Browse Topic: Measurements
This paper presents the design of a cost-effective fuel injector driver designed for accelerated testing of injectors. The driver simulates injection patterns across a wide range of vehicle operating conditions and can be programmed with injection maps for different engines, test cycles based on drawing specifications, pre-defined engine running profiles, and manual control, where the user defines PWM frequency and duty cycle. It also enables remote operation through a Wi Fi access point. An injector driver-based test setup was developed to study wear and evaluate leakage tendency in an injector design. To simulate extended field usage in a short timeframe, an accelerated operating cycle was derived using telematics data. Injector samples were tested with periodic leak rate measurements. Conducting such tests at vehicle level or on engine test bench would involve significant time and cost. This setup is an effective tool for rapid comparative analysis across supplier design, enabling
With the rapid adoption of electric vehicles (EVs), ensuring the reliability, safety, and cost-effectiveness of power electronic subsystems such as onboard chargers, DC-DC converters, and vehicle control units (VCUs) has become a critical engineering focus. These components require thorough validation using precise calibration and communication protocols. This paper presents the development and implementation of an optimized software stack for the Universal Measurement and Calibration Protocol (XCP), aimed at real-time validation of VCUs using next-generation communication methods such as CAN, CAN-FD, and Ethernet. The stack facilitates read/write access to the ECU’s internal memory in runtime, enabling efficient diagnostics, calibration, and parameter tuning without hardware modifications. It is designed to be modular, platform-independent, and compatible with microcontrollers across different EV platforms. By utilizing the ASAM-compliant protocol architecture, the proposed system
Durability validation of full vehicle structures is crucial to ensure long-term performance and structural integrity under real-world loading conditions. Physical test strain and finite element (FE) strain correlation is vital for accurate fatigue damage predictions. During torture track testing of the prototype vehicle, wheel center loads were measured using wheel force transducers (WFTs). In same prototype strain time histories were recorded at critical structural locations using strain gauges. Preliminary FE analysis was carried out to find out critical stress locations, which provided the basis for placement of strain gauges. Measured loads at wheel centers were then used in Multi Body Dynamics (MBD) simulations to calculate the loads at all suspension mount points on BIW. Using the loads at hard points transient analyses were performed to find out structural stress response. Strain outputs from the FE model were compared with physical measurements. Insights gained from these
Items per page:
50
1 – 50 of 1513