Browse Topic: Emissions measurement
Anticipated NOX emission standards will require that selective catalytic reduction (SCR) systems sustain exhaust temperatures of 200°C or higher for effective conversion performance. Maintaining these temperatures becomes challenging during low-load conditions such as idling, deceleration, and coasting, which lower exhaust heat and must be addressed in both regulatory test cycles and day-to-day operation. Cylinder deactivation (CDA) has proven effective in elevating exhaust temperatures while also reducing fuel consumption. This study investigates a flexible 6-cylinder CDA system capable of operating across any combination of fixed firing modes and dynamic skip-firing patterns, where cylinders transition between activation states nearly cycle-by-cycle. This operational flexibility extends the CDA usable range beyond prior implementations. Data was primarily collected from a test cell engine equipped with the dynamic CDA system, while a matching engine in a 2018 long-haul sleeper cab
In-Use emission compliance regulations globally mandate that machines meet emission standards in the field, beyond dyno certification. For engine manufacturers, understanding emission compliance risks early is crucial for technology selection, calibration strategies, and validation routines. This study focuses on developing analytical and statistical methods for emission compliance risk assessment using Fleet Intelligence Data, which includes high-frequency telematics data from over 500K machines, reporting more than 1000 measures at 1Hz frequency. Traditional analytical methods are inadequate for handling such big data, necessitating advanced methods. We developed data pipelines to query measures from the Enterprise Data Lake (A Structured Data storage system), address big data challenges, and ensure data quality. Regulatory requirements were translated into software logic and applied to pre-processed data for emission compliance assessment. The resulting reports provide actionable
The current Range Rover is the fifth generation of this luxury SUV. With a drag coefficient of 0.30 at launch, it was the most aerodynamically efficient luxury SUV in the world. This aerodynamic efficiency was achieved by applying the latest science. Rear wake control was realised with a large roof spoiler, rear pillar and bodyside shaping, along with an under-floor designed to reduce losses over a wide range of vehicle configurations. This enabled manipulation of the wake structure to reduce drag spread, optimising emissions measured under the WLTP regulations. Along with its low drag coefficient, in an industry first, it was developed explicitly to achieve reduced rear surface contamination with reductions achieved of 70% on the rear screen and 60% over the tailgate when compared against the outgoing product. This supports both perceptions of luxury along with sensor system performance, demonstrating that vehicles can be developed concurrently for low drag and reduced rear soiling
This SAE Aerospace Information Report (AIR) describes a method for assessing size dependent particle losses in a sampling and measurement system of specified geometry utilizing the non-volatile Particulate Matter (nvPM) mass and number concentrations measured at the end of the sampling system.1 The penetration functions of the sampling and measurement system may be determined either by measurement or by analytic computational methods. Loss mechanisms including thermophoretic (which has a very weak size dependence) and size dependent losses are considered in this method2 along with the uncertainties due to both measurement error and the assumptions of the method. The results of this system loss assessment allow development of estimated correction factors for nvPM mass and number concentrations to account for the system losses facilitating estimation of the nvPM mass and number at the engine exhaust nozzle exit plane. As the particle losses are size dependent, the magnitude of correction
Items per page:
50
1 – 50 of 1239