Browse Topic: Emissions control
Alpha Engineered Composites’ thin profile textile composite heat shields provide thermal protection through several thermodynamic mechanisms including: radiation reflection; heat spreading; and finally heat transfer resistance. Typical under the hood automotive applications require heat shield average operational temperature up to 225°C, but newer internal combustion engines are being designed for higher operational temperatures to: increase efficiency through higher compression cycle ratios and lean burning; boost power through turbocharging; increase energy density; and support advanced emissions controls like EGR that can increase average operational temperature up to 300°C. Unfortunately, thermo-oxidative degradation mechanisms negatively impact the polymer structural adhesive within a heat shield textile composite and degrade thermal protection mechanisms. High average operational temperature degradation of traditional versus next generation textile composite heat shields is
Lean NOx trap is a dedicated DeNOx catalyst for lean hybrid gasoline engines. Noble metals (usually platinum group metals) play the role of catalytic sites for NOx oxidation and reduction, which have significant impact of the performance of LNT. This work focuses on the influence of noble metal catalysts on self-inhibition effect from the view of competitive adsorption between NO and CO, and investigates the influence of CO self-inhibition effect on the main by-product of LNT: N2O formation. Adsorption configurations for NO, CO and N2O on noble metal clusters supported by γ-Al2O3(100) are confirmed. For detailed investigation, electron structures are analyzed by investigating Bader charge, DOS (density of state), charge density differences and COHP (crystal orbital Hamilton population) of selected configurations.The results show that CO self-inhibition effect is caused by competitive adsorption between CO and NO. The essence of competitive adsorption between CO and NO is that
Due to the vibration of the vehicle, the performance of the vehicle carbon canisters will be changed, which will affect its control effect on the fuel evaporation emission. In this study, a vibration test platform capable of simulating vehicle vibration characteristics was used to simulate the possible vibration effects of the vehicle carbon canisters, and to analyze the absorption and desorption performance of the carbon canisters before and after long-term operation and its influence on vehicle evaporation emissions. The results show that the carbon canisters will precipitate the carbon powder after the continuous action of the forward and backward vibration of the vehicle. As a result, the ultimate adsorption and desorption amount of fuel vapor decreased, and the adsorption amount decreased more obviously. In the 48-hour Diurnal Breathing Loss (DBL) test, fuel vapor diffusion is more difficult due to the increased flow resistance of the carbon canisters after vibration, and fuel
A 20-cell self-humidifying fuel cell stack containing two types of MEAs was assembled and aged by a 1000-hour durability test. To rapidly and effectively analyze the primary degradation, the polarization change curve is introduced. As the different failure modes have a unique spectrum in the polarization change curve, it can be regarded as the fingerprint of a special degradation mode for repaid analysis. By means of this method, the main failure mode of two-type MEAs was clearly distinguished: one was attributed to the pinhole formation at the hydrogen outlet, and another was caused by catalyst degradation only, as verified by infrared imaging. The two distinct degradation phases were also classified: (i)conditioning phase, featuring with high decay rate, caused by repaid ECSA change from particle size growth of catalyst. (ii) performance phase with minor voltage loss at long test duration, but with RH cycling behind, as in MEA1. Then, an effective H2-pumping recovery is conducted
Letter from the Focus Issue Editors
In the automotive industry, the zonal architecture is a design approach that organizes a vehicle’s electronic and communication systems into specific zones. These zones group components based on their function and physical location, enabling more efficient integration and simplified communication between the vehicle’s various systems. An important aspect of this architecture is the implementation of the Controller Area Network (CAN) protocol. CAN is a serial communication protocol developed specifically for automotive applications, allowing various electronic devices within a vehicle, such as sensors, actuators, and Electronic Control Units (ECUs), to communicate with each other quickly and reliably, sharing information essential for the vehicle’s operation. However, due to its limitations, there is a need for more efficient protocols like Automotive Ethernet and Controller Area Network Flexible (CAN FD), which allow for higher transmission rates and larger data packets. To centralize
Items per page:
50
1 – 50 of 7018