Browse Topic: Alternative fuels

Items (8,466)
Carbon-free fuels present a potential solution for achieving climate-neutral operation of marine engines. However, their availability is minimal at the moment, though a steady increase can be expected in the coming years. During this transition phase, engine concepts that offer conventional diesel operation and a partial blending of alternative fuels to substitute diesel become interesting. This can be achieved, for example, by blending hydrogen in the intake air of a diesel engine, known as hydrogen fuel-share. Due to the high reactivity of hydrogen, its use in engines is limited by abnormal combustion phenomena (e.g., pre-ignition, knocking combustion), which current research on pure gas engines has shown to be strongly promoted by lube oil reactivity. Building on these fundamental investigations, this paper examines the influence of lubricating oil on the combustion characteristics of a H2 fuel-share medium-speed diesel engine and quantifies the potential to increase the hydrogen
Achenbach, TobiasMeinert, RobertMahler, KayKunkel, ChristianRösler, SebastianPrager, MaximilianJaensch, Malte
The aim of this study is to develop a methodology to significantly reduce emissions in bus fleet renewal scenarios by investigating both technical and economic aspects. This work presents a case study based on Elba Island, Italy, which investigates optimal solutions for replacing existing Diesel buses through a total cost of ownership analysis. The investigation is carried out for four different potential scenarios: renewing the fleet with Diesel buses, renewing the fleet with electric buses, adopting fuel cell buses, and implementing a hybrid solution. The latter represents a synergistic solution that integrates fuel cell buses with the development of a hydrogen refueling station driven by a proton exchange membrane electrolyzer, unlocking the techno-economic potential of self-producing green hydrogen for bus refueling. The novelty of this study is its integrated methodology that combines a total cost of ownership analysis with a tailored design of a green hydrogen production network
Bove, GiovanniSorrentino, MarcoBaldinelli, AriannaDesideri, Umberto
This SAE Aerospace Information Report (AIR) is intended as a source of comparative information and is subject to change to keep pace with experience and technical advances. This document describes currently used fuels and fuels which may be used in the future. Conventional gasoline and diesel fuels are intentionally omitted from this document.
AGE-3 Aircraft Ground Support Equipment Committee
The integration of ethanol into gasoline presents compatibility challenges for automotive fuel-system materials. In this study, the degradation of NBR-PVC fuel hoses exposed to ethanol-gasoline blends (E30, E50, E70, and E100) was investigated under dynamic flow conditions. A custom-designed test rig simulates real-time fuel circulation for 1,200 h. FESEM, ATR-FTIR, and elemental mapping analyses revealed ethanol-induced degradation, including dehydrochlorination, plasticizer leaching, and filler detachment. Among the blends, E30 exhibited the least material degradation, whereas E100 showed significant surface damage and chemical alteration. This study recommends multilayered fuel hose structures with ethanol-resistant inner linings for enhanced durability.
PC, MuruganL S, AdhityaG, Arun PrasadW, Beno WincyT, Karthi
In this study, the combustion and emission characteristics of a single-cylinder direct injection (DI) diesel engine fueled with Spirulina biodiesel along with diesel blends were examined using a combined CFD and thermodynamic simulation framework. Three test fuels, including pure diesel (D100), Spirulina biodiesel blends (B20 and B40), and pure Spirulina biodiesel (B100), were analysed at 1500 rpm under full load. In the first stage, CFD simulations were performed in ANSYS Fluent, where the Discrete Phase Model (DPM) was applied to capture spray atomization and droplet evaporation, while a non-premixed combustion model coupled with the RNG k-ε turbulence model was employed to resolve in-cylinder flow and heat release dynamics. Subsequently, the Diesel-RK software was utilised to predict engine performance and exhaust emissions based on compression ratios (18.5) and injection timings. Results from the CFD analysis revealed faster atomization and reduced ignition delay for biodiesel
Kumar, B Varun
This study investigates the potential of using a dual green alternative fuel combination, the one is hydrogen fuel and another one is biodiesel for enhancing the Performance, combustion and emission profile of a compression ignition engine. The kapok oil biodiesel was blended with Diesel in proportions of 20% (K20) and 40% (K40) by volume. The hydrogen gas was supplied at a constant flow of 4 liter per minute (LPM). The experimental fuels are neat diesel D100, K20 (80% Diesel and 20 % kapok methyl ester), K40 (60% Diesel + 40 % Kapok methyl ester), K20 + H4L (K20 with 4 LPM hydrogen) and K40+H4L (K40 with 4 LPM hydrogen). These test blends are investigated in a single cylinder direct injection CI engine under 0% to 100% load conditions at a fixed speed of 1500 rpm combustion, and emissions characteristic were evaluated and compared with base fuel. The outcomes indicated that the use of B20 and B40 blends without hydrogen led to reduced BTE because of their lower cetane number and
Anbarasan, BM, KumaresanBalamurugan, SRajesh, Munnusamy
The present article proposes an active observation speed prediction control algorithm architecture for embedded applications, with the aim of addressing the problems of complex operating conditions, strong perturbations, and high control real-time requirements of high-pressure direct injection (HPDI) dual-fuel engines. A nonlinear speed prediction model with diesel and natural gas injection mass as inputs has been established, and the nonlinear model predictive control (NMPC) method is used to realize the optimized control of engine speed. In order to enhance the operational efficiency of the algorithm on the embedded platform, a system has been developed that includes an event triggering mechanism and a warm-start strategy. These mechanisms work in tandem to dynamically adjust the computation cycle. Additionally, a torque reduced-order expansion state observer (RESO) has been integrated to improve the accuracy of perturbation estimation and computational efficiency. The model-level
Yang, XindaLi, YunhuaChen, DongdongLi, YaoZhang, ShutaoZhao, FeiyangYu, Wenbin
To meet the International Maritime Organization’s (IMO) short-term greenhouse gas (GHG) reduction targets, partial decarbonization of the existing fleet, often powered by medium-speed diesel engines, is required. One approach for reducing CO2 emissions is to enrich the charge air with hydrogen to substitute diesel. However, hydrogen’s high reactivity can lead to combustion abnormalities such as backfire, pre-ignition, and knocking, thus limiting the feasible admixture rates. These challenges are particularly relevant in medium-speed diesel engines designed for high power output and efficiency at low rpm. While hydrogen fuel-share has previously been tested in small-bore engines at moderate loads, this study investigates the influence on combustion and achievable hydrogen admixture rates in a medium-speed, 4-stroke diesel engine operating with up to 30 bar net indicated mean effective pressure (net IMEP). To minimize retrofitting efforts and to preserve diesel performance, the
Achenbach, TobiasMeinert, RobertMahler, KayKunkel, ChristianRösler, SebastianPrager, MaximilianJaensch, Malte
Rolls-Royce has successfully tested the world's first high-speed marine engine powered exclusively by methanol on its test bench in Friedrichshafen, Germany. The company began this engine-development journey six years ago when it gathered experts to determine what the future fuel of the maritime industry should be, according to Denise Kurtulus, senior vice president of global marine at Rolls-Royce. “For us, it's clear. It's methanol,” she said. Rolls-Royce worked with industry partners as part of the joint project meOHmare, which is funded by the German Federal Ministry for Economic Affairs and Energy. Injection system specialist Woodward L'Orange and the WTZ Roßlau technology and research center contributed their expertise. Their goal was to not only develop a comprehensive concept for a CO2-neutral marine engine based on green methanol, but also to run it on the test bench by the end of 2025.
Gehm, Ryan
Increasing ethanol blending in gasoline is significant from both financial (reducing dependency on crude oil) and sustainability (overall CO2 reduction) points of view. Flex Fuel is an ethanol-gasoline blend containing ethanol ranging from 20% to 85%. Flex Fuel emerges as an exceptionally advantageous solution, adeptly addressing the shortcomings associated with both gasoline and ethanol. Performance optimization of Flex Fuel is a major challenge as fuel properties like knocking tendency, calorific value, vapour pressure, latent heat, and stoichiometric air-fuel ratio change with varying ethanol content. This paper elaborates on the experimental results of trials conducted for optimizing engine performance with Flex Fuel for a 2-cylinder engine used in a small commercial vehicle. To derive maximum benefit from the higher octane rating of E85, the compression ratio is increased, while ignition timing is optimized to avoid knocking with E20 fuel. For intermediate blends, ignition timing
Kulkarni, DeepakMalekar, Hemant AUpadhyay, RajdipKatkar, SantoshUndre, Shrikant
The adoption of flex-fuel vehicles (FFVs) in India presents a significant opportunity to reduce dependence on fossil fuels, lower greenhouse gas emissions, and ensure compliance with the country’s evolving emission norms. This paper explores the key aspects of flex-fuel technology in the context of Indian four-wheeler regulations, particularly Bharat Stage VI and potential future emission norms. The study begins with an overview of flex-fuel technology, detailing its advantages and associated challenges. A critical focus is placed on blend identification techniques, which play a vital role in optimizing combustion efficiency and ensuring seamless transitions between different ethanol-gasoline blends. Furthermore, the impact of ethanol blending on various fuel properties is examined, including changes in energy content, latent heat of vaporization, octane number rating, and stoichiometric air-fuel ratio. These factors significantly influence engine performance and emission
Balasubramanian, KarthickKR, PrabhakarKallahallii Somu, Santhosh Kumar
Worldwide, the automotive industry is pivoting towards electrification and zero-emission vehicles (ZEV) to address greenhouse gas emissions and to meet net-zero emission goals. Although pure electric vehicles with rechargeable high-voltage batteries seem to be the most popular choice to achieve climate goals, hydrogen-powered vehicles are also seen by many as a viable technology to clean up the transportation sector. Hydrogen fuel cells and fuel cell-powered vehicles have been in development for a long time, and hydrogen internal combustion engines (ICE) have seen rapid development in the past few years. While the technological feasibility of hydrogen fuel cells and H2 ICE is being proven, the mass adoption of these technologies depends, along with other factors such as hydrogen infrastructure, upon financial feasibility as well. This paper presents a systematic analysis of the total cost of ownership (TCO) of hydrogen-powered vehicles, especially fuel cell electric vehicles. Different
Jacob, JoeChougule, Abhijeet
On the way to net zero emissions and to cut the oil import bills, NITI Aayog, Government of India and Ministry of Petroleum & Natural Gas (MoP&NG) has rolled out roadmap for ethanol blending in India during 2020-2025. Also, National Policy on Biofuels – 2018, provides an indicative target of 20% ethanol blending under the Ethanol Blended Petrol (EBP) Programme by 2030. Considering these Government’s initiatives current studies were performed on BSVI compliant gasoline direct injection vehicle on RDE compliant route (Route formulated by Indian Oil R&D Centre) with different ethanol blended gasoline fuel formulations i.e., E0 (Neat Gasoline), E10 (10% Ethanol in gasoline) & E20 (20% Ethanol in gasoline). The study aims to determine the compliance of Conformity Factor (C.F.) for ethanol blended gasoline fuel on Direct Injection gasoline engine. The conformity factors were calculated in each case for CO, NOx & PN using moving window average evaluation method. For reference CO2
Kant, ChanderArora, AjaySaroj, ShyamsherKumar, PrashantSithananthan, MChakradhar, Dr MayaKalita, Mrinmoy
The Government of India has mandated biofuel blending in automotive fuels to reduce crude oil imports and support the national economy. As part of this initiative, Oil Marketing Companies (OMCs) have begun nationwide blending of E20 fuel (20% ethanol in petrol). Ethanol supply is expected to exceed demand by the end of 2025 due to initiatives like the Pradhan Mantri JI-VAN Yojana. Alternative applications for ethanol are being explored; one promising approach is its use as a co-blend with diesel fuel (ED blends). However, ethanol’s low cetane number and poor lubricity pose challenges for direct use in diesel engines without modifications. ED blends demonstrated reduced emissions while maintaining performance comparable to conventional diesel. To further address concerns related to materials compatibility of ED blends with fuel system components, particularly plastomers that may impact engine durability, a detailed study was conducted using elastomers such as FVMQ, FKM, HNBR, and NBR in
Johnpeter, Justin PChakrahari, KiranChakradhar, MayaArora, AjayPrakash, ShantiPokhriyal, Naveen Kumar
Identification of renewable and sustainable energy solutions remains a key focus area for the engine designers of the modern world. An avenue of research and development is being vastly dedicated to propelling engines using alternate fuels. The chemistry of these alternate fuels is in general much simpler than fossil fuels, like diesel and gasoline. One such promising and easily available alternate fuel is compressed natural gas (CNG). In this work, a 3-cylinder, 3-liter naturally aspirated air-cooled diesel engine from the off-highway tractor application is converted into a CNG Diesel Dual fuel (CNG-DDF) engine. Part throttle performance test shows the higher NMHC and CO emissions in CNG-DDF mode which have been controlled by an oxidation catalyst in C1 8-mode emission test. A comparative performance shows that the thermal efficiency is up to 2% lower with CNG-DDF with respect to diesel. However, it has shown the benefit of 44% in Particulate Matter, while retaining the same NOx
Choudhary, VasuMukherjee, NaliniKumar, SanjeevTripathi, AyushNene, Devendra
Today, passenger car makers around the world are striving to meet the increasing demand for fuel economy, high performance, and silent engines. Corporate Average Fuel Economy (CAFE) regulations implemented in India to improve the fuel efficiency of a manufacturer's fleet of vehicles. CAFE goal is to reduce fuel consumption and, by extension, the emissions that contribute to climate change. CNG (Compressed Natural Gas) engines offer several advantages that help manufacturers meet and exceed these standards. The demand for CNG vehicles has surged exponentially in recent years, CNG engine better Fuel efficiency and advantage in CAFÉ norms make good case for OEM & Customer to use more CNG vehicle. CNG is dry fuel compared to gasoline. These dry fuels lack lubricating properties, unlike conventional fuels like petrol, diesel and biofuels, which are wet and liquid. Consequently, the operations and failures associated with these fuels differ. The materials and designs of engine parts, such as
Poonia, SanjayKumar, ChandanSharma, ShailenderKhan, PrasenjitBhat, AnoopP, PrasathNeb, Ashish
Over the past few decades, Compressed Natural Gas (CNG) has gained popularity as an alternative fuel due to its lower operating cost compared to gasoline and diesel, for both passenger and commercial vehicles. In addition, it is considered more environmentally friendly and safer than traditional fossil fuels. Natural gas's density (0.7–0.9 kg/m3) is substantially less than that of gasoline (715–780 kg/m3) and diesel (849–959 kg/m3) at standard temperature and pressure. Consequently, CNG needs more storage space. To compensate for its low natural density, CNG is compressed and stored at high pressures (usually 200-250 bar) in on-board cylinders. This results in an effective fuel density of 180 kg/m3 at 200 bar and 215 kg/m3 at 250 bar. This compression allows more fuel to be stored, extending the vehicle's operating range per fill and minimising the need for refuelling. Natural Gas Vehicles (NGVs), particularly those in the commercial sector like buses and lorries, need numerous CNG
Choudhary, Aditya KantPetale, MahendraDutta, SurabhiBagul, Mithilesh
This paper presents an analysis of the Indian patent landscape concerning alternative fuels, with a specific focus on hydrogen fuel cells and hydrogen internal combustion engines (H2 ICEs). The study aims to provide insights into the innovation trends, key players, white spaces and technological advancements, in this evolving sector within the Indian context. The study is based on the granted patents and disclosures in the said area, and also focuses on the key problems and solutions. Based on a review of patent publications from January 2024 to March 2025, it was observed that a significant number of patent records pertain to the broader domain of hydrogen internal combustion engine disclosures. Specifically, 540 extended families patent publications were screened focusing on hydrogen internal combustion engine as a domain of disclosure. Further analysis revealed that greater 75 % of applicants were from the industry sector, indicating a strong commercial interest in these
Nikam, Mahesh SureshSutavane, IlaV, AjayAghav, Yogesh
This study investigates the phenomenon of receptacle icing during Compressed Natural Gas (CNG) refueling at filling stations, attributing the issue to excessive moisture content in the gas. The research examines the underlying causes, including the Joule-Thomson effect, filter geometries, and their collective impact on flow interruptions. A comprehensive test methodology is proposed to simulate real-world conditions, evaluating various filter types, seal materials and moisture levels to understand their influence on icing and flow cessation. The findings aim to offer ideas for reducing icing problems. This will improve the reliability and safety of CNG refueling systems.
Virmani, NishantSawant, Shivraj MadhukarC R, Abhijith
This paper presents the methodology and outcomes of modifying a 1.2L naturally aspirated (NA) engine to enable flex-fuel compatibility, targeting optimal performance with ethanol blends ranging from E20 to E100. Ethanol is being increasingly promoted due to its potential to reduce greenhouse gas emissions and to provide an additional source of income for farmers. As per the road map for Ethanol blending released by Govt. of India, there has been continuous increase in blending of ethanol in gasoline. An initial target of 20% ethanol blending in gasoline by April 2025 has already been achieved. This work is in alignment with the broader push for development of flex-fuel vehicles, which necessitates engine adaptations capable of operating on varying ethanol blends. The primary objective was to upgrade the engine, which can give optimum performance with both lower range of ethanol blends starting from E20 as per IS 17021:2018 standard till higher blends of up to E100 as per IS 17821:2022
Tyagarajan, SethuramalingamPise, ChetanKavekar, PratapAgarwal, Nishant Kumar
Air pollution is profligate becoming a serious worldwide problem with the increasing population and its subsequent demands. Diesel, Gasoline, Natural Gas, Propane, etc., are some of the traditional fuels used in the power generation sectors. Diesel fuel, popularly utilized for backup power in critical operations, is valued for its swift activation time. This makes diesel generators a preferred choice for commercial properties and hospitals requiring reliable emergency power. Moreover, natural gas, distributed through local utility grids, provides a convenient and readily available fuel source for generators, eliminating the need for on-site fuel storage. On the other hand, CPCB has instructed to modify the emission regulations for genset engines for decarbonization and development clean fuel. The change from CPCB II to CPCB IV+ standard shows the commitment of the Indian government towards environmental sustainability and COP26. Pondering to the stringent emission norms, researchers
Bandyopadhyay, DebjyotiSutar, Prasanna SDhar, Rit PrasadSonawane, Shailesh BalkrishnaRairikar, Sandeep DThipse, Sukrut SSingh, SauhardMishra, Sumit KumarBera, TapanBadhe, RajeshTule, ShubhamAghav, YogeshLakshminarasimhan, Krishna
In India, fuel economy is one of the most critical factors influencing a customer's decision to own a passenger car. Beyond consumer preference, fuel consumption also plays a significant role in the nation's energy security. In line with this, the government promotes fuel-efficient vehicles and technologies through various regulations, policies, and mandates. Vehicle manufacturers, in response, focus on designing vehicles that align with both customer expectations and regulatory requirements. Fuel economy certification is typically based on standardized laboratory tests that simulate controlled environmental conditions, driving cycle (MIDC), vehicle load, and operation of electrical and electronic systems. However, actual on-road driving conditions by end user vary significantly due to factors such as traffic conditions, ambient temperature, air conditioning use, driving behavior and variable loading of the vehicle. With implementation of Bharat Stage VI, Real Driving Emission (RDE
Singh, Abhay PratapBathina, Revanth KumarTijare, Shantanu
Items per page:
1 – 50 of 8466