Browse Topic: Low emission vehicles (LEV) and zero emission vehicles (ZEV)
Hydrogen is considered one of the most promising clean energy sources. Hydrogen fuel cells offer high energy conversion efficiency and zero emissions. But the development of hydrogen fuel cells faces many challenges, including the issue of carbon-monoxide (CO) poisoning of the fuel cell electrodes
The societies around the world remain far from meeting the agreed primary goal outlined under the 2015 Paris Agreement on climate change: reducing greenhouse gas (GHG) emissions to keep global average temperature rise to well below 20°C by 2100 and making every effort to stay underneath of a 1.5°C elevation. In 2020 direct tailpipe emissions from transport represented around 8 GtCO2eq, or nearly 15% of total emissions. This number increases to just under 10 GtCO2eq when indirect emissions from electricity and fuel supply are added, for a total share of roughly 18%. Following the current trend, direct and indirect emissions in transport could reach above 11 GtCO2eq by 2050. Roughly 76% of transport emissions are related to land-based passenger and freight road transport. Emissions from aviation and shipping account for the remaining 24% of 2020 emissions. Hydrogen (H2) is in this scenario considered to play a key role as a carbon-free and versatile energy carrier. Combustion of hydrogen
The global transportation industry, and road freight in particular, faces formidable challenges in reducing Greenhouse Gas (GHG) emissions; both Europe and the US have already enabled legislation with CO2 / GHG reduction targets. In Europe, targets are set on a fleet level basis: a CO2 baseline has already been established using Heavy Duty Vehicle (HDV) data collected and analyzed by the European Environment Agency (EEA) in 2019/2020. This baseline data has been published as the reference for the required CO2 reductions. More recently, the EU has proposed a Zero Emissions Vehicle definition of 3g CO2/t-km. The Zero Emissions Vehicle (ZEV) designation is expected to be key to a number of market instruments that improve the economics and practicality of hydrogen trucks. This paper assesses the permissible amount of carbon-based fuel in hydrogen fueled vehicles – the Pilot Energy Ratio (PER) – for each regulated subgroup of HDVs in the baseline data set. The analysis indicates that a PER
Rooftop solar panels will soon power about 90% of PFG's Gilroy, California, operations, a starting point for cold food deliveries. The vehicles getting the various edibles and food-related products from the warehouse to restaurants, schools, hotels and other customers include new battery-electric Class 8 trucks that mate to trailers fitted with zero-emission transport refrigeration units (TRUs). “Our Gilroy, California, location is the pilot for how we intend to develop sustainable distribution centers,” said Jeff Williamson, senior vice president of operations for Richmond, Virginia-headquartered Performance Food Group (PFG). Williamson and others were recently interviewed by SAE Media following an Earth Day open house at the Gilroy site
This document is intended to satisfy the data reporting requirements of standardization regulations in the United States and Europe, and any other market that may adopt similar requirements in the future. This document specifies: a Message formats for request and response messages. b Timing requirements between request messages from external test equipment and response messages from vehicles, and between those messages and subsequent request messages. c Behavior of both the vehicle and external test equipment if data is not available. d A set of diagnostic services, with corresponding content of request and response messages. e Standardized source and target addresses for clients and vehicle. This document includes capabilities required to satisfy OBD requirements for multiple regions, model years, engine types, and vehicle types. At the time of publication many regional regulations are not yet final and are expected to change in the future. This document makes no attempt to interpret
On-board diagnostics (OBD) systems support the protection of the environment against harmful pollutants such as carbon monoxide (CO), nitrogen oxide (NOx), hydrocarbons (HC) and particulate matters (PM) emitted by combustion engines. OBD regulations require passenger cars and light-, medium- and heavy-duty trucks to support a minimum set of diagnostic information to external (off-board) “generic” test equipment. For the purpose of communication, both the test equipment and the vehicle must support the same communication protocol stack. The communication protocol SAE J1979, also known as ISO 15031, that has been in use for decades will be replaced by SAE J1979-2 for vehicles with combustion engines and by SAE J1979-3 for zero-emission-vehicle (ZEV) propulsion systems
With the backdrop of net-zero emissions as an essential element of national security, this study undertook an analytical approach to evaluate current Department of the Navy (DON) emissions and understand energy needs to support mission readiness while reducing emissions over time. Naval Postgraduate School, Monterey, California This report is based on a broad study of strategies for the Department of the Navy (DON) to achieve net zero global emissions by 2050 to comply with recent Executive Orders and goals set out for the Department of Defense (DOD) and the DON (Melillo, 2022). In January 2021, Executive Order 14008 called for a government-wide approach for meeting climate related challenges in the U.S. and set goals for agencies. In December 2021, Executive Order 14057 set the specific goal of net zero emissions from overall federal operations, including DOD, by 2050 and a 65 percent emissions reduction by 2030. These are challenging targets for the DOD: 2019 data shows that the DOD
The LEV IV FTP PM limit in the recently approved CARB ACC II regulations for passenger cars and light duty trucks will be 1 mg/mile starting in 2025. Gravimetric PM measurement at these levels is very challenging as the net mass of PM on the filter in full flow tunnel testing ranges between 8 to 32 micrograms depending on amount of dilution. This is approaching tunnel background levels which, in combination with filter handling, static charge removal and microbalance instability, compounds the uncertainty. One major source of the uncertainty at these low levels is the tunnel contamination resulting in high variability from test to test and cell to cell. This tunnel background is mostly HC artifact which cannot be easily controlled and can be significantly higher than the 5-μg CFR allowable correction limit in some test cells. Items that might affect the PM background include the type of testing being run on the tunnel prior to measuring the background such as OBD, cold and diesel
New electrical exhaust aftertreatment heating systems are in development to address the expected Euro7 regulation in Europe. These systems considerably shorten the light =-off time of the catalyst, even under extreme boundary conditions, for example start and drive away at -7°C. The pollutant limits foreseen for Europe are less severe than for example a US Tier3/Bin30 level, but the boundary conditions considered (temperature, altitude, driving patterns) are much broader than on the chassis dyno cycle. CARB has proposed within the ACCII draft further development of the LEVIII regulation to eliminate loopholes and ensure that internal combustion engines emissions remain low while transitioning the fleet to Zero emission vehicles. A proposal with similar scope from the EPA on federal level is expected. This paper shows how the Electrical Heated Catalyst (EHC) technology is developed and optimized and points out the differences between US and European requirements. The use of EHC allows a
Over a 23-year career, Rob Del Core has led more than 20 programs related to zero-emissions vehicles and subsystems, most of them related to developing hydrogen fuel-cell power, at companies including Hyzon Motors, Hydrogenics USA (Cummins), and Ricardo. Now general manager at Symbio, the Faurecia-Michelin joint venture aimed at fuel-cell stack and systems development, Del Core's work continues amid accelerating global activities in H2FC power. He was interviewed recently by Editor-in-chief Lindsay Brooke. Highlights from that conversation follow. There seems to be a growing acknowledgement of the limitations of huge lithium batteries for large commercial vehicles and their duty cycles, and that hydrogen fuel cells are a better candidate to augment and eventually replace diesels
This SAE Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) and plug-in hybrid-electric vehicles (PHEVs) designed for public roads. This recommended practice provides instructions for measuring and calculating the exhaust emissions and fuel economy of such vehicles over the following standard test cycles: the Urban Dynamometer Driving Schedule (UDDS), the Highway Fuel Economy Driving Schedule (HFEDS), the US06 Driving Schedule (US06), the SC03 Driving Schedule (SC03), and the cold-start Federal Test Procedure (cold FTP), which is based on the UDDS. However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly. This document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, CO2); instead, that decision will depend on the objectives of the tester. The
Top engineers in Munich talk about the vital role of H2 fuel cells in the climate crusade as iX5 pilot-fleet production begins. Automakers have raised and dashed hopes for using hydrogen to power cars and trucks, including General Motors' notorious 2007 promise that it would sell 1 million fuel-cell vehicles annually (actual number: zero). With EVs now seizing the lead in showrooms and public infrastructure, hydrogen might still seem dubious. But the complexities of global electrification have many OEMs and policymakers willing to give our lightest atomic element another chance. BMW is convinced that without hydrogen supplementing the energy mix - including for large trucks that are poor fits for battery propulsion - the transportation sector and nations have little chance of keeping global temperatures in check. BMW is the first German automaker to sign onto the United Nations' “Race to Zero” pledge, as the company aims to reach full carbon neutrality by 2050
Amazon has a goal of having 50% of its shipments being made net-zero carbon by 2030. In 2021, more than 100 million packages were delivered to customers with zero-emissions vehicles and the company said that number will scale. One of the retail and logistics giant's well-known initiatives is its pledge to purchase 100,000 Rivian electric delivery vehicles by 2030. Initial vehicles were delivered and put into operation in July 2022. In September, Amazon announced another initiative that by next year will replace diesel fuel in its internal-combustion delivery vehicles with ultra-low carbon ‘electrofuels.’ The supplier of that fuel to Amazon is Sacramento, Calif.-based Infinium
SAE J1979-3 describes the communication between the zero emissions propulsion systems and test equipment required by government regulations. Standardization regulations require passenger cars and light-, medium-, and heavy-duty trucks to support a minimum set of diagnostic information to external (off-board) “generic” test equipment. To achieve this, SAE J1979-3 is based on the Open Systems Interconnection (OSI) Basic Refer to Model in accordance with ISO/IEC 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers. When mapped on this model, the services specified are broken into: Application (layer 7), specified in: ○ ISO 14229-1, ISO 14229-3 UDSonCAN, or ISO 14229-5 UDSonIP ○ SAE J1979-3 ZEVonUDS Presentation layer (layer 6), specified in: ○ SAE J1930, SAE J1930DA ○ SAE J1979DA ○ SAE J2012, SAE J2012DA ○ SAE J1939DA, SAE J1939-73 Session layer services (layer 5), specified in: ○ ISO 14229-2 Transport layer services (layer 4), specified in: ○ DoCAN: ISO
Hydrostatic torque modulation is a new, at moment theoretical approach, to developing advanced AWD4WD transmissions. The basic component is a rotational hydrostatic modulator. It is derived from a low-speed high-torque hydrostatic machine. As such, it can be integrated into a standard mechanical AWD4WD transmission as a replacement for the clutch, where torque is controlled through energy dissipation. Controlled by a simple solenoid valve, it provides torque vectoring with a reaction time shorter than 0.5 s, and it provides additional safety features that result in a more robust AWD4WD transmission. As it can modulate torque with energy flow control/transfer, it offers much more than existing systems based on controlled clutches. Specifically, hydrostatic torque modulation, when it is integrated into the AWD4WD transmission, brings CVT or ICT performance. As torque modulation is performed through the control of the energy flow, it provides torque control from 0 km/h without using a
Today the light-duty commercial market is dominated by internal combustion engine powered vehicles, primarily diesel-powered delivery vans, which contribute to urban air quality issues. Global concerns regarding climate change have prompted zero emission vehicles to be mandatory in many markets as soon as 2035. For the light-duty commercial vehicle sector there is significant interest in pure electric vehicles. However, for some markets, or usage cases, electric vehicles may not be the best solution due to practical limitations of battery energy storage capacity or recharging times. For such applications there is growing interest in hydrogen fuel cells as a zero emissions alternative. Bramble Energy’s patented printed circuit board (PCB) fuel cell technology (PCBFC™) enables the use of cost-effective production methods and materials from the PCB industry to reduce the cost and complexity of manufacturing hydrogen fuel cell stacks. This paper will describe the integration of a water
Chassis dynamometer tests were conducted on three Class III on-highway motorcycles produced for the North American market and equipped with advanced emission control technologies in order to inform emissions inventories and compare the impacts of existing Tier 2 (E0) fuel with more market representative Tier 3 and LEV III certification fuels with 10% ethanol. For this study, the motorcycles were tested over the US Federal Test Procedure (FTP) and the World Motorcycle Test Cycle (WMTC) certification test cycles as well as a sample of real-world motorcycle driving informally referred to as the Real World Driving Cycle (RWDC). The primary interest was to understand the emissions changes of the selected motorcycles with the use of certification fuels containing 10% ethanol compared to 0% ethanol over the three test cycles. Generally, for most of the test motorcycle/drive cycle combinations, the use of E10 certification fuels compared to Tier 2 (E0) resulted in reductions in CO, HC, NMHC
This paper covers the mathematical modeling of governing equations for the coupled heat and mass transfer phenomena during adsorption and desorption. Also the main focus is given on the methodology for numerical simulation for solving these partial differential equations for carbon canister. A comprehensive literature review is presented to summarize the target requirements of allowed evaporative emission level of gasoline vapour in grams per day based on global standards like, EU6, EPA stage II enhanced, CARB LEVII, PZEV and SULEV. In order to meet these stringent emission norms, presence of carbon canister is mandatory. The simulation results are compared for the gasoline vehicle application at various climatic temperature conditions in India, in which the canister sizing vs allowable emission targets are summarized
The transportation industry is currently in a transition toward the use of zero-emission vehicles; however, reaching it will take a considerable amount of time. In the meantime, a diesel powertrain will remain the workhorse for most heavy-duty transportation. In order to reduce the engine’s environmental impact, biofuels, such as biodiesel, are used as drop-in fuels or fuel blends. The use of drop-in fuels may create challenges for the fuel system since sticky deposits can precipitate and cause injector malfunctioning or premature fuel filter plugging. It has been concluded in the past that these deposits have been caused by soft particles. In this article, soft particles created through the degradation of biodiesel and their effect on filters are studied. The article aims to analyze fuel filters and investigate the materials responsible for soft particle separation. The study includes three pre filters and three main filters that are commercially available truck filters. Different
Items per page:
50
1 – 50 of 716