficiency. The heat transfer near the wall boundary layer plays a significant role on the exploration about the mechanism of wall heat transfer which contributes to figuring out the approach to the reduction of wall heat loss. However, the near wall characteristics of heat transfer are still unclear. In this study, the premixed lean methane flame propagation was captured by the high-speed schlieren and the flame behavior in the near-wall region was investigated by the micro CH* chemiluminescence. The temporal histories of the wall temperature and the heat flux are measured by the co-axial thermocouple. The factors including the convective heat transfer coefficient and non-dimensionless numbers, Nusselt number and Reynolds number, were used to characterize the near wall characteristics. Also, the
Xuefeng, XueRun, ChenTie, Li
The spark ignited two-stroke engine, as a cost-efficient power unit with low maintenance demand, is used millionfold for the propulsion of hand-held application, motorcycles, scooters, boats and others. The outstanding power to weight ratio is the key advantage for two-stroke engines. However, poor exhaust emissions, caused by high scavenge losses, especially on port controlled two-stroke engines, and a low efficiency are disadvantages of this combustion process. Under the aspect of increasing environment- and health awareness, the two-stroke technology driven with fossil resources, shows no future advantage. The anthropogenic climate change force for sustainable development of combustion engines whereby reduction of fuel consumption or usage of alternative fuels is an important factor. Best way of a decarbonization to fulfil future climate goals is the utilization of non-carbon fuels. In this field of fuels, hydrogen, with its high energy content and close inexhaustible availability
Yasuda, TerutakaOswald, RolandKirchberger, Roland
The LSPI (Low Speed Pre-Ignition) is one of the consecutive abnormal combustion cycles of supercharged SI engine with direct injection fuel supply system [1]. The LSPI occurs when the engine is running at low speed and high load condition. It is important for the SI engine to control essentially with alternative fuel, e-fuel and hydrogen in the future. It is considered that the LSPI would be caused by the autoignition of the deposit, the lubricating oil from ring crevice, the lubricating oil from piston crown and so on [2, 3, 4, 5]. Among of these causes, this research focuses on the scattering lubricating oil from piston crown. The previous our research has reported on the two points. One is about the frequency and quantity of the lubricating oil scattering from piston crown [6]. Another is about the frequency of abnormal combustion by the engine test [7]. As the result, it has been cleared that the frequency of abnormal combustion is 1/10 of scattering frequency of the lubricating
Omori, TakayaTanaka, Junya
In the ongoing effort to decarbonize energy supply, a notable shift involves the conversion or retrofitting of combined heat and power plants to operate on hydrogen as an alternative to natural gas. In this transformative landscape, extensive research is underway to develop and explore innovative combustion processes for hydrogen-fueled engines, aiming to comprehend and optimize combustion processes concerning both engine performance and emissions. Among the various methods available for monitoring the combustion process and engine control, ion current sensing presents itself as a viable option. A unique feature of this research lies in utilizing the engine's spark plug itself as an electrical sensor, measuring the ion current generated during the flame development and combustion processes. Given the limited research on ion current sensing for hydrogen combustion processes, a series of experiments were conducted and presented in this work. These experiments involved sweeps of water-to
Salim, NaqibBeltaifa, YoussefKettner, MauriceLoose, OliverWeißgerber, Tycho
In order to rapidly achieve the goal of global net-zero carbon emissions, ammonia (NH3) has been deemed as a potential alternative fuel, and reforming partial ammonia to hydrogen using engine exhaust waste heat is a promising technology which can improve the combustion performance and reduce the emission of ammonia-fueled engines. However, so far, comprehensive research on the correlation between the reforming characteristic for accessible engineering applications of ammonia catalytic decomposition is not abundant. Moreover, relevant experimental studies are far from sufficient. In this paper, we conducted the experiments of catalytic decomposition of ammonia into hydrogen based on a fixed-bed reactor with Ru-Al2O3 catalysts to study the effects of reaction temperature, gas hour space velocity (GHSV) and reaction pressure on the decomposition characteristics. At the same time, energy flow analysis was carried out to explore the effects of various reaction conditions on system
Li, ZeLi, TieChen, RunLi, ShiyanZhou, XinyiWang, Ning
One way to decarbonize spark-ignition (SI) engines is to use alternative fuels to improve thermal efficiency. Compressed biomethane gas (CBG), mainly composed of methane and carbon dioxide produced from food waste, has attracted attention as an alternative fuel, but its carbon dioxide content is indeterminate. This study investigates the effects of carbon dioxide content on engine performance (thermal efficiency, etc.), emission characteristics, and turbulent burning velocity using a CBG surrogate fuel mixed with methane and carbon dioxide. A single-cylinder SI engine is used as the test engine, and experiments are conducted under different load conditions with a constant crank angle of 50% mass fraction burned (CA50). Engine performance is analyzed based on heat balance from in-cylinder pressure analysis. Emission characteristics are measured using an emission gas analyzer. Using the boundary conditions obtained from the experiments, parameters such as unstretched laminar burning
Kobayashi, TakumaShimizu, TaketoshiYoshimura, KeiSok, RatnakKusaka, Jin
This study aims to investigate the effect of ethanol blends on flame propagation and auto-ignition under high pressure and high temperature conditions. Experimental investigations are conducted using n-C7H16 / ethanol blends at various blending ratios (0, 5, 10, 20, 40, 70, and 100 vol%). The blends are premixed with air at stoichiometric ratios and ignited centrally in a cylindrical constant-volume combustion chamber (20-mm inner diameter, 80-mm long) under elevated temperature (500 K) and pressure (1.0 MPa) conditions. The results show that auto-ignition occurs at an ethanol blend ratio of 10% or less and ceases above 20%. Increasing the ethanol blend to 70% results in a slight change in flame propagation speed, with a noticeable delay at 100%. The pressure measurements show a peak of about 5.6 MPa at a blend ratio of 5%, which gradually decreases with increasing ratios. High-pass filtering reveals the maximum pressure fluctuation amplitude at the 5% blend ratio, indicating increased
Tateishi, TokuaYamaguchi, RikiShimokuri, DaisukeTerashima, HiroshiHara, TakayaHonda, YuyaKawano, Michiharu
Different approaches are undertaken to mitigate the impact of the transport sector on climate change. Alongside electrifying powertrains, sustainable e-fuels such as polyoxymethylene dimethyl ethers (OME) are considered a promising bridging technology for different applications. However, this requires that the engines are optimized for the new fuels. Accordingly, this study aims to optimize the numerical spray modeling of OME in CONVERGE. Based on the KH–RT break-up model, the spray simulations of three different commercial injectors for heavy-duty applications are analyzed regarding the predictability of the liquid and gaseous penetration lengths and the total simulation time. A sensitivity analysis is conducted for the turbulence model, mesh size, and spray parameters prior to optimizing the spray model and validating it with experimental results. While each parameter individually influences the different phases of the injection event, the sensitivity analysis reveals that the break
Zepf, AndreasHärtl, MartinJaensch, Malte
Increasing global pressure to reduce anthropogenic carbon emissions has inspired a transition from conventional petroleum-fueled internal combustion engines to alternative powertrains, including battery electric vehicles (EVs) and hybrids. Hybrids offer a promising solution for emissions reduction by addressing the limitations of pure EVs such as slow recharge and range anxiety. In a previous research endeavor, a prototype high-power density generator was meticulously designed, fabricated, and subjected to testing. This generator incorporated a compact permanent magnet brushless dynamo and a diminutive single-cylinder two-stroke engine with low-technology constructions. This prototype generated 8.5 kW of electrical power while maintaining a lightweight profile at 21 kg. This study investigates the performance and emissions reduction potential by adapting the prototype to operate on methanol fuel. Performance and emissions were experimentally evaluated under varying operating conditions
Gore, MattNonavinakere Vinod, KaushikFang, Tiegang
Depletion of petroleum crude oil and its environmental impacts challenge future generations. Vegetable oils provide a sustainable alternative with benefits like anti-wear properties, biodegradability, and renewability. Kusum oil's ability to lower carbon emissions significantly and promote sustainable industrial practices highlights its potential as a viable green alternative. This research paper presents a comprehensive and comparative analysis of a sustainable, environmentally friendly bio-lubricant and nonedible vegetable oil like Kusum oil. Bio-lubricant is produced by transesterification followed by epoxidation, which is known as epoxidized kusum oil lubricant or dehydrated kusum oil (DKO). The process of epoxidation significantly enhances the properties of Kusum oil, making it a promising alternative to conventional lubricants. It is compared with a widely used conventional mineral oil lubricant like SAE10W40. DKO exhibits comparable density, viscosity index, pour point, and
Prabhakaran, JPali, Harveer SinghSingh, Nishant K.
The transition to fully sustainable fuels, like ethanol, for Formula 1 power units in 2026 introduces challenges related to engine performance and emissions. The lower energy content of these fuels can have a negative impact on power output, while the increased levels of formaldehyde produced during combustion pose an environmental concern. This study aims to evaluate engine performance while meeting the FIA’s 2026 regulations using numerical simulations and to develop a method for estimating formaldehyde emissions produced during combustion. An F1 power unit model was developed in GT-Suite, incorporating all relevant regulations for 2026. The model was validated against literature data for combustion characteristics, such as laminar and turbulent flame speeds, and friction losses. Additionally, compliance with operational limits, such as energy flow restrictions, was confirmed. Suitable elementary and global reaction mechanisms for formation and destruction of formaldehyde were
Fuss, NadineSamuel, Stephen
Ammonia is a carbon-free fuel alternative for the internal combustion engine decarbonization. However, its toxicity and less advantageous combustion characteristics including higher nitrogen-based engine-out emissions have delayed its use in power generation applications. Therefore, the use of a secondary and also carbon-free fuel such as hydrogen was proposed in the literature as a solution to promote and improve ammonia combustion while minimizing any modifications in engine parameters and control strategy that may be required when compared to using conventional hydrocarbon-based fuels. In addition, the higher resistance to autoignition of ammonia can allow operation at higher compression ratios in spark ignition applications, therefore increasing the thermal efficiency. The study presented here used a single-cylinder heavy-duty research engine converted to spark ignition operation to investigate medium load engine operation with ammonia-hydrogen blends in which hydrogen represented
Alvarez, LuisSaenz Prado, StefanyTrujillo Grisales, JuanDumitrescu, Cosmin
Aluminum oxide (Al₂O₃) nanoparticles are considered a promising fuel additive to enhance combustion efficiency, reduce emissions, and improve fuel economy. This study investigates the spray characteristics of diesel fuel blended with aluminum oxide nanoparticles in a constant volume chamber. The blends were prepared by dispersing Al₂O₃ nanoparticles in diesel at varying concentrations (25, 50, and 100 mg of aluminum oxide nanoparticles into 1 L of pure diesel, respectively) using a magnetic stirrer and ultrasonication to ensure stable suspensions. Spray characterization was conducted in a high-pressure and high-temperature constant volume chamber, simulating actual engine conditions. The ambient temperatures for this experiment were set from 800 to 1200 K, and the oxygen concentrations were set from 21% to 13%. The study focused on key spray parameters such as spray penetration length, spray angle, and spray area, analyzed using high-speed imaging and laser diffraction techniques
Ji, HuangchangZhao, Zhiyu
To study the real driving emission characteristics of light-duty vehicles fueled with liquefied petroleum gas (LPG) and gasoline in a high-altitude city, experimental investigations were performed on two LPG taxis and three gasoline passenger cars in Lhasa using a portable emission measurement system (PEMS). The results reveal that the emission factors of CO2, CO, NOx, and HC of LPG taxis are 159.19±11.81, 18.38±9.73, 1.53±0.46, and 1.27±0.99 g/km, and those of gasoline cars are 223.51±23.1, 1.51±0.68, 0.27±0.16, and 0.06±0.04 g/km, respectively. The emissions show strong relationships with driving mode, which is considerably affected by driving behavior. Furthermore, as vehicle speed increases, the emission factors of both LPG taxis and gasoline cars decrease. The emission rates of both types of vehicles are low and change slightly at a vehicle specific power (VSP) of 0 kW/t or below; After that, the rates slowly increase initially and then increase rapidly with increasing VSP. These
Lyu, MengXu, YanHuang, MeihongWang, Yunjing
Dimethyl ether (DME) is widely regarded as a suitable energy source for compression ignition power systems because of its high reactivity. It has been widely reported that DME possesses a significantly low propensity to form soot, hindering the innate NOx-soot trade-off encountered with diesel fuel operation. Beyond the fuel-borne oxygen content of DME, its unique physical properties present a contrasting combustion behavior which may be advantageous to direct injection systems, especially concerning the mixing-controlled combustion mode. This work aims to detail the energy conversion efficacy of DME through heat release characterization and exhaust emission speciation. The tests were controlled within a single-cylinder research engine with an off-board high-pressure injection system to handle liquified DME up to 1000bar. To mitigate interference in fuel additives over the combustion behavior, the high-pressure fuel system specifically managed neat DME. The in-cylinder pressure was the
Leblanc, SimonCong, BinghaoLeach, JaceYu, XiaoReader, GrahamZheng, Ming
As part of decarbonization, alternative fuels are likely to be used in compression ignition internal combustion engines as a substitute for diesel fuel. There have been many studies on the effect of these alternative fuels on emissions and catalytic aftertreatment systems. Past research has reported lower particulate matter (PM) and higher oxides of nitrogen (NOx) with biofuels. However, there are limited studies on the effect of PM on the performance of diesel particulate filters (DPFs), especially in its effectiveness of PM filtration. PM emissions from four (4) types of fuels and five (5) of their blends, a total of nine fuels, were investigated using PM2.5 mass, soot mass, solid particle number (> 10 nm SPN10 and > 23 nm SPN23) and size distribution (6 nm to 560 nm) measurements at inlet and outlet of a DPF. The PM emissions were measured over a non-road regulatory cycle sequence consisting of five (5) non-road transient cycles (NRTCs) and five (5) non-road steady-state cycles
Lakkireddy, VenkataKhalek, ImadBuffaloe, Gina
Renewable and alternative liquid fuels are being evaluated for their equivalence with ultra-low sulfur diesel (ULSD) in terms of engine and emission control system performance. Our previous research showed an elevated lightoff temperature for diesel oxidation catalyst (DOC) and lower DOC thermal efficiency for biodiesel blends into ULSD with more than 20% biodiesel. Here we report a similar DOC performance study to gage the performance of blends of biodiesel and hydrocarbon renewable diesel (RD) also made from fats and oils feedstocks. The same DOC used previously was used to evaluate RD blends with biodiesel up to 60 vol% (B60R40) in decrements of 10%. The performance of the DOC was evaluated on a steady-state performance cycle and a transient lightoff curve. Similar to previous results, the performance of the DOC is significantly affected by even low blend levels of biodiesel. At low flow rates 50% (B50R50) and higher biodiesel blends have a poor performance defined as the lightoff
Lakkireddy, VenkataWeber, PhillipMcCormick, RobertHowell, Steve
Recently, global interest in hydrogen as a powerful, promising and clean source of energy has increased. Green hydrogen production (GHP) is considered one of the most important modern projects worldwide, as it is the way to achieve a clean, healthy and sustainable environment. GHP plays a major role to improve public health. There are several methods for producing or harvesting green hydrogen, the most famous of which are: 1) The electrolysis of water using a proton exchange membrane and metal foam at low temperatures and 2) Flash Joule Heating (FJH) method for heating plastic waste at high temperatures using low-carbon emissions technology. However, both methods still suffer from some difficulties. This calls for the need to search for scientific solutions to make hydrogen available at reasonable prices. While the first method is considered better for producing high-purity hydrogen compared to the second method, it faces challenges in collecting hydrogen on the surface of the negative
Hamed, Maryam SalahAli, Salah H. R.
In order to reduce the environmental impact of transportation, the adoption of low and zero carbon fuel is needed to reduce the greenhouse gas emissions from engines, both from tailpipe and well-to-wheel perspectives. However, for some of the promising fuels, such as renewable natural gas and ammonia, the relatively low chemical reactivity and laminar flame speed bring challenge to a rapid and efficient combustion process, especially under lean or diluted conditions to suppress NOx emissions, leading to reduced combustion and thermal efficiencies. To tackle the challenge, high in-cylinder flow speed is needed to shorten the combustion duration, together with strong ignition sources to support the initial flame kernel development. In this paper, an ignition energy modulation system is developed to enhance both discharge current and discharge energy of a spark event to secure the ignition process. Moreover, a rapid compression machine is employed to compress the fuel-air mixture to the
Jin, LongYu, XiaoZhou, QingReader, GrahamLi, LiguangZheng, Ming
The Tour engine is a novel split-cycle internal combustion engine (ICE) that divides the four-stroke Otto cycle of a conventional ICE between two separate cylinders, an intake and compression cylinder and a second expansion and exhaust cylinder, interconnected by an innovative charge transfer mechanism. The engine working fluid, air and fuel, is inducted into the engine and compressed by a dedicated compression cylinder, transferred with minimal pressure loss via an input port to a specifically designed combined spool shuttle transfer mechanism and combustion chamber. It is then ignited and then transferred from the combustion chamber via an exit port to a separate expansion cylinder where it is expanded and exhausted from the engine. The primary advantage of the Tour engine is that it provides the engineering freedom to independently design, control and optimize the compression, combustion, and expansion processes within a slider-crank piston engine. By decoupling the compression
Tour, OdedCho, KukwonHofman, YehoramAnderson, BradleyKemmet, RyanMorris, DanielWahl, MichaelBhanage, PratikSivan, EhudTour, GiladAtkinson, ChrisTour, Hugo
Since the obvious difficulties in realizing a lightweight long-range full electric powertrain, Internal Combustion Engines (ICEs) are still the most suitable solution for heavy-duty mobility. In a fossil fuel free scenario, bioethanol is one of the most interesting alternative fuels. Its high-octane number, high latent heat of vaporization and high laminar flame speed guarantee high performance with reduced pollutant emissions compared to other Spark Ignition (SI) engine fuels. However, ethanol evaporation and corrosivity represent quite serious challenges. This work aims at investigating the actual performance of a heavy-duty turbocharged SI ICE fueled with ethanol at full load and different engine speeds. A 1-D numerical model that includes fuel evaporation sub-models was developed in order to evaluate the engine performance, ensuring ethanol evaporation in each operating condition. The 1-D numerical model was validated through an experimental campaign carried out with the above
Falbo, BiagioPerrone, DiegoCastiglione, Teresa
The low emission of carbon and minimum level of soot formation in combustion engines and turbines strategy is adopted by many countries to counteract global warming and climate change. The use of ammonia with hydrocarbon fuels can limit the formation of soot and carbon emissions due to non-carbon atoms. The current study explores the use of ammonia with air at coflow flame conditions, which was not tested before. It may give the choice for diesel cycle engines to use the ammonia either with air or fuel. The combustion and emission characteristics of methane coflow flame were studied at low pressure and air polluted by ammonia conditions. The results showed that a significant decline in carbon formation was observed when ammonia was boosted, 5-10%. The impact of sub-atmospheric pressure, 90-70 KPa, on COx development was higher than that of NH3 addition, 0-5%, thanks to the lower formation of hydroxymethylium, formaldehyde, and aldehyde radical. In the environment of lower pressure, the
Hina, AnamAkram, M ZuhaibShafa, AmnaAkram, M Waqar
Methanol is one of the most promising fuels for the decarbonization of the off-road and transportation sectors. Although methanol is typically considered an alternative fuel for spark ignition engines, mixing-controlled compression ignition (MCCI) combustion is typically preferred in most off-road and medium-and heavy-duty applications due to its high reliability, durability and high-efficiency. In this paper, methanol MCCI combustion was enabled using ignition improvers and the potential benefits of this approach compared to conventional diesel combustion were investigated. Methanol was blended with 7%vol of 2-ethylhexyl nitrate (EHN) and experiments were performed in a single-cylinder production-like diesel engine with a displacement volume of 0.8315 L and a compression ratio of 16.5:1. The conditions of the ISO 8178 C1 regulatory cycle for off-road engines were tested, and performance and emissions over the cycle were calculated. Methanol MCCI shows 5.3% lower fuel consumption (in
Lee, SangukLopez Pintor, DarioMacDonald, JamesNarayanan, AbhinandhanChan, Adrian
Items per page:
1 – 50 of 8301