Browse Topic: Emissions control

Items (7,062)
The energy transition initiatives in Germany’s renown coal mining region Lusatia have driven research into Power-to-X-to-Power technologies, where synthetic fuel is produced from renewably sourced hydrogen and captured CO2, and converted to electricity and heat through oxyfuel combustion. This work investigates the multi-objective optimization of oxyfuel gas engine using a stochastic engine model and detailed chemistry. Exhaust gas recirculation (EGR) rate, initial cylinder temperature and pressure, spark timing, piston bowl radius and depth are selected as design parameters to minimize the exhaust temperature at exhaust valve opening and indicated specific fuel consumption (ISFC) corresponding to oxyfuel operation with different dry and wet EGR rates. The optimization problem is solved for a dry EGR and four wet EGR cases with various CO2/H2O fractions, aiming to achieve comparable performance as in conventional natural gas / air operation, and energy-efficient carbon capture. The
Asgarzade, RufatFranken, TimMauss, Fabian
Power-split hybrid powertrains represent one of the most advanced and complex types of powertrain systems. The combination of multiple energy sources and power paths offers great potential but results in complex interactions that require improved strategies for optimal efficiency and emission control. The development and optimization of such operating strategies typically involve algorithms that demand fast computational environments. Traditional high-accuracy numerical simulations of such a complex system are computationally expensive, limiting their applicability for extensive iterative optimizations and real-time applications. This paper introduces a data-based approach designed specifically to address this challenge by efficiently modeling the dynamic behavior of power-split hybrid powertrains using cascaded neural networks. Cascaded neural networks consist of interconnected subnetworks, each specifically trained to represent individual drivetrain components or subsystems. This
Frey, MarkusItzen, DirkYang, QiruiGrill, MichaelKulzer, André Casal
Turbocharging is a vital technology for enhancing internal combustion engine (ICE) performance and efficiency while enabling engine downsizing to reduce fuel consumption and emissions. This research analyzes turbocharger systems by examining their components—turbine, compressor, intercooler, and waste-gate—and their roles in boosting engine efficiency. It explores how exhaust energy drives the turbine to compress intake air, improving power output. The study evaluates turbocharger impact on fuel economy, emissions, and engine response under various driving conditions. It also considers wheel design, material selection, and durability under high temperatures and speeds. Advanced simulations using CFD and FEA analyze airflow, pressure, and thermal behavior to optimize performance. This research affirms turbocharging’s role in creating high-performance, fuel-efficient, and environmentally sustainable engines, offering insights that support the design of next-generation automotive
Chandrashekar, B. AdityaBhaduria, Abhishek
Alcohol is being considered as an alternative to traditional fuels for compression ignition engines due to their oxygen content and biomass origin. Although alcohol generally has lower cetane numbers, which makes them more favorable for premixed combustion, they also offer potential for lowering emissions in internal combustion engines, particularly when combined with strategies such as exhaust gas recirculation (EGR). This research focuses on enhancing the performance of a single-cylinder, four- stroke diesel engine by introducing ethanol into the intake port during the intake phase. Diesel and rubber seed biodiesel were used as primary fuels and were directly injected into the combustion chamber. The findings indicated that adding ethanol to rubber seed biodiesel, along with 10% EGR, led to improved brake thermal efficiency and a reduction in NOX emissions. The ethanol injection timing and duration were optimized for effective dual-fuel operation. At full engine load, the highest
Saminathan, SathiskumarG, ManikandanBungag, Joel QuendanganT, Karthi
The engine has played a pivotal role in controlling regulated pollutants at the in-cylinder combustion level through strategies such as Direct Injection, Common Rail Systems, and Exhaust Gas Recirculation up to Bharat (CEV/Trem) Stage-III. With the advent of more stringent emission norms, specifically Bharat (CEV/Trem) Stage-IV and V, the importance of Exhaust After-Treatment Systems (EATS) in managing emissions outside the engine has significantly increased. The inclusion of Particulate Number (PN) limits in Bharat (CEV/Trem) Stage-V necessitates the use of Diesel Particulate Filters (DPF), which trap soot particles that must be periodically removed through a process known as regeneration. Regeneration requires elevated exhaust temperatures, typically achieved via exothermic reactions in the Diesel Oxidation Catalyst (DOC), facilitated by diesel fuel addition through external injection or in-cylinder injection strategies. This study investigates both external and in-cylinder injection
Bandaru, BalajiM, BalasubramanianV, ShunmugaG, Senthil KumarMahesh, P
The Dosing Control Unit (DCU) is a vital component of modern emission control systems, particularly in diesel engines employing Selective Catalytic Reduction technology (SCR). Its primary function is to accurately control the injection of urea or Diesel Exhaust Fluid (DEF) into the exhaust stream to reduce nitrogen oxide (NOₓ) emissions. This paper presents the architecture, operation, diagnostic features, and innovation of a newly developed DCU system. The Engine Control Unit, using real-time data from sensors monitoring parameters such as exhaust temperature, NOₓ levels, and engine load, calculates the required DEF dosage. Based on DEF dosing request, the DCU activates the AdBlue pump and air valve to deliver the precise quantity of diesel exhaust fluid needed under varying engine conditions. The proposed system adopts a master-slave configuration, with the ECU as the master and the DCU as the slave. The controller design emphasizes cost-effectiveness and simplified hardware, and
Raju, ManikandanK, SabareeswaranK K, Uthira Ramya BalaKrishnakumar, PalanichamyArumugam, ArunkumarYS, Ananthkumar
With the publication of the Renewable Energy Directive (RED) III in 2022, the European Union increased its renewable energy consumption target to 42.5% by 2030. Consequently, gaseous fuels derived from renewable electricity, particularly green hydrogen, are expected to play a pivotal role in the decarbonization of the energy sector. One promising application of green hydrogen is its integration into combined heat and power (CHP) plants, where it can replace natural gas to reduce CO2 emissions. Pure hydrogen as fuel or blended with natural gas has demonstrated potential for lowering both pollutant emissions and fuel consumption while maintaining or even enhancing engine performance. But it is expected, that the amount of available green hydrogen will be limited in the beginning. So new engine systems with hydrogen and natural gas for CHP plants are required, that offer more CO2-benefit and NOx reductioon than from fuel substitution only. In the LeanStoicH2 project, a novel approach was
Salim, NaqibBeltaifa, YoussefKettner, Maurice
Although exhaust gas regulations for internal combustion engines have been in place for quite some time, they are still getting stricter every year. Motorcycles are no exception. Exhaust gas regulations for after-degradation durability have already been applied, and the next regulation is expected to require vehicles in use in the market to meet the exhaust gas regulation values. Technology to comply with exhaust gas regulations mainly deals with catalyst performance degradation. The main issues are metal sintering and poisoning. In particular, it is difficult to explain clearly the change in catalyst performance due to poisoning alone, as it is necessary to distinguish it from sintering and to determine the distribution of deterioration. However, phosphorus poisoning from oil cannot be ignored unless oil consumption is reduced to zero. In order to understand the change in practical catalyst performance due to poisoning with a distribution of degradation, it is necessary to explain the
Ibara, TakeruItou, ShioriYusa, KazumaKinoshita, HisatoshiMotegi, Takuya
Water injection in diesel engines is a well-known method of lowering combustion temperatures and thus reducing nitrogen oxide (NOx) emissions. In this study, the influence of water injection in hydrogenated vegetable oil (HVO) operation on NOx formation, particulate emissions and ignition delay is analyzed in comparison to diesel operation on a John Deere JD4045 tractor engine. Both the fuel (HVO) and the water injection system were designed as ‘drop-in’ solutions that enable rapid implementation to reduce emissions, even in existing vehicle fleets. The standard engine control unit of the JD4045 engine was therefore used for the tests. A single water nozzle was installed downstream the charge air cooler to integrate a water injection system. The three operating points of interest were: (1) low speed and high load without exhaust gas recirculation (EGR), (2) high EGR rates at low speed and medium load and (3) the engine's ‘sweet spot’ regarding the emission-tradeoff at high speed and
Fuhrmeister, JonasMayer, SebastianGünthner, Michael
To mitigate greenhouse emissions such as carbon monoxide (CO), carbon dioxides (CO2), oxide of nitrogen (NOx) and particulate matter reduction Government of India implemented Bharat Stage VI (BS-VI) norms from year 2020. Moving to more stringent emission norms poses challenges for automakers in several ways such as meeting exhaust emissions, on board diagnostic, drivers’ inducement, and particulate filter monitoring on vehicle. It is imperative to upgrade engine management system for on-board diagnostics (OBD) that refers to a vehicles self-diagnostic and reporting ability. On board diagnostics systems enables owner of vehicle to gain access of the various vehicle sub-systems. OBD-II standards were made more rigid, requiring the malfunction indicator lamp (MIL) to be activated if emission-related components fail. Also, vehicle emissions carbon monoxide (CO), oxide of nitrogen (NOx) and particulate matter not to exceed OBD thresholds. Consequently, the use of specific oxide of nitrogen
Jagtap, PranjalSyed, KaleemuddinChaudhari, SandipKhairnar, GirishBhoite, VikramReddy, Kameswar
The EURO 5+ standard (134/2014/EU) has been enforced in the year 2025 for quadricycle in Europe. The exhaust emission regulation under this standard has significantly tightened compared to the EURO4. Also, this standard limits vehicle weight, which remains unchanged from the EURO4 standard. We introduce the unique technologies to meet EURO5+ standard in this paper. Emission limit values of the EURO 5+ standard are more stringent, requiring an 84% reduction in NOx and a 94% reduction in PM compared to the previous standard. Diesel engines with mechanical injection control systems for the previous standard are required significant technological advancements to meet EURO 5+ standard of exhaust emission. The adoption of engine aftertreatment components such as SCR (Selective Catalytic Reduction) for NOx reduction and DPF (Diesel Particulate Filter) for PM reduction are common solution. However, to meet this new regulation, adding the weight of these after-treatment parts would cause the
Nagai, NaotaroTennomi, MasanariTamura, AkiraMochizuki, HiroakiKobayashi, YasushiOnishi, Takashi
This study explores the effect of plasma-assisted ignition (PAI) on combustion stability and emissions in two-stroke spark-ignition engines. Two engine platforms were evaluated: a conventional single-cylinder two-stroke engine and a thermodynamically advanced opposed-piston two-stroke (OP2S) engine. The OP2S engine configuration offers reduced heat loss and higher power density due to its uniflow scavenging and favorable geometry, but suffers from high residual gas fraction, which increases ignition difficulty and combustion instability. To address this, nanosecond-pulsed PAI was applied in various spatial arrangements and discharge voltages, using both gasoline and a low-reactivity gasoline/DMC blend fuel. Spark ignition timing was held constant at the minimum advance for best torque across all tests. Combustion stability was assessed via indicated mean effective pressure (IMEP) and its coefficient of variation, while CO and HC emissions were measured as environmental indicators
Liu, JinruYamazaki, YoshiakiOtaki, YusukeKato, HayatoKobayashi, DaichiUmegaki, TetsuoAsai, TomohikoIijima, Akira
In recent years, stricter emission regulations for internal combustion engines have been implemented, including controls on evaporative fuel vapors from motorcycle fuel systems. To comply with these regulations, motorcycles are increasingly adopting evaporative emission control (EVAP) systems equipped with carbon canisters. The carbon canister adsorbs fuel vapors while the vehicle is stationary, preventing them from being released into the atmosphere. During engine operation, the stored vapors are purged back into the engine by the vacuum in the intake manifold, thereby regenerating the canister. EVAP system development must ensure compliance with emission standards while minimizing any negative impact on engine performance. As regulations are expected to become stricter in the future, there is increasing demand for high-performing canisters and more effective purge systems. This highlights the need for more efficient development methods. The aim of this study is to enhance the
Okuno, KeisukeHidai, AtsuyaTorigoshi, MasakiKinoshita, Hisatoshi
As the automotive industry explores alternative powertrain options to curb emissions, it is pertinent to refine existing technologies to improve efficiency. The Exhaust Gas Recirculation (EGR) system is one of the pivotal components in emission control strategies for Internal Combustion Engines (ICE). The EGR cooler is crucial in thermal management strategies, as it lowers the temperature of recirculated exhaust gases before feeding it along with fresh air, thereby reducing nitrogen oxides (NOx) emissions. Precise estimation of the EGR cooler outlet temperature is crucial for effective emission control. However, conventional Engine Control Unit (ECU) models fall short, as they often show discrepancies when compared to real-world test data. These models rely on empirical relationships that struggle to capture precisely the transient effect, and real time variation in operating conditions. To address these limitations and improve the accuracy of ECU based model, various signal processing
Kumar, AmitKumar, RamanManojdharan, ArjungopalChalla, KrishnaKramer, Markus
A cold start occurs when the engine is cranked after being off for a long time, enough for its temperature to drop down to the cold ambient levels. Cold start in an engine is a critical phase as it is characterized by elevated emissions. During a cold start, exhaust components such as catalytic converter do not operate in its optimal temperature zone leading to reduced efficiency in emission control. New regulations for engine emissions are becoming stringent for this condition, hence it is important to accurately determine cold start condition in an engine to optimize the emissions control strategy. Accurate engine off time calculation plays a crucial role in cold start detection, emissions control and On-Board Diagnostics (OBD-II) decision making. This engine off time if greater than 6 hours indicates one of the conditions to confirm a cold start. Other conditions such as Ambient temperature and coolant temperature along with the engine off time confirms a cold start. This paper
MUTHA, MAYURESHTalawadekar, PradnyaKale, Upendra
Heavy-duty vehicles emissions are a serious problem, and remote monitoring platforms are a key means of emission control for heavy-duty vehicles. However, the frequent occurrence of anomalies in the remote monitoring data has seriously limited the monitoring efficiency of the remote monitoring platform. Therefore, this paper takes 500 National VI heavy-duty vehicles as the research object, and proposes a whole-process data quality control system of “anomaly identification-dynamic correction-accuracy verification”. First, four types of anomaly patterns, namely, lost, invalid, outlier and mutation, are defined, and polynomial fitting, median filtering and contextual interpolation are adopted to realize differentiated correction. Second, a data accuracy validation framework based on correlation analysis was constructed. The results show that the accuracy of key parameters is significantly improved after correction, and the data fitting degree R2 is greater than 0.97. The research results
Liu, YuZhang, ChengZhang, HaoYu, HanzhengnanLi, JingyuanAn, XiaopanMa, KunqiLiang, YongkaiXu, Hang
On-Board Diagnostic (OBD) strategies utilize a predictive model to estimate engine out NOx levels for a given set of operating conditions to ensure the accuracy of the Nitrogen Oxides (NOx) sensor. Furthermore, this model is also used to determine urea dosing quantities in situations where the NOx sensor is unavailable such as cold starts or as a reaction to a NOx sensor plausibility failure. Physics-based NOx prediction models guarantee high levels of accuracy in real-time but are computationally expensive and require measurements generally not available on commercial powertrains making them difficult to implement on controllers. Consequently, manufacturers tend to adopt a mathematical approach by estimating NOx under standard operating conditions and use a variety of correction factors to account for any changes that can influence NOx production. Such correction factors tend to be outcomes of base engine calibration settings or outputs of models of other related sub systems and may
Sunder, AbinavSuresh, RahulPolisetty, Srinivas
The growing emphasis on environmental protection and sustainability has resulted in increasingly stringent emission regulations for automotive manufacturers, as demonstrated by the upcoming EURO 7 and 2027 EPA standards. Significant advancements in cleaner combustion and effective aftertreatment strategies have been made in recent decades to increase the engine efficiency while abiding by the emission limits. Among the exhaust aftertreatment strategies, three-way catalyst has remained the primary solution for stoichiometric burn engines due to its high conversion efficiency and ability to simultaneously allow both oxidative and reductive reactions in a single stage with spatial separation due to the oxygen storage capabilities of ceria. However, fuel and lubricant-borne sulfur and phosphorus compounds have been shown to have a significant long-term effect on the activity of three-way catalysts, particularly during the lean-rich transitions and oxygen storage processes. In the present
Sandhu, Navjot SinghYu, XiaoJiang, ChuankaiTing, DavidZheng, Ming
The mainstream automotive market is rapidly transitioning to electrified and fully electric powertrains. Where gasoline engines are still employed, they are frequently turbocharged units with relatively low maximum engine speed and modest power density. The hypercar class, in contrast, has recently seen somewhat of a renaissance in high performance, high speed, naturally aspirated gasoline engines, which are prized for their emotional contribution to the vehicle. In order to guarantee high conversion efficiency of a Three Way Catalyst in the exhaust system, an engine must be operated at stoichiometric air-fuel ratio. At high power density, this may result in very high exhaust gas temperature, which poses a risk to engine and vehicle hardware. A number of technological interventions to extend the maximum stoichiometric performance whilst respecting component limitations have already been described in the literature, but many of these are not applicable to specific engine architectures
Corrigan, Dáire JamesVilla, DavidePenazzi, EugenioMeghani, AmitKnop, VincentCaroli, GiacomoFrigeri, DavideRuggiero, FedericoMalaguti, SimonePostrioti, LucioMaka, Cristian
The internal combustion engine (ICE) is projected to remain the dominant technology in the transport sector over the short to medium term, and there exists significant potential for further improvements in fuel economy and emission reductions. One promising approach to enhancing the efficiency of spark ignition engines is the implementation of passive pre-chamber spark plugs. The primary advantages of pre-chamber-initiated combustion include the mitigation of knocking, an increase in in-cylinder turbulence, and a combustion process that is both faster and more stable compared to that achieved with conventional J-gap spark plugs. Additionally, the higher ignition energy provided by pre-chamber spark plugs enables operation under higher intake pressures, maintains similar exhaust gas recirculation rates, and supports leaner combustion conditions. These benefits are predominantly attributed to volumetric ignition via hot, reactive jets. However, the pre-chamber spark plug also presents
Korkmaz, MetinJuressen, Sven EricRößmann, DominikKapus, Paul E.Pino, Sandro
The widespread adoption of battery electric vehicles (BEVs) is progressing more slowly than anticipated, making hybridization crucial for improving efficiency through load point shifting, running the engine at its most efficient operating points and kinetic energy recovery. As the world continues to use fossil fuels, enhancing powertrain efficiency is critical to reducing CO2 emissions. Improved efficiency will also increase the share of renewable e-fuels in the energy mix, supporting the transition to low-carbon mobility. A significant portion of energy in ICEs is lost through exhaust heat, which is a high-grate energy source that can be converted into electricity in hybrid systems. Conventional turbochargers, widely used to enhance volumetric efficiency and drivability, typically incorporate a wastegate (WG) to regulate boost pressure. However, this results in the intentional dumping of excess valuable exhaust energy leading to energy loss. This paper investigates the replacement of
Kodaboina, Raghu VamsiVorraro, GiovanniTurner, James W. G.
The increasing importance of hydrogen as alternative energy source to reduce CO2 emissions in the transport sector makes its adoption in spark-ignited engines an attractive and cost-efficient alternative to fuel cell-powered vehicles. Lean combustion is the preferred operating strategy for H2-engines in order to achieve performance targets, enhance efficiency and at the same time avoid critical knocking and pre-ignition phenomena. Additionally, an effective approach to lower cylinder temperatures, relevant engine-out NOx emissions and boost pressure requirements at the same time, is an external exhaust gas recirculation (EGR) system. The aim of this work is to analyze and compare the effects of exhaust gas recirculation on the combustion of a lean hydrogen mixture in a turbocharged 4-cylinder H2-ICE with direct injection. For this investigation a load point at 18 bar BMEP and 4000 rpm is selected with and without the utilization of additional external EGR. In this case, a BTE of 38
Schmelcher, RobinKulzer, Andre CasalGal, ThomasVacca, AntoninoChiodi, MarcoGrabner, PeterGschiel, Kevin
The market penetration of Battery Electric Vehicles (BEV) in Europe is not following the foreseen scenario. This is related to several factors, such as uncertainty of the second-hand value of BEV, real driving range under cold conditions and availability of charging stations. Even if the European Community is still planning a full ban of Internal Combustion Engines (ICE) by 2035, in the rest of the world a more technology neutral approach is being pursued. Car manufacturers are developing different powertrain architectures, from mild- to full-hybrid and Range Extenders (REEX). In this context of different emission regulations, and wide range of powertrain architectures, the focus of the development will be the increase of catalyst efficiency without any big impact on exhaust aftertreatment cost. In previous work [1] the authors have used a 1D simulation approach to support the optimization of metallic TWC substrate for the High Power Cold Start use case. Additionally, a 3D CFD was used
Montenegro, GianlucaDella Torre, AugustoMarinoni, AndreaOnorati, AngeloKlövmark, HenrikLaurell, MatsPace, LorenzoKonieczny, Katrin
Premixed Charge Compression Ignition (PCCI) presents a promising alternative to conventional diesel combustion (CDC), offering significant reductions in pollutant emissions by lowering local in-cylinder temperatures and enhancing fuel-air mixing. However, a significant challenge in implementing PCCI is controlling the start of combustion, especially given its narrow operating load range. This is primarily due to early ignition and knocking combustion at higher loads when using high-reactivity diesel fuel, which limits the practical applicability of PCCI mode in diesel engines. In the present study, experimental investigations are carried out on a light-duty diesel engine operating in PCCI mode using two fuel blends: 10% (D90G10) and 20% (D80G20) gasoline mixed with diesel on a volume basis. To facilitate combustion control and emission reduction, exhaust gas recirculation (EGR) and water vapor are used as charge diluents. A common rail direct injection (CRDi) system replaces the
Ranjan, Ashish PratapKrishnasamy, Anand
The dual-fuel combustion process, which is offered as a retrofit solution for conventional diesel engines by various manufacturers, represents an option for reducing emissions from internal combustion engines and is already available today. Current dual-fuel engines run on liquefied natural gas (LNG), which is usually of fossil origin. Due to the existing infrastructure and the possibility of producing LNG by means of electrolysis and methanation, LNG can already be produced in a 100% climate-neutral way and thus make a contribution to climate neutrality in the shipping industry. The adoption of exhaust gas recirculation (EGR) systems in the maritime sector became more significant in 2020 following the enforcement of the sulphur emission cap. By lowering the sulphur content in the fuel, technologies in the exhaust tract are also conceivable without the use of expensive scrubber systems. Dual-fuel LNG/diesel engines are typically operated in lean-burn mode to reduce the risk of knocking
Seipel, PascalGlauner, ManuelDinwoodie, JulesBuchholz, Bert
Decarbonizing the transport sector requires solutions that reduce CO₂ emissions while improving the efficiency of existing engine platforms. This study explores a retrofit strategy in which a heavy-duty diesel engine is converted to Otto-cycle operation and equipped with a passive pre-chamber combustion (PPCC) system. Methanol was used as the fuel due to its high octane number, low carbon intensity, and favourable combustion properties. The performance of the PPCC system is experimentally compared to conventional spark ignition (SI) across varying engine speeds, loads, and exhaust gas recirculation (EGR) levels. A dual-dilution strategy, combining lean operation (λ = 1.6) with EGR, was applied to extend dilution tolerance and assess the feasibility of operating near stoichiometry. All tests were conducted under steady-state conditions with fixed spark timing. Results show that PPCC consistently delivers faster combustion than SI across all conditions, with greater stability and reduced
Fong Cisneros, Eric J.Hlaing, PonnyaCenker, EmreAlRamadan, AbdullahTurner, James WG
The paper reports an investigation into employing a “lambda leap” (λ leap) strategy for hydrogen internal combustion engines (H₂ICEs), wherein inherently low emissions of oxides of nitrogen (NOx) are afforded at light load via operation at lambda 2.5, and at higher load by operation at stoichiometry utilizing a three-way catalyst (TWC) for NOx control. This approach means it is necessary under transient operation to “leap” between high values of lambda and stoichiometry from one cycle to the next, in order to avoid completely the λ ≈ 1.3 area where high combustion NOx is generated away from lambda equal to 1; this is because lean catalysis of NOx will be extremely challenging at the rate that it is generated there. To achieve this, a short cam profile was introduced to reduce air mass flow by 57.5%, enabling this leap without changing the fuel injection amount, while preserving favorable combustion characteristics via an early Miller cycle. The study models a 2.0 L inline four-cylinder
Fong Cisneros, Eric J.Kodaboina, Raghu VamsiVorraro, GiovanniTurner, James W. G.
Reactivity-controlled compression ignition (RCCI), a low-temperature combustion strategy, reduces oxides of nitrogen (NOx) and soot simultaneously; however, high concentrations of carbon monoxide (CO) and total hydrocarbons (THC) and low exhaust gas temperatures pose a significant challenge for the catalytic control of tailpipe CO and THC. Diesel oxidation catalyst (DOC) is generally used in compression ignition (CI) engines for CO, THC, and nitric oxide (NO) oxidation. This work provides a new understanding of the performance characteristics of a DOC in the RCCI combustion strategy with various gasoline–diesel fuel premix ratios ranging from ~46% to ~70% at steady-state operating conditions. Experimental insights from the RCCI strategy prompt considerations of both CO and THC oxidations and THC trap functionalities in the 1D transient model of the DOC. It is observed that an increase in the fuel premix ratio from 50% to 70% in RCCI shifts the CO and THC oxidation characteristics
Suman, AbhishekSarangi, Asish KumarHerreros, Jose Martin
Oxymethylene ethers (OMEs) have been proposed for use in diesel engines as a high-reactivity fuel with reduced soot emission. Historically, the focus on methyl-terminated OMEs has limited drop-in applicability. In this work, a set of extended-alkyl OMEs with methyl, propyl, and butyl terminations are tested in an unmodified 4.5L Deere diesel engine, neat and in various blends with ultra-low-sulfur diesel (ULSD). Engine operability and emissions data are collected for the various fuel blends. External laboratory testing against the ASTM D975 standard demonstrates that a blend of 30% butyl-terminated OMEs with ULSD meets all ASTM standard requirements except lubricity. It is shown that the OMEs and OME–diesel blends demonstrate shorter combustion durations, as defined by the 10%–90% heat release timing, than the ULSD control. Engine brake efficiency is unaffected by OME usage, while specific fuel consumption increases in proportion to the reduced heating values of OMEs. Particulate
Lucas, Stephen P.Zdanowicz, AndrewWolff, Wyatt W.Windom, Bret
Urea–water solution (UWS) is sprayed during selective catalytic reduction (SCR) in the aftertreatment system of a diesel engine. UWS decomposes to ammonia and reacts with harmful nitrogen oxides present in exhaust gas to convert it to harmless nitrogen and water vapor. The interaction of UWS spray droplets with the hot wall of the aftertreatment system plays a crucial role in the performance and life of the aftertreatment system used in modern diesel engines for emission control. We report here a comprehensive experimental investigation on the normal impact of UWS droplets on the heated wall of stainless steel (SS410), mimicking the droplet–wall interaction in an SCR aftertreatment system. We have built a regime map underlying the possible outcomes under operating conditions encountered in an SCR system. The transition zones are identified, and the complex transition dynamics from one regime to another are discussed. Finally, we investigate and discuss the universality of the non
Singh, Kartikeya K.Deka, HiranyaPandey, VinodKhot, AmbarishBasak, NarendranathShastry D. M., Channaveera
Internal combustion engines generate higher exhaust emissions of hazardous gases during the initial minutes after engine start. Experimental data from a state-of-the-art turbo-charged 3-cylinder, 999 cc gasoline engine are used to predict cold start emissions using two Machine Learning (ML) models: a Multilayer Perceptron (MLP) which is a fully connected neural network and an Encoder-Decoder Recurrent Neural Network (ED-RNN). Engine parameters and various temperatures are used as input for the models and NOx (Nitrogen Oxides), CO (Carbon monoxide) and unburned hydrocarbon (UHC) emissions are predicted. The dataset includes time series recordings from the Worldwide harmonized Light-duty vehicles Test Cycle (WLTC) and four Real Diving Emissions (RDE) cycles at ambient and initial engine temperatures ranging from -20 °C to +23 °C. In total, 21 cases are considered, consisting of eight different ambient temperatures and five distinct driving cycles. Each case consists of a sequence of 2500
Mangipudi, ManojDenev, Jordan A.Bockhorn, HenningTrimis, DimosthenisKoch, ThomasDebus, CharlotteGötz, MarkusZirwes, ThorstenHagen, Fabian P.Tofighian, HesamWagner, UweBraun, SamuelLanzer, TheodorKnapp, Sebastian M.
It is becoming increasingly clear that research into alternative fuels, including drop-in fuels, is essential for the continued survival of the internal combustion engine. In this study, the authors have evaluated olefinic and oxygenated fuels as drop-in fuels using a single-cylinder engine and considering fuel characteristic parameters. The authors have assessed thermal efficiency by adding EGR or excess air from zero to the maximum value that allows stable combustion. Next, we attempted to predict fuel efficiency for four types of passenger cars (Japanese small K-car N/A, K-car T/C, Series HV, and Power-split HV) by changing the fuels. We created a model to estimate fuel efficiency during WLTC driving. The results indicated that fuel economy could potentially be improved by adding an olefin fuel that burns stably even with a large amount of EGR or air and an oxygen fuel whose octane number increases. It was observed that the fuel economy improvement rate was particularly notable for
Moriyoshi, YasuoXu, FuguoWang, ZhiyuanTanaka, KotaroKuboyama, Tatsuya
The document provides clarity related to multiple temperature coolant circuits used with on-highway and off-highway, gasoline, and light-duty to heavy-duty diesel engine cooling systems, or hybrid vehicle systems. These multiple temperature systems include engine jacket coolant plus at least one lower temperature system. Out of scope are the low temperature systems used in electric vehicles. This subject is covered in SAE J3073. Note that some content in SAE J3073 is likely to be of interest for hybrid vehicles. Out of scope are the terms and definitions of thermal flow control valves used in either low-temperature or high-temperature coolant circuits. This subject is covered in SAE J3142.
Cooling Systems Standards Committee
Items per page:
1 – 50 of 7062