Browse Topic: Measurements

Items (1,473)
Overloading in vehicles, particularly trucks and city buses, poses a critical challenge in India, contributing to increased traffic accidents, economic losses, and infrastructural damage. This issue stems from excessive loads that compromise vehicle stability, reduce braking efficiency, accelerate tire wear, and heighten the risk of catastrophic failures. To address this, we propose an intelligent overloading control and warning system that integrates load-sensing technology with real-time corrective measures. The system employs precision load sensors (e.g., air below deflection monitoring via pressure sensors) to measure vehicle weight dynamically. When the load exceeds predefined thresholds, the system triggers a multi-stage response: 1 Visual/Audio Warning – Alerts the driver to take corrective action. 2 Braking Intervention – If ignored, the braking applied, immobilizing the vehicle until the load is reduced. Experimental validation involved ten iterative tests to map deflection-to
Raj, AmriteshPujari, SachinLondhe, MaheshShirke, SumeetShinde, Akshay
Accurately determining the loads acting on a structure is critical for simulation tasks, especially in fatigue analysis. However, current methods for determining component loads using load cascade techniques and multi-body dynamics (MBD) simulation models have intrinsic accuracy constraints because of approximations and measurement uncertainties. Moreover, constructing precise MBD models is a time-consuming process, resulting in long turnaround times. Consequently, there is a pressing need for a more direct and precise approach to component load estimation that reduces efforts and time while enhancing accuracy. A novel solution has emerged to tackle these requirements by leveraging the structure itself as a load transducer [1]. Previous efforts in this direction faced challenges associated with cross-talk issues, but those obstacles have been overcome with the introduction of the "pseudo-inverse" concept. By combining the pseudo-inverse technique with the D-optimal algorithm
Pratap, RajatApte, Sr., AmolBabar, Ranjit
The design and improvement of electric motor and inverter systems is crucial for numerous industrial applications in electrical engineering. Accurately quantifying the amount of power lost during operation is a substantial challenge, despite the flexibility and widespread usage of these systems. Although it is typically used to assess the system’s efficiency, this does not adequately explain how or why power outages occur within these systems. This paper presents a new way to study power losses without focusing on efficiency. The goal is to explore and analyze the complex reasons behind power losses in both inverters and electric motors. The goal of this methodology is to systematically analyze the effect of the switching frequency on current ripple under varying operating conditions (i.e., different combinations of current and speed) and subsequently identify the optimum switching frequency for each case. In the end, the paper creates a complete model for understanding power losses
Banda, GururajSengar, Bhan
With the rapid adoption of electric vehicles (EVs), ensuring the reliability, safety, and cost-effectiveness of power electronic subsystems such as onboard chargers, DC-DC converters, and vehicle control units (VCUs) has become a critical engineering focus. These components require thorough validation using precise calibration and communication protocols. This paper presents the development and implementation of an optimized software stack for the Universal Measurement and Calibration Protocol (XCP), aimed at real-time validation of VCUs using next-generation communication methods such as CAN, CAN-FD, and Ethernet. The stack facilitates read/write access to the ECU’s internal memory in runtime, enabling efficient diagnostics, calibration, and parameter tuning without hardware modifications. It is designed to be modular, platform-independent, and compatible with microcontrollers across different EV platforms. By utilizing the ASAM-compliant protocol architecture, the proposed system
Uthaman, Sreekumar
In recent times, a standard driving cycle is an excellent way to measure the electric range of EVs. This process is standardized and repeatable; however, it has some drawbacks, such as low active functions being tested in a controlled environment. This sometimes causes huge variations in the range between driving cycles and actual on-road tests. This problem of variation can be solved by on-road testing and testing a vehicle for customer-based velocity cycles. On-road measurement may be high on active functions while testing, which may give an exact idea of real-world consumption, but the repeatability of these test procedures is low due to excessive randomness. The repeatability of these cycles is low due to external factors acting on the vehicle during on-road testing, such as ambient temperature, driver behavior, traffic, terrain, altitude, and load conditions. No two measurements can have the same consumption, even if they are done on the same road with the same vehicle, due to the
Kelkar, KshitijKanakannavar, Rohit
Final design choices are frequently made early in the product development cycle in the fiercely competitive automotive sector. However, because of manufacturing tolerances design tolerances stiffness element fitment and other noise factors physical prototypes might show variations from nominal specifications. Significant performance differences (correlation gaps) between the digital twin representation produced during the design phase and real-world performance may result from these deviations. Measuring every system parameter repeatedly to take these variations into account can be expensive and impractical. The goal of this study is to identify important system parameters from system characteristic data produced by controlled dynamic testing to close the gap between digital and physical models. Dynamic load cases are carried out with a 4-poster test rig where vehicle responses are captured under controlled circumstances at different suspension locations. An ideal set of digital model
Verma, Rahul RanjanGoli, Naga Aswani KumarPrasad, Tej Pratap
The automotive market trend is shifting more and more to SUVs and crossovers. This, therefore, means increasing consumer demand for off-road abilities in passenger vehicles. While dedicated off-road platforms provide a path to performance robustness, getting the same level of functionality out of a passenger vehicle with minimal architectural changes proves to be a great feat for engineers. One highly critical performance determinant in the domain of off-road ability is wheel articulation, it requires independent movement capacity of the wheels to keep contact and stability over uneven terrain. Traditional articulations found in passenger car suspensions—created for comfort, packaging, and on-road dynamics—are limited by suspension geometry, damper alignment as well as compliance setup. Damper side loads- were not considered a significant factor in suspension systems that are operating within their original intended design envelope for on-road use. However, when the vehicle is taken
Siddiqui, ArshadIqbal, ShoaibDwivedi, Sushil
The effective measurement and verification of dimensional stability indicators for large size and highly stable structures in service environments is the key to the development of high-precision spacecraft technology. Spatial carrier speckle interferometry technology has been widely used for high-precision measurements in recent years due to its advantages of fast speed, high accuracy, and simple operation. However, the existing technical research only focuses on the measurement under normal temperature and pressure environments, and there is little research on the application under complex operating conditions in space. There is currently no relevant research on the impact of system ambient vibration and noise on measurement stability disturbances. In response to the above issues, a high-precision deformation measurement system suitable for complex environments of high and low temperatures in a vacuum was designed based on spatial carrier measurement technology. A system measurement
Sun, ZijieTang, XiaojunChen, DongkangkangYang, DeyuYu, WentaoLi, XiaqiaoXin, Liang
The International Roughness Index (IRI) is a key indicator for evaluating the performance of road surfaces. However, traditional measurement methods only focus on the evaluation data of a single longitudinal section and do not consider the lateral difference between the actual contact area between the tire and the road surface, which may lead to inaccurate evaluation results. In recent years, with the advancement of 3D laser scanning and digital photogrammetry technology, full-section data acquisition has brought new possibilities for roughness evaluation. However, how to find a balance between data fineness and computing efficiency has become a core problem that needs to be solved. Based on the principle of interaction between vehicles and road surfaces, this paper proposes to include only the pavement height data within the tire width range into IRI analysis, and establishes an evaluation framework based on standard tire-ground contact width. This method not only retains the key
An, HuazhenWang, RuiHan, XiaokunLuo, Yingchao
The rapid development of civil aviation industry makes it difficult for traditional flight scheduling methods to cope with the increasingly complex air transport demand. In this study, an AI-based civil aviation transportation scheduling optimisation system is designed, integrating a novel deep reinforcement learning framework with a validated multimodal fusion algorithm (MMFA) to address spatiotemporal dependencies in aviation data to construct the core architecture of the system. Measurement results show that the system effectively reduces the average flight delay time by 58.1%, improves the slot utilisation rate by 21.3%, increases the flight punctuality rate to 93.7%, and shortens the response time to emergencies by 62.5%. The high performance and significant economic benefits demonstrated by the system in the real environment provide a feasible solution for the intelligent upgrading of civil aviation transport.
Li, Mohan
In the context of the accelerating urbanization process, the problem of urban traffic congestion has become more severe. Rail transit, with its advantages of high efficiency, convenience, and environmental friendliness, has become a key force in alleviating urban traffic pressure. An in - depth exploration of passengers’ willingness to travel by rail transit is of great significance for optimizing urban traffic planning, improving the service quality of rail transit, and promoting the sustainable development of cities. This article starts from two dimensions: objective factors and passengers’ subjective perceptions, and comprehensively uses a variety of research methods to conduct an in - depth study on passengers’ willingness to travel by rail transit. In terms of objective factors, this article analyzes the differences in subjective perceptions among different passenger groups from the perspectives of gender, age, education level, and occupation. In terms of subjective perceptions
Wang, GangHuang, LeiYang, Yihao
Under the background of advancing the integration of urban and rural road passenger transport and the bus-oriented transformation of scheduled passenger transport, the traditional road passenger transport market has been severely impacted. There is an urgent need to promote the healthy development of chartered passenger transport to meet the public’s demand for high-quality travel. Based on the supply-demand balance theory, a prediction model for chartered passenger transport capacity scale was constructed, and the capacity scale of chartered passenger transport in a typical city was predicted as an example. Finally, countermeasures and suggestions for chartered passenger transport capacity allocation were proposed from five aspects: planning formulation, risk warning, mechanism clarification, performance evaluation, and responsibility implementation.
Zhao, HaibinZhao, XiangyuXing, LiWei, LinghongPeng, XiaoLiao, Kai
Intelligent capacity optimization of highways could realize intelligent enhancement of traffic capacity by optimizing traffic management, improving traffic efficiency and enhancing system synergy without significantly increasing physical lanes. However, there was a lack of a unified and perfect index system to scientifically evaluate the effectiveness of such projects. This paper analyzed the basic theory, evaluation indicator structure and system, and puts forward seven key evaluation dimensions, which including traffic efficiency enhancement, traffic safety improvement, economic and cost-benefit, environmental impacts, technology application and innovation, system reliability and resilience, and service experience. This paper screened the specific evaluation indexes of the seven dimensions and proposes the hierarchical structure of the index system and the weight determination method. This paper constructed a comprehensive, multi-dimensional evaluation index system for highway smart
Che, XiaolinLi, WeichenZhu, LiliLi, XinWang, Lin
This paper presents a comprehensive analysis of advanced methods for optimizing software development in hybrid vehicles, focusing on the V-Model methodology integrated with Model-Based Systems Engineering (MBSE), functional design techniques and In-the-Loop validation processes, and the incorporation of agile methodologies such as SAFe (Scaled Agile Framework). The increasing complexity of embedded systems in hybrid vehicles, driven by electrification and the introduction of autonomous and connected systems, demands systematic and rigorous approaches to ensure reliability, safety, and energy efficiency. Over the next sections, we will explore the fundamental principles of the V-Model, its adaptations to the context of hybrid vehicles, the implementation of functional design processes supported by MBSE, the application of Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) methodologies for system validation, and finally the integration of agile SAFe principles to manage
Gomes, Cleber WillianNatal, Icarus Lima
This study presents three methods for obtaining the latency of an indirect injection Electro-Injector as a function of the applied voltage. This parameter is relevant for the linearization of the injected mass in order to model fuel mass delivery on modern ECUs. For this purpose, the authors built a test bench, with the intent of running analysis on the results of tests of mass differential between injections, circulating current, and mechanical vibration. The authors gathered data over the iterative experiments and correlated the mass differential, vibration data and current measurements. The authors observed that with a reduction of supply voltage at the injector’s pins, a greater injector dead time made itself present displaying a need for a compensation of opening time in function of voltage since the injector’s needle takes a longer amount of time in partially open positions. Modern ECU manufacturers broadly use the data obtained by this type of iterative experiment to accurately
Juliatti, Rafael MotterOliveira, Julia Mathias deMorais Hanriot, Sérgio deSilveira, Hairton Júnior Jose daMoreira, Vinicius Guerra
In vehicle development, occupant-centered design is crucial to ensuring customer satisfaction. Key factors such as visibility, access, interior roominess, driver ergonomics, interior storage and trunk space directly impact the daily experience of vehicle occupants. While automakers rely on engineering metrics to guide architectural decisions, however in some cases doesn’t exist a clear correlation between these quantitative parameters and the subjective satisfaction of end users. This study develops a methodology which addresses that gap by proposing the creation of quantitative satisfaction curves for critical engineering metrics, providing a robust tool to support decision-making during the early stages of vehicle design. Through a combination of clinics, research, and statistical analysis, this project outlines a step-by-step process for developing (dis)satisfaction curves, offering a clearer understanding of how dimensions like headroom, glove box volume, and A-pillar obscuration
Santos, Alex CardosoSilva, GustavoBenevente, RodrigoPadua Silva, AntonioLourenço, Sergio RicardoAndrade, Cecilia NavasSobral, Piero
Occupant comfort is a fundamental consideration during the early stages of vehicle development, with internal spaciousness serving as a key pillar in creating a pleasant in-cabin experience. Among the various factors that contribute to this perception, legroom plays a particularly significant role, especially for rear-seat passengers. This study investigates the relationship between second-row legroom and occupant satisfaction under real-world driving conditions, employing a combination of research, statistical data analysis, and dynamic clinics to assess perceptual comfort. The findings reveal that shin and leg heights are the primary drivers of satisfaction or discomfort, while gender and overall height exhibit only minor influences on perceived comfort. Additionally, the study highlights the importance of other interior dimensions, such as shoulder room, knee clearance, and chair height, in shaping overall comfort since if they were poorly chosen, they would have affected clinic
Silva, GustavoSantos, Alex CardosoGenaro, PieroTerra, RafaelPádua, AntônioRossini, RafaelBenevente, Rodrigo
In recent decades, vehicles have evolved from mere means of individual transportation to something much more meaningful. They are no longer mere metal bodies housing combustion engines, but now play a complex role in people’s lives, encompassing emotional, aesthetic, and symbolic aspects. These factors influence consumers’ choice of a model, brand, or version. Based on a literature review of the global automotive sector, including brand literature, scientific articles, and current automotive news, this study aims to analyze the main design and positioning trends adopted by large multinationals in the market. Using the Jeep Renegade as a case study, three design proposals for the model are illustrated and presented as follows: a “facelift,” a “new generation,” and a “concept vehicle.” Next, these design trends are conceptualized, initially illustrating the respective sketches and drafts, which take into account market positioning and the different options for the models presented in
Camilo, Pedro GomesGamarra Rosado, Victor OrlandoGuidi, Erick Siqueira
In order to ensure the construction safety of tunnels in water-rich sections near reservoir areas, it is very important to adopt comprehensive and reliable advanced geological prediction technology combined with on-site monitoring and measurement. Taking the Chenlingding tunnel as an example, through the comprehensive geological prediction of the broken rock section near the reservoir, the numerical model of the broken rock section was established, and compared with the field measurement data. The results show that the comprehensive advanced geological prediction system combining short, medium and long distances, such as geological radar, seismic wave reflection method and advanced horizontal drilling, has high accuracy in adverse geology, rock fragmentation and water rich conditions in the tunnel; The rich water condition, fault information and rock engineering geology provided by the advanced geological prediction can provide reliable guarantee for the tunnel excavation scheme, the
Dai, YunfeiFeng, MeijieLiu, DachengTang, Xianyuan
This study proposes an urban rail transit network resilience assessment method based on dynamic passenger flow, which quantifies the overall system performance from the structural and functional dimensions. At the structural level, the relative size of the largest pass subgraph is introduced to measure the network integrity, and the average node degree is used to evaluate the network connectivity; At the functional level, the passenger travel efficiency ratio is used to measure the operation efficiency of the supply side, and the proportion of unaffected passengers is used to evaluate the service support capability of the demand side. The weight of each index is determined by entropy weight method, and then the comprehensive performance evaluation model of rail transit system is constructed. Taking Nanjing Metro as an example, the empirical study shows that the performance change trend reflected by the introduction of dynamic passenger flow is significantly different from the
Wang, JunhangShao, JiayuYang, HaofanZhang, Ning
Railway is a key component driving innovation and sustainability in transportation systems. Aiming at solving the problems of metal reflection, oil contamination and complex background interference in railway wheel tread defect detection, this paper will focus on the railway wheel tread defect detection method, SEN-YOLO, based on the YOLOv5s and the comparison between different generations of YOLO detection. To better adapt the model to actual detection scenarios, multi-stage dynamic data augmentation strategy combining illumination robustness optimization and motion blur simulation is designed to construct a railway wheel dataset that closely mirrors real-world conditions. In terms of model architecture, the YOLOv5s-based approach integrates the Squeeze-and-Excitation Networks (SENets) module to enhance the capture of minor defect features and employs an adaptive feature fusion strategy to mitigate background noise. To further improve detection accuracy and generalization, the YOLOv5s
You, LijieMo, YayelinTu, JingjieZhou, Hang
To address the challenges of balancing detection accuracy and real-time performance in complex traffic scenarios for vehicle-mounted embedded platforms and road monitoring, this paper proposes YOLOv10n-FTAS, an optimized lightweight detection framework based on YOLOv10n. The main innovations include: (1) Designing a C2f-Faster-EAMA module in the backbone network that enhances feature representation through channel-spatial cooperative attention mechanisms; (2) Proposing a novel statistics-enhanced attention mechanism (Token Statistics-enhanced PSA, TS-PSA) by integrating Token Statistics Self-Attention; (3) Constructing a Dynamic Sample-Attention Scale Fusion module (DS-ASF) that achieves multi-scale feature fusion through deformable convolution and adaptive sampling strategies; (4) Adopting Shape-IoU loss function with geometric constraints to optimize bounding box regression. Experimental results demonstrate: The improved model reduces parameters and computations to 5.5M and 5.8G
Niu, JigaoJin, Kunming
In the race toward practical quantum computers and networks, photons — fundamental particles of light — hold intriguing possibilities as fast carriers of information at room temperature. Photons are typically controlled and coaxed into quantum states via waveguides on extended microchips, or through bulky devices built from lenses, mirrors, and beam splitters. The photons become entangled — enabling them to encode and process quantum information in parallel — through complex networks of these optical components. But such systems are notoriously difficult to scale up due to the large numbers and imperfections of parts required to do any meaningful computation or networking.
Innovators at NASA Johnson Space Center have developed a technology that can isolate a single direction of tensile strain in biaxially woven material. This is accomplished using traditional digital image correlation (DIC) techniques in combination with custom red-green-blue (RGB) color filtering software. DIC is a software-based method used to measure and characterize surface deformation and strain of an object. This technology was originally developed to enable the extraction of circumferential and longitudinal webbing strain information from material comprising the primary restraint layer that encompasses inflatable space structures.
The European Space Agency (ESA) has added a micro-vibration test instrument, developed by the National Physical Laboratory (NPL), to its satellite testing facilities. NPL is the United Kingdom’s National Measurement Institute, developing and maintaining the national primary measurement standards. The instrument measures vibrations generated by satellite subsystems, to quantify their effects on images and measurements made from space. This facility is the result of five years of collaboration between NPL and ESA.
The global electronics supply chain has always run in cycles — tight supply followed by sudden gluts — but in recent years, the pace and scale of disruption have accelerated. From semiconductor shortages to shifting trade policies and pandemic-driven bottlenecks, OEMs across every sector have been forced to rethink how they source and secure critical components.
If road friction coefficient can be measured in a car driving, the performance of advanced driver-assistance systems (ADAS) such as antilock braking system (ABS) and automatic braking systems can be improved. Generally, ADAS uses information obtained from wheel speed sensors, acceleration sensors, and the like. However, it is difficult to measure accurately road friction coefficients with these sensors. Therefore, many studies measured road friction coefficients from strain or deformation in the bottom of a tire (tread), which is the only place to contact with a road surface. However, a sensor installed on the bottom of a tire is easy to peel or damage because greater deformation occurs locally on the bottom of a tire. Therefore, this study develops a method of measuring the road friction coefficient from the strain induced in a tire sidewall. If the tire sidewall can be used, stable measurement can be expected because the sidewall is harder to deform locally than the bottom of a tire
Higuchi, MasahiroTachiya, Hiroshi
Accurate defect quantification is crucial for ensuring the serviceability of aircraft engine parts. Traditional inspection methods, such as profile projectors and replicating compounds, suffer from inconsistencies, operator dependency, and ergonomic challenges. To address these limitations, the 4D InSpec® handheld 3D scanner was introduced as an advanced solution for defect measurement and analysis. This article evaluates the effectiveness of the 4D InSpec scanner through multiple statistical methods, including Gage Repeatability and Reproducibility (Gage R&R), Isoplot®, Youden plots, and Bland–Altman plots. A new concept of Probability of accurate Measurement (PoaM)© was introduced to capture the accuracy of the defect quantification based on their size. The results demonstrate a significant reduction in measurement variability, with Gage R&R improving from 39.9% (profile projector) to 8.5% (3D scanner), thus meeting the AS13100 Aerospace Quality Standard. Additionally, the 4D InSpec
Aust, JonasDonskoy, Gene
In contemporary society, where Global Navigation Satellite Systems (GNSS) are utilised extensively, their inherent fragility gives rise to potential hazards with respect to the safety of ship navigation. In order to address this issue, the present study focuses on an ASM signal delay measurement system based on software defined radio peripherals. The system comprises two distinct components: a transmitting end and a receiving end. At the transmitting end, a signal generator, a first time-frequency synchronisation device, and a VHF transmitting antenna are employed to transmit ASM signals comprising dual Barker 13 code training sequences. At the receiving end, signals are received via software-defined radio equipment, a second time-frequency synchronisation device, a computing host, and a VHF receiving antenna. Utilising sliding correlation algorithms enables accurate time delay estimation. The present study leverages the high performance and low cost advantages of the universal
Li, HaoSun, XiaowenWang, TianqiZhou, ZeliangWang, Xiaoye
The de-rated capacity of forklifts plays a crucial role in determining their safety, efficiency, and overall performance, particularly when modifications are introduced to meet stringent industrial standards. The term "de-rated capacity" refers to the reduction in a forklift's rated load-carrying capacity caused by various factors, including load center shifts, lifting height, attachment usage, tire types, and counterweight adjustments. This reduction occurs as a safety measure to account for potential instabilities or mechanical limitations when operating under less-than-ideal conditions. Accurate understanding and calculation of de-rated capacity are vital to ensure safe and efficient forklift operation. This research provides a detailed examination of forklift variants, specifically evaluated under the IS 4357:2004 standards [1], to understand the intricate relationship between tire types and counterweight adjustments on the derated capacity. With advanced Multibody Simulations, as
Shende, KalyaniShingavi, ShreyasHingade, Nikhil
Large farms cultivating forage crops for the dairy and livestock sectors require high-quality, dense bales with substantial nutritional value. The storage of hay becomes essential during the colder winter months when grass growth and field conditions are unsuitable for animal grazing. Bale weight serves as a critical parameter for assessing field yields, managing inventory, and facilitating fair trade within the industry. The agricultural sector increasingly demands innovative solutions to enhance efficiency and productivity while minimizing the overhead costs associated with advanced systems. Recent weighing system solutions rely heavily on load cells mounted inside baling machines, adding extra costs, complexity and weight to the equipment. This paper addresses the need to mitigate these issues by implementing an advanced model-based weighing system that operates without the use of load cells, specifically designed for round baler machines. The weighing solution utilizes mathematical
Kadam, Pankaj
An agricultural tractor comprises a tightly packed underhood compartment, which poses distinct challenges in managing airflow through its heat exchangers. The intricate design results in uneven airflow patterns, as the fan-driven system draws air from the front, top, and side openings. This work presents a methodology to measure the cooling airflow volume in the tractor and establishing a correlation between test airflow and CFD simulated airflow values. A handheld anemometer and 3x3 matrix type anemometer used for airflow measurement. Measurements were taken at front and back of heat exchanger. It was concluded that, measuring airflow through the heat exchanger with a matrix-type anemometer positioned behind it can enhance the correlation with CFD results to 84%.
A, BoopalshanmugamGanesan, ThanigaivelReddy, LakkuSateesh, TadiGopinathan, Nagarajan
The first step in designing or analyzing any structure is to understand “right” set of loads. Typically, off-road vehicles have many access doors for service or getting into cab etc. Design of these doors and their latches involve a knowledge of the loads arising when the door is shut which usually involves an impact of varying magnitudes. In scenarios of these impact events, where there is sudden change of velocity within few milliseconds, produces high magnitude of loads on structures. One common way of estimating these loads using hand calculations involves evaluating the rate-of-change-of-momentum. However, this calculation needs “duration of impact”, and it is seldom known/difficult to estimate. Failing to capture duration of impact event will change load magnitudes drastically, e.g. load gets doubled if time-of-impact gets reduced from 0.2 to 0.1 seconds and subsequently fatigue life of the components in “Door-closing-event” gets reduce by ~7 times. For these problems, structures
Valkunde, SangramGhate, AmitGagare, Kiran
Measuring the volume of harvested material behind the machine can be beneficial for various agricultural operations, such as baling, dropping, material decomposition, cultivation, and seeding. This paper aims to investigate and determine the volume of material for use in various agricultural operations. This proposed methodology can help to predict the amount of residue available in the field, assess field readiness for the next production cycle, measure residue distribution, determine hay readiness for baling, and evaluate the quantity of hay present in the field, among other applications which would benefit the customer. Efficient post-harvest residue management is essential for sustainable agriculture. This paper presents an Automated Offboard System that leverages Remote Sensing, IoT, Image Processing, and Machine Learning/Deep Learning (ML/DL) to measure the volume of harvested material in real-time. The system integrates onboard cameras and satellite imagery to analyze the field
Singh, Rana ShaktiStallin, Saravanan
Items per page:
1 – 50 of 1473