Browse Topic: Design Engineering and Styling

Items (44,549)
This paper delivers a forward-looking data-driven assessment of the transformative innovation in electric vehicle motor systems with targeting breakthroughs in the power density, energy efficiency, thermal robustness, manufacturability & better intelligent control. A rigorous Multi Criteria Decision Making (MCDM) framework is done to systematically evaluate and defining the rank of emerging motor technologies across eight weighted performance indicators. The findings reveal that which design strategies & material advancements offering the greatest potential for redefine propulsion performance that enabling lighter more compact & more efficient drivetrain capable of sustained high power operation. High ranking solution exhibit strong alignment with the industry's push toward scalable, low cost & rare earth-independent systems while other are identified as high risk/high reward pathway requiring targeted research to overcome critical problems. By integrating engineering performance
Jain, GauravPremlal, PPathak, RahulGore, Pandurang
The Container trailers are used worldwide to transport goods & materials especially e-commerce applications with valuable materials. These container trailers are presently locked with a mechanical locking system and often broken and unlocked by unauthorized people. During transportation time, the driver stops the vehicle for natural calls, food or any other breakdown, the attempt is made to steal the materials. Many cases were known only after damages are done. It has become a serious issue nowadays in the transportation industry. To avoid these problems, we have designed and developed a system that operates pneumatically with digital locking control. The system is designed to ensure proper safety by rigid mechanical locking. It is actuated by a pneumatic system consisting of Directional control valve & pneumatic cylinders. The lock and unlock inputs are given through digitally and the digital controller provides the appropriate input to solenoid operated direction control valve. Based
kumaran, Rajasekar
This paper is a new approach to improve road safety and traffic flow by combining vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. The Study is focused on a system that connects vehicles with each other and with traffic light to share real-time data about speed and position. This work is aimed to discuss the methodology adopted for developing a system which predicts and advises the optimal speed for vehicles approaching an intersection. Inspired by the Green Light Optimized Speed Advisory (GLOSA) , the proposed system is designed to help drivers approach traffic signals at speeds that minimize unnecessary stops, reduce delays, and improve traffic efficiency. This paper contains the approach taken, the decision-making algorithm, and the simulation framework built in MATLAB/Simulink to validate the concept under real traffic conditions. Simulation results are presented to demonstrate how the system generates speed recommendations based on vehicle parameters
Pinto, Colin AubreyShah, RavindraKarle, Ujjwala
Fuel cell - as name suggests, it generates energy from fuel (Hydrogen). A three-input system produces three different outputs: electrical energy, heat, and pure water. Fuel cell can produce decent power depending on design of active area and possible current density. Overall required power output which is generated by a series of cells stacked together. The design once meets all the required performance parameters at single cell level, can be extrapolated to stack level design. The present work elaborates successful testing and validation of a compact, light weigh single cell fuel cell fixture. Further the design will be scaled to a fuel cell stack design with a capacity of 5 kW to cater various stationary application such as back-up/stand-alone power generator for remote location. The same design philosophy will also be implemented in fuel cell stack design for automobile applications. The membrane electrode assembly (MEA) is heart of the fuel cell which produces the output while
Pandit`, Abhishek RajshekharChougule, AbhijeetKhot, RanjitChaudhari, Shirish
Overloading in vehicles, particularly trucks and city buses, poses a critical challenge in India, contributing to increased traffic accidents, economic losses, and infrastructural damage. This issue stems from excessive loads that compromise vehicle stability, reduce braking efficiency, accelerate tire wear, and heighten the risk of catastrophic failures. To address this, we propose an intelligent overloading control and warning system that integrates load-sensing technology with real-time corrective measures. The system employs precision load sensors (e.g., air below deflection monitoring via pressure sensors) to measure vehicle weight dynamically. When the load exceeds predefined thresholds, the system triggers a multi-stage response: 1 Visual/Audio Warning – Alerts the driver to take corrective action. 2 Braking Intervention – If ignored, the braking applied, immobilizing the vehicle until the load is reduced. Experimental validation involved ten iterative tests to map deflection-to
Raj, AmriteshPujari, SachinLondhe, MaheshShirke, SumeetShinde, Akshay
The precise validation of radar sensor is necessary due to surging demand for reliable Advanced Driver-Assistance Systems (ADAS) and autonomous driving technologies. Over-the-Air (OTA) Hardware-in-the-Loop approach is the optimal solution for the current challenges facing with traditional on road testing. This approach supports productive, controllable and repetitive environment because of its lab-based setup which will eliminates the drawbacks such as high costs, limited repeatability, safety related issues. Key parameters of radar such as accurate detection of objects, analysis of doppler velocity, range estimation, angle of arrival measurement, can be tested dynamically. And this test setup offers wide range of testing scenarios, including varying distance of target, relative speeds, simulation of objects and environmental effects also supported.OTA provides the flexibility to eliminate the physical test tracks or targets so that developers can simulate the errors, by introducing
Jadhav, TejasKarle, UjjwalaPaul, HarshitSNV, Karthik
During parking conditions of vehicles, the state of the battery is uncertain as it goes through the relaxation process. In such scenarios, the battery voltage may exceed the functional safety limits. If we cross the functional safety limits, it is hazardous to the driver as well as the occupant. In this case, relaxed voltage plays a crucial role in identifying the safe state of the battery. To estimate the relaxed cell voltage there are methods such as RC filter time constat modeling and relaxation voltage error method. The problem with these solutions is the waiting time and accuracy to determine the relaxation voltage. In this manuscript, a solution is proposed which ensures the above problem is reduced. To achieve the reduction of relaxation voltage estimation time, a python sparse identification of nonlinear dynamics (PySindy) is used which identifies and fits an equation model based on observing the battery characteristics at different SOC and temperatures. The implementation is
Pandey, PriyanshuNilajkar, AnkurPanda, Abinash
The advent of wide-bandgap (WBG) switching MOSFET devices enables high-frequency operation, allowing for significant reductions in the size of passive components such as inductors and capacitors, and improving the overall efficiency of inverter systems. However, these benefits come with the trade-off of increased electromagnetic interference (EMI), which imposes stringent requirements on filter design. The complexity of designing EMI filters, which depends heavily on switching frequency and applicable EMI standards, presents a significant challenge and can impact development timelines. Carrier wave modulation technique is considered as an effective method for minimizing conducted EMI in traction inverters. This article presents various carrier wave modulation schemes that successfully reduce conducted EMI. The evaluated strategies aim to eliminate noise fluctuations and simplify the design of demanding EMI filters. Additionally, the impact on output voltage, output current, total
R, KodeeswaranKuncham, Sateesh KumarKolhatkar, Yashomani
A passenger vehicle's front-end structure's structural integrity and crashworthiness are crucial to ensure compliance with various frontal impact safety standards (such as those set by Euro NCAP & IIHS). For a new front-end architecture, design targets must be defined at a component level for crush cans, longitudinal, bumper beam, subframe, suspension tower and backup structure. The traditional process of defining these targets involves multiple sensitivity studies in CAE. This paper explores the implementation of Physics-Informed Neural Networks (PINNs) in component-level target setting. PINNs integrate the governing equations into neural network training, enabling data-driven models to adhere to fundamental mechanical principles. The underlying physics in our model is based upon a force scheme of a full-frontal impact. A force scheme is a one-dimensional representation of the front-end structure components that simplifies a crash event's complex physics. It uses the dimensional and
Gupta, IshanBhatnagar, AbhinavKumar, Ayush
Traditionally, occupant safety research has centered on passive safety systems such as seatbelts, airbags, and energy-absorbing vehicle structures, all designed under the assumption of a nominal occupant posture at the moment of impact. However, with increasing deployment of active safety technologies such as Forward Collision Warning (FCW) and Autonomous Emergency Braking (AEB), vehicle occupants are exposed to pre-crash decelerations that alter their seated position before the crash. Although AEB mitigates the crash severity, the induced occupant movement leads to out-of-position behavior (OOP), compromising the available survival space phase and effectiveness of passive restraint systems during the crash. Despite these evolving real-world conditions, global regulatory bodies and NCAP programs continue to evaluate pre-crash and crash phases independently, with limited integration. Moreover, traditional Anthropomorphic Test Devices (ATDs) such as Hybrid III dummies, although highly
Pendurthi, Chaitanya SagarTHANIGAIVEL RAJA, TKondala, HareeshSudarshan, B.SudarshanNehe, VaibhavRao, Guruprakash
Heavy tipper vehicles are primarily utilized for transporting ores and construction materials. These vehicles often operate in challenging locations, such as mining sites, riverbeds, and stone quarries, where the roads are unpaved and characterized by highly uneven elevations in both the longitudinal and lateral directions of vehicle travel. During the unloading process, the tipper bodies are raised to significant heights, which increases the vehicle's centre of gravity, particularly if the payload material does not discharge quickly. Such conditions can lead to tipper rollover accidents, causing severe damage to life and substantial vehicle breakdowns. To analyse this issue, a study is conducted on the vehicle design parameters affecting the rollover stability of a 35-ton GVW tipper using multi-body simulations in ADAMS software. The tilt table test was simulated to determine the table angle at which wheel lift occurs. Initially, simulations are performed with the rigid body model
Vichare, Chaitanya AshokPatil, SudhirGupta, Amit
The rapid evolution of electric vehicles (EVs) has amplified the demand for highly integrated, efficient, and intelligent powertrain architectures. In the current automotive landscape, EV powertrain systems are often composed of discrete ECUs such as the OBC, MCU, DC-DC Converter, PDU, and VCU, each operating in isolation. This fragmented approach adds wiring harness complexity, control latency, system inefficiency, and inflates costs making it harder for OEMs to scale operations, lower expenses, and accelerate time-to-market. The technical gap lies in the absence of a centralized intelligence capable of seamlessly managing and synchronizing the five key powertrain aggregates: OBC, MCU, DC-DC, PDU, and VCU under a unified software and hardware platform. This fragmentation leads to redundancy in computation, increased BOM cost, and challenges in system diagnostics, leading to sub-optimal vehicle performance. This paper addresses the core issue of fragmented control architectures in EV
Kumar, MayankDeosarkar, PankajInamdar, SumerTayade, Nikhil
Improving transaxle efficiency is vital for enhancing the overall performance and energy economy of electric vehicles. This study presents a systematic approach to minimizing power losses in a single-speed, two-stage reduction e-transaxle (standalone) by implementing a series of component-level design optimizations. The investigation begins with the replacement of conventional transmission oil with a next-generation low-viscosity transmission fluid. By adopting a lower-viscosity lubricant, the internal fluid resistance is reduced, leading to lower churning losses and improved efficiency across a wide range of operating conditions. Following this, attention is directed toward refining the gear macro-geometry to create a gear set with reduced power losses. This involves adjustments to parameters such as module, helix angle, pressure angle, and tooth count, along with the introduction of a positive profile shift. These modifications improve the contact pattern, lower sliding friction, and
Agrawal, DeveshBhardwaj, AbhishekBhandari, Kiran Kamlakar
For regions with cold climate, the range of an electric bus becomes a serious restriction to expanding the use of this type of transport. Increased energy consumption affects not only the autonomous driving range, but also the service life of the batteries, the schedule delays and the load on the charging infrastructure. The aim of the presented research is to experimentally and computationally determine the energy consumption for heating the driver's cabin and passenger compartment of an electric bus during the autumn-winter operation period, as well as to identify and analyze ways to reduce this energy consumption. To determine the air temperature in the passenger compartment, a mathematical model based on heat balance equations was used. This model was validated using data from real-world tests. The research was conducted at a proving ground under two conditions: driving at a constant speed and simulating urban bus operation with stops and door openings. The causes of heat loss in
Kozlov, AndreyTerenchenko, AlexeyStryapunin, Alexander
Accurately determining the loads acting on a structure is critical for simulation tasks, especially in fatigue analysis. However, current methods for determining component loads using load cascade techniques and multi-body dynamics (MBD) simulation models have intrinsic accuracy constraints because of approximations and measurement uncertainties. Moreover, constructing precise MBD models is a time-consuming process, resulting in long turnaround times. Consequently, there is a pressing need for a more direct and precise approach to component load estimation that reduces efforts and time while enhancing accuracy. A novel solution has emerged to tackle these requirements by leveraging the structure itself as a load transducer [1]. Previous efforts in this direction faced challenges associated with cross-talk issues, but those obstacles have been overcome with the introduction of the "pseudo-inverse" concept. By combining the pseudo-inverse technique with the D-optimal algorithm
Pratap, RajatApte, Sr., AmolBabar, Ranjit
The growing environmental, economic, and social challenges have spurred a demand for cleaner mobility solutions. In response to the transformative changes in the automotive sector, manufacturers must prioritize digital validation of products, manufacturing processes, and tools prior to mass production. This ensures efficiency, accuracy, and cost-effectiveness. By utilizing 3D modelling of factory layouts, factory planners can digitally validate production line changes, substantially reducing costs when introducing new products. One key innovation involves creating 3D models using point cloud data from factory scans. Traditional factory scanning processes face limitations like blind spots and periodic scanning intervals. This research proposes using drones equipped with LiDAR (Light Detection and Ranging) technology for 3D scanning, enabling real-time mapping, autonomous operation, and efficient data collection. Drones can navigate complex areas, access small spaces, and optimize
Narad, Akshay MarutiC H, AjheyasimhaVijayasekaran, VinothkumarFasge, Abhishek
The integration of Advanced Driver Assistance Systems (ADAS) into modern vehicles necessitates innovative solutions for interior packaging that balance out safety, performance, and ergonomic considerations. This paper introduces an inverted U-shaped steel tube cross car beam (CCB) as a superior alternative to traditional straight tube designs, tailored for premium vehicle instrument panels. The U-shaped geometry overcomes the limitations of straight tube beams by creating additional packaging space for components such as AR-HUDs, steering columns, HVAC systems, and electronic control units (ECUs). This geometry supports efficient crunch packaging while accommodating ergonomic requirements like H-point, eyeball trajectory, and cockpit depth for optimal ADAS component placement. The vertical alignment of the steering column within the U-shaped design further enhances space utilization and structural integrity. This study demonstrates that the inverted U-shaped CCB is a transformative
Mahajan, Ajay SenuRegatte, GaneshNagarjuna, KamisettiSahoo, SandeepUdugu, KumaraswamyJC, Sudheera
Driver-in-the-Loop (DIL) simulators have become crucial tools across automotive, aerospace, and maritime industries in enabling the evaluation of design concepts, testing of critical scenarios and provision of effective training in virtual environments. With the diverse applications of DIL simulators highlighting their significance in vehicle dynamics assessment, Advanced Driver Assistance Systems (ADAS) and autonomous vehicle development, testing of complex control systems is crucial for vehicle safety. By examining the current landscape of DIL simulator use cases, this paper critically focuses on Virtual Validation of ADAS algorithms by testing of repeatable scenarios and effect on driver response time through virtual stimuli of acoustic and optical warnings generated during simulation. To receive appropriate feedback from the driver, industrial grade actuators were integrated with a real-time controller, a high-performance workstation and simulation software called Virtual Test
Sharma, ChinmayaBhagat, AjinkyaKale, Jyoti GaneshKarle, Ujjwala
The design and improvement of electric motor and inverter systems is crucial for numerous industrial applications in electrical engineering. Accurately quantifying the amount of power lost during operation is a substantial challenge, despite the flexibility and widespread usage of these systems. Although it is typically used to assess the system’s efficiency, this does not adequately explain how or why power outages occur within these systems. This paper presents a new way to study power losses without focusing on efficiency. The goal is to explore and analyze the complex reasons behind power losses in both inverters and electric motors. The goal of this methodology is to systematically analyze the effect of the switching frequency on current ripple under varying operating conditions (i.e., different combinations of current and speed) and subsequently identify the optimum switching frequency for each case. In the end, the paper creates a complete model for understanding power losses
Banda, GururajSengar, Bhan
Meeting the stringent emissions norms of CEV stage V for medium BMEP engines, CI engines present significant challenges. These stringent norms call for a highly efficient DPF. With the increasing demands for high-performance DPFs, the issue of soot accumulation and cleaning presents significant hurdles for DPF longevity. This paper explores the potential of passive DPF regeneration, which leverages naturally occurring exhaust gas conditions to oxidize accumulated soot, offering a promising approach to minimize fuel penalty and system complexity compared to active regeneration methods. The study investigates engine calibration techniques aimed at enhancing passive regeneration performance, emphasizing the optimization of thermal management strategies to sustain DPF temperatures within the passive regeneration range. Furthermore, the paper aims to expand the applicability of passive regeneration across diverse engine loads common in off-highway applications with effective passive
Saxena, HarshitGandhi, NareshLokare, PrasadShinde, PrashantPatil, AjitRaut, Ashish
Optimizing Vehicle Routing is a key application for determining the most effective sequence of locations in electric trucks. This optimization not only enhances operational efficiency but also minimizes energy consumption and reduces overall costs. A critical aspect of Optimal Vehicle Routing is identifying charging stations along the route, particularly for electric vehicles with specific range requirements. The availability of these charging stations is crucial for maintaining the continuity of operations and preventing delays. This paper explores multiple methods for charger identification, simulating and comparing their effectiveness. The primary parameter for comparison are the energy consumption, throughput, and the energy efficiency of the routes generated by various methods, which directly impacts the feasibility of real-time applications in logistics. The results of this study provide insights into the efficiency of different charger identification methods within the Optimal
Bhat, AdithyaPrasad P, ShilpaKolakar, RakshitaMyers, MichaelKlein, FischerShrivastava, Himanshu
The work completed on “System level concepts to test and design integrated EV system involving power conversion to satisfy ISO26262 functional safety requirement” is included in the paper. Integrating power conversion and traction inverter subsystems in EVs is currently popular since it increases dependability and improves efficiency and cost-effectiveness. Maintaining safety standards is at danger due to the growing safety requirements, which also raise manufacturing costs and time. The three primary components of integrated EV systems are the PDU, DC-DC converter, and onboard charger. Every part and piece of software is always changing and needs to be tested and validated in an economical way. Since the failure of any one of these components could lead to a disaster, the article outlines the economical approaches and testing techniques to verify and guarantee that the system meets the functional safety criterion.
Uthaman, SreekumarMulay, Abhijit BGadekar, Pundlik
In the quest for enhancing electric vehicle performance and safety, this paper presents a comprehensive investigation into the design and performance of high-voltage (HV) battery cooling plates featuring dedicated cooling channels, integrated with structural bottom protection members. The study aims to address the dual challenges of thermal management and crash protection in electric vehicles during bottom impacts. The research evaluates the cooling efficiency and structural resilience of the proposed design through a combination of design iterations, thermal performance evaluation, and crash simulations. Findings reveal that the integrated cooling plates not only maintain optimal battery temperatures under various operating conditions but also significantly improve the vehicle's crashworthiness. It was found that the cooling efficiency of the HV battery plates improved compared to competitor’s design, resulting in a more stable thermal environment for the battery cells. Moreover
Dusad, SagarKummuru, SrikanthJoshi, Amarja
Functional Mock-up Units (FMUs) have become a standard for enabling co-simulation and model exchange in vehicle development. However, traditional FMUs derived from physics-based models can be computationally intensive, especially in scenarios requiring real-time performance. This paper presents a Python-based approach for developing a Neural Network (NN) based FMU using deep learning techniques, aimed at accelerating vehicle simulation while ensuring high fidelity. The neural network was trained on vehicle simulation data and trained using Python frameworks such as TensorFlow. The trained model was then exported into FMU, enabling seamless integration with FMI-compliant platforms. The NN FMU replicates the thermal behavior of a vehicle with high accuracy while offering a significant reduction in computational load. Benchmark comparisons with a physical thermal model demonstrate that the proposed solution provides both efficiency and reliability across various driving conditions. The
Srinivasan, RangarajanAshok Bharde, PoojaMhetras, MayurChehire, Marc
As light electric vehicles (LEVs) gain popularity, the development of efficient and compact on-board chargers (OBCs) has become a critical area of focus in power electronics. Conventional AC-DC topologies often face challenges, including high inrush currents during startup, which can stress components and affect system reliability. Furthermore, DC-DC converters often have a limited soft-switching range under light load conditions, leading to increased switching losses and reduced efficiency. This paper proposes a novel 6.6 kW on-board charger architecture comprising a bridgeless totem-pole power factor correction (PFC) stage and an isolated LLC resonant DC-DC converter. The main contribution lies in the specific focus on enhancing startup behavior and switching performance. In PFC converters, limiting inrush current during startup is crucial, especially with fast-switching wide-bandgap devices like SiC or GaN. Conventional soft-start techniques fall short in of ensuring smooth voltage
Patil, AmrutaBagade, Aniket
The road infrastructure in India has complex navigational challenges with most of the road unstructured especially in rural areas. Decision-making becomes a challenge for drivers in unpredictable environments such as narrow roads, flooded roads and heavy traffic. In this paper, an Augmented Reality based ML-Algorithm for Driver Assistance (ARMADA) has been proposed that improves awareness to safely maneuver in these conditions. The methodology for development and validation of this Augmented Reality (AR) based algorithm contains multiple steps. Firstly, extensive data collection is conducted using real time recording and benchmark datasets like Berkeley Deep Drive (BDD) and Indian Driving Dataset (IDD). Secondly, collected data are annotated and trained using an optimal machine learning (ML) model to accurately identify the complex scenario. In third step, an ARMADA algorithm is developed, integrating these models to estimate road widths, detect floods and provide seamless driver
Anandaraj, Prem RajSivakumar, VishnuThanikachalam, GaneshL, RadhakrishnanMotoki, YaginumaSelvam, Dinesh Kumar
With the rapid adoption of electric vehicles (EVs), ensuring the reliability, safety, and cost-effectiveness of power electronic subsystems such as onboard chargers, DC-DC converters, and vehicle control units (VCUs) has become a critical engineering focus. These components require thorough validation using precise calibration and communication protocols. This paper presents the development and implementation of an optimized software stack for the Universal Measurement and Calibration Protocol (XCP), aimed at real-time validation of VCUs using next-generation communication methods such as CAN, CAN-FD, and Ethernet. The stack facilitates read/write access to the ECU’s internal memory in runtime, enabling efficient diagnostics, calibration, and parameter tuning without hardware modifications. It is designed to be modular, platform-independent, and compatible with microcontrollers across different EV platforms. By utilizing the ASAM-compliant protocol architecture, the proposed system
Uthaman, Sreekumar
In recent times, a standard driving cycle is an excellent way to measure the electric range of EVs. This process is standardized and repeatable; however, it has some drawbacks, such as low active functions being tested in a controlled environment. This sometimes causes huge variations in the range between driving cycles and actual on-road tests. This problem of variation can be solved by on-road testing and testing a vehicle for customer-based velocity cycles. On-road measurement may be high on active functions while testing, which may give an exact idea of real-world consumption, but the repeatability of these test procedures is low due to excessive randomness. The repeatability of these cycles is low due to external factors acting on the vehicle during on-road testing, such as ambient temperature, driver behavior, traffic, terrain, altitude, and load conditions. No two measurements can have the same consumption, even if they are done on the same road with the same vehicle, due to the
Kelkar, KshitijKanakannavar, Rohit
In the development of high-voltage (HV) batteries, ensuring secure connections between HV conductors and maintaining the safety and performance of the battery pack is paramount. Therefore, In the pursuit of enhancing efficiency and reliability in electrical connections, this paper explores the innovative alternate for a traditional screwing method with a friction locking mechanism for connecting busbars. The novel design reimagines the busbar as a Friction clamp (Female part) that securely holds the male part of the Busbar, significantly increasing the contact surface area up to 50%. This enhanced surface area not only improves electrical conductivity but also addresses heat generation issues associated with traditional screw-based connection. By eliminating the need for screws, the new design streamlines the assembly process, resulting in reduced cycle times and improved overall assembly line efficiency. This study presents the design methodology, performance analysis, and potential
Venkatesh, MuraliRaghu, ArunBhramanna, Amol
This paper presents a comprehensive testing framework and safety evaluation for Vehicle-to-Vehicle (V2V) charging systems, incorporating advanced theoretical modeling and experimental validation of a modern, integrated 3-in-1 combo unit (PDU, DCDC, OBC). The proliferation of electric vehicles has necessitated the development of resilient and flexible charging solutions, with V2V technology emerging as a critical decentralized infrastructure component. This study establishes a rigorous mathematical framework for power flow analysis, develops novel safety protocols based on IEC 61508 and ISO 26262 functional safety standards, and presents comprehensive experimental validation across 47 test scenarios. The framework encompasses five primary test categories: functional performance validation, power conversion efficiency optimization, electromagnetic compatibility (EMC) assessment, thermal management evaluation, and comprehensive fault-injection testing including Byzantine fault scenarios
Uthaman, SreekumarMulay, Abhijit B
With the rising adoption of electric vehicles, the need for robust and efficient power distribution systems has become increasingly important. As the battery pack is the primary energy source for an electric vehicle (EV), the strategy of selection of switchgears and busbars is paramount. Currently, the design and selection of battery protection and conducting components, such as switchgears and busbars are carried out primarily focusing on the continuous current and the peak current capabilities of the battery pack. Despite this approach ensuring that the components can withstand extreme conditions, it often results in over-engineering. The sizing should be such that it does not overdesign, which would result in unnecessary cost and material weight addition to the pack, ultimately leading to performance deterioration. As the current discharge from a battery pack is dynamic in nature and fluctuates based on driving conditions and usage a real-time heat generation studies have to be
Soman, Anusatheesh, GouthamK, Mathankumar
Automotive headlamps in Battery Electric Vehicles (BEVs) are exposed to a wide range of environmental and operational conditions that influence their thermal behaviour. Factors such as solar radiation, ambient temperature, lighting features, and nearby heat sources can significantly impact headlamp temperatures, potentially leading to issues like condensation, material degradation, and reduced optical performance. Accurate thermal modelling using Computational Fluid Dynamics (CFD) is essential during the design phase, but its effectiveness depends heavily on the fidelity of boundary conditions, which are often based on internal combustion engine (ICE) vehicle data. This study investigates the thermal behaviour of BEV headlamps under real-world conditions, focusing on parking and charging scenarios. Temperature measurements were taken at various locations on the lens and housing of a Jaguar I-Pace using thermocouples. The results show that lighting features, particularly the high beam
Nangunuri, Vishnu TejaKapadia, VatsalKovacs, GaborAhmad, Waqas
The number of female drivers in India is increasing alongside the rapid growth of the Indian automotive industry. A driving comfort survey conducted among female drivers revealed that many of them experienced discomfort when wearing safety belts—while driving and as front-seat passengers. This discomfort is primarily due to a phenomenon referred to as “neck cutting.” The root cause of neck cutting is likely related to vehicle design, which is traditionally based on Anthropometric Test Devices (ATD’s) representing the 5th, 50th & 95th percentile (%tile) of the global population. However, a literature review indicated that the anthropometric dimensions of the Indian populations are generally smaller than those of the global for the respective candidate. To validate the neck-cutting issue, various female candidates were asked to sit in the Driver’s seat for physical measurements trials. Accordingly, methodology was developed to quantify neck cutting parameters objectively. A correlation
Kulkarni, Nachiket AChitodkar, Vivek VEknath Chopade, SantoshMahajan, RahulYamgar, Babasaheb S
Items per page:
1 – 50 of 44549