Browse Topic: Air pollution
Artificial Intelligence (AI) has emerged as a transformative force across various industries, revolutionizing processes and enhancing efficiency. In the automotive domain, AI's adaption has ushered in a new era of innovation and driving advancements across manufacturing, safety, and user experience. By leveraging AI technologies, the automotive industry is undergoing a significant transformation that is reshaping the way vehicles are manufactured, operated, and experienced. The benefits of AI-powered vehicles are not limited to their manufacturing, operation, and enhancing the user experience but also by integrating AI-powered vehicles with smart city infrastructure can unlock much more potential of the technology and can offer numerous advantages such as enhanced safety, efficiency, growth, and sustainability. Smart cities aim to create more livable, resilient, and inclusive communities by harnessing innovation through technologies like Internet of Things (IoT), devices, data
Vehicular emissions represent the main responsible of the deterioration of air quality in the urban area. In the attempt to reduce both gaseous emissions and particulates from internal combustion engines, increasingly stricter regulations were introduced from European Union in the last years. These limits have led to the improvement of emissions-reduction technologies as well as the vehicle hybridization and electrification. In this scenario, vehicle emissions due to other sources rather than the propulsion systems, such as brakes and tires, have taken a significant weight. In this regard, European Commission has proposed the introduction in the next EURO 7 standard of the first-ever limit on the particles emitted by vehicle brakes. This study is devoted to improving the knowledge on the particle characteristics due to the brake wear by means of laboratory experiments thus providing support to the definition of the new standards. An experimental layout was realized consisting in a box
The conventional process of last-mile delivery logistics often leads to safety problems for road users and a high level of environmental pollution. Delivery drivers must deal with frequent stops, search for a convenient parking spot and sometimes navigate through the narrow streets causing traffic congestion and possibly safety issues for the ego vehicle as well as for other traffic participants. This process is not only time consuming but also environmentally impactful, especially in low-emission zones where prolonged vehicle idling can lead to air pollution and to high operational costs. To overcome these challenges, a reliable system is required that not only ensures the flexible, safe and smooth delivery of goods but also cuts the costs and meets the delivery target. In the dynamic landscape of last-mile delivery, LogiSmile, an EU project, introduced a solution to urban delivery challenges through an innovative cooperation between an Autonomous Hub Vehicle (AHV) and an Autonomous
Worldwide automotive sector regulatory norms have changed and become more stringent and complex to control environmental noise and air pollution. To continue this trend, the Indian Ministry of Road Transport is going to impose new vehicle exterior pass-by noise regulatory norms IS 3028:2023 (Part2) to control urban area noise pollution. This paper studies the synthesis of M1 category vehicle driving acceleration, dominant noise source, and frequency contribution in exterior PBN level. A vehicle acceleration analysis study was carried out to achieve an optimized pass by noise (PBN) level based on the vehicle’s PMR ratio, reference, and measured test acceleration data. Based on the analysis, test gear strategy was decided to achieve a lower PBN level. This strategy involved increasing the effective final drive ratio and optimizing engine calibration, resulting in improvement with acceleration in the ith gear. This increased acceleration surpassed the upper limit of the reference
The rise of greenhouse gas emissions has reached historic levels, with 37 billion tons of CO2 released into the atmosphere in 2018 alone. In the European Union, 32% of these emissions come from transportation, with 73.3% of that percentage coming from vehicles. To address this problem, solutions such as cleaner fuels and more efficient engines are necessary. Artificial Intelligence can also play a crucial role in climate analysis and verification to move towards a more sustainable future. By utilizing connected vehicle data, automakers can analyze real-time vehicle performance data to identify opportunities for improvement and reduce carbon emissions. This approach benefits the environment, improves vehicle quality, and reduces engineering work time, making it a win-win solution. Connected vehicle data offers a wealth of information on vehicle performance, such as fuel consumption and carbon emissions. Automakers can analyze this data to pinpoint areas for improvement and create new
The Environment Protection Agency (EPA) issued two separate proposals earlier this year covering the use of EtO for device sterilization: the National Emission Standards for Hazardous Air Pollutants and the preliminary interim decision under the Federal Insecticide, Fungicide, and Rodenticide Act (NESHAP and FIFRA
Electrification of transport, together with the decarbonization of energy production are suggested by the European Union for the future quality of air. However, in the medium period, propulsion systems will continue to dominate urban mobility, making mandatory the retrofitting of thermal engines by applying combustion modes able to reduce NOx and PM emissions while maintaining engine performances. Low Temperature Combustion (LTC) is an attractive process to meet this target. This mode relies on premixed mixture and fuel lean in-cylinder charge whatever the fuel type: from conventional through alternative fuels with a minimum carbon footprint. This combustion mode has been subject of numerous modelling approaches in the engine research community. This study provides a theoretical comparative analysis between multi-zone (MZ) and Transported probability density function (TPDF) models applied to LTC combustion process. The generic thermo-kinetic balances for both approaches have been
This study shows the newest results of a near-series pre-turbo-catalyst (PTC) system reaching lowest emissions for electrified diesel passenger cars to address future emission legislation. The PTC system is developed using a state-of-the-art tool chain containing 1D & 3D simulation approaches and testing near-series exhaust gas aftertreatment systems under real-driving boundary conditions. The innovative concept of a selective catalytic reduction (SCR) PTC and a PTC bypass path solve the challenge of a thermal handshake between PTC and underfloor SCR System as well as the challenge of a particular filter regeneration. The development of adaptive PTC bypass path operation strategies based on exhaust gas and catalyst conditions enables lowest NOx and NH3. Using this concept, zero-impact NOx emissions, that don’t impact cities air quality, can be reached in a wide range of operating scenarios while sustaining full drivability and highest efficiency. Advanced catalyst technologies enable a
This SAE Aerospace Information Report (AIR) defines the helicopter bleed air requirements which may be obtained through compressor extraction and is intended as a guide to engine designers
Air pollution is a major public health problem. The World Health Organization has estimated that it leads to over four million premature deaths worldwide annually. Still, it is not always extensively measured. But now an MIT research team is rolling out an open-source version of a low-cost, mobile pollution detector that could enable people to track air quality more widely
The pending Euro 7 vehicle-emissions regulations include a significant new sustainability wrinkle: first-ever restrictions for PM emissions from brakes. In a proposal submitted in November of 2022, the European Commission detailed its new Euro 7 vehicle emissions standard, which is widely expected to be approved by the European Parliament and Council and begin phase-in starting on July 1, 2025. Another phase of emissions legislation is nothing new, but one critical element of Euro 7 is new to the regulation chessboard: first-ever limits on how much particulate matter (PM) can be generated by a vehicle's brakes. This element of Euro 7 has auto and commercial-vehicle brake-component suppliers scurrying. Commercial vehicles are subject to their own compliance levels as they interpret how the new regulations will impact their existing technologies and what new solutions will be required. The proposed Euro 7 regulations also address the emissions of fine microplastic particles created by
Items per page:
50
1 – 50 of 1269