Browse Topic: Measurements

Items (1,256)
ABSTRACT This paper presents a novel adaptive sampling method using intelligent UAVs in battlefields to help soldiers with awareness of environments. A UAV can perform as a robotic wingman in soldier formations, compensating for that cannot be scouted by soldiers, even being exposed to enemy fire. With portable size, the UAV is easily carried and flown for scouting tasks anytime. The flexibility of UAVs makes it possible to collect measurements sequentially. Each measurement is adaptively designed and determined from the Bayesian perspective to increase the fidelity of battlefields. Wavelet structure is considered to optimize measurement projections to substantially reduce the number of measurements based on compressive sensing framework. More specifically, each measurement is optimized by maximizing the posterior variance inferred from existing informative data. A motion planning algorithm for UAVs is designed based on the distribution of optimal measurements, striking a balance
Huang, ShuoLu, JianXie, LinTan, Jindong
ABSTRACT This paper presents an experimental methodology for regeneration of course profiles, with tire acceleration and speed, suspension force and pitch data collected from an instrumented trailer wheel running over the course profile to be identified. The collected data is used to derive the course profile as a function of time, while the speed data is used to map the ground elevation data from a time domain into a spatial domain. To verify the course re-generating rationale, the required test data was simulated with the data extracted from a trailer model running over selected course profiles. The regenerated course profiles are then compared against those used as the inputs to the trailer model, demonstrating the feasibility of using the methodology to regenerate course profiles which statistically align with real-world course profiles. The methodology may be used to develop the inputs statistically equivalent to realistic course profiles as needed in dynamic simulation of terrain
Zhang, XiongKnezevic, ZeljkoEng, M.
ABSTRACT Ground vehicle soft soil mobility has been studied for decades. Standard measurements, such as cone penetrometer, determine soil strength which helps analyze vehicle mobility. These methods are only available where data can be collected. As off-road vehicles transition to autonomous and semi-autonomous, real time in-situ analysis of soil strength is becoming a necessity. Databases such as GeoWATCH provide coarse (30-90m geospatial resolution) mobility parameter estimates. Hydrologic events can cause rapid changes in mobility which may not be effectively captured by these databases. In order to make real time predictions for autonomous vehicles, it is necessary to develop a method to determine mobility parameters without operator intervention. A system using rut depth measurements (collected via optical and ultrasonic sensors) and vehicle parameters was developed from established methods to estimate soil strength. The results were compared to corresponding physical measurements
Fischell, Jason N.Hansen, Bradley S.Jackson, J. RebekahEylander, John B.
ABSTRACT Model based design techniques are being used increasingly to predict vehicle performance before building prototype hardware. Tools like ADAMS and Simulink enable very detailed models of suspension components to be developed so vehicle performance can be accurately predicted. In creating models of vehicle systems, often there is a question about how much component detail or model fidelity is required to accurately model system performance. This paper addresses this question for modeling shock absorber performance by comparing a low fidelity and high fidelity shock absorber model. A high fidelity and low fidelity mathematical model of a shock absorber was developed. The low fidelity shock absorber model was parameterized according to real shock absorber hardware dimensions. Shock absorber force vs. velocity curves were calculated in Simulink. The results from the low fidelity and high fidelity model were compared to shock absorber force vs. velocity test results. New vehicle
Masini, ChrisYang, Xiaobo
ABSTRACT One primary system integration challenge for a terrain measurement system is the triggering and time synchronization of all subsystems. Since individual measurement systems vary in their triggering requirements, both in terms of voltage levels and response times, a comprehensive triggering architecture is difficult to implement. Examples of triggering signal inputs include: a transistor-transistor logic (TTL) compliant signal, an RS-232 compliant signal, and an open/close switch circuit. Pulse-triggering signals are also present, and enable continuous time synchronization between instruments. Therefore, a triggering scheme is proposed capable of accurately initiating, synchronizing, and concluding data collection from multiple sensors and subsystems. Simulation of complete circuit designs show that the trigger circuit is capable of properly processing a single physical switch input signal into a TTL-compliant trigger signal. Synchronization pulse signals are likewise amplified
Binns, RobertFerris, John B.
ABSTRACT Shape reconstruction for nondestructive evaluation (NDE) of internal defects in ground vehicle hulls using eddy current probes provides a rationale for determination of when to withdraw vehicles from deployment. This process requires detailed finite element optimization and is computationally intensive. Traditional shared memory parallel systems, however, are prohibitively expensive and have limited central processing units (CPUs), making speedup limited. So parallelization has never been done. However, a CPU that is connected to graphics processing units (GPUs) with effective built-in shared memory provides a new opportunity. We implement the naturally parallel, genetic algorithm (GA) for synthesizing defect shapes on GPUs. Shapes are optimized to match exterior measurements, launching the parallel, executable GA kernel on hundreds of CUDA™ (Compute Unified Device Architecture) threads to establish the efficiencies
Karthik, Victor U.Sivasuthan, SivamayamRahunanthan, ArunasalamJayakumar, ParamsothyThyagarajan, Ravi S.Hoole, S. Ratnajeevan H.
ABSTRACT Standard requirements for directed energy deposition (DED) additive manufacturing (AM) of parts were needed for a new NAVSEA Technical Publication. DED procedure qualification schemes were developed for integrated and non-integrated build platforms and for both single-sided and double-sided build applications. A double-sided build platform approach is widely preferred for distortion control and build productivity. These procedure qualification requirements were developed for arc, laser, and electron beam welding-based DED processes using wire or powder consumables. Each procedure qualification scheme included a standard qualification build (SQB) design, nondestructive evaluation test map, property specimen test matrix and qualification records for each application and process combination. Since these metal AM processes cover a range of feature size capabilities that are defined by minimum deposit bead width, SQBs were designed for full-scale (~> 5 mm), sub-scale (~2 – 5 mm
Harwig, D.D.Mohr, W.Kapustka, N.Hay, J.Carney, M.Hovanec, S.Handler, E.Farren, J.Rettaliata, J.Hayleck, R.
ABSTRACT This paper describes the VIPER II, the Vehicle Inertia Parameter Evaluation Rig, developed by SEA, Ltd at the request of the US Army’s Tank Automotive Research, Development and Engineering Center (TARDEC). The previous machine was the VIPER I, built in 2000. The new machine is built to measure vehicle center-of-gravity height, the pitch, roll, and yaw moments of inertia, and the roll/yaw cross product of inertia. It is made to test nearly all of the Army’s wheeled vehicles, covering a range of weights from 3000 to 100,000 lbs, up to 150 inches in width and up to 600 inches in length. Commercial vehicles could also be tested. The machine was installed in March, 2014 in the TARDEC facility in Warren, MI. The paper describes the need for such measurements, the basic features of the machine, the test procedure, and the results of early testing. The design specification for accuracy was 3% for all measurements, but the actual VIPER II accuracy is usually better than 1
Andreatta, DaleHeydinger, Gary J.Bixel, Ronald A.Sidhu, AnmolKurec, AleksanderBaseski, IgorSkorupa, Thomas
ABSTRACT This paper presents the results of a series of controlled tests conducted with large explosive charges in which a number of threat parameters were systematically varied. After each test, careful measurements were made of the crater dimensions. A statistical analysis was conducted in order to relate the measured crater dimensions to the threat characteristics. The test plan examined the effects of charge size, soil type, shape of the charge, and burial depth. The results of the analysis showed that all of the threat parameters had a significant effect on the most commonly measured dimension, the crater lip diameter. As a consequence, any model that attempts to estimate charge size based solely on crater size measurements will necessarily have large predictive errors, on the order of a factor of two or more
Zeleznik, TomMiiller, MattEridon, JamesWest, Jonathan
Abstract: An idealized concept of a v-hull vehicle design for blast analysis has been studied in two different commercial software packages and results are compared to one another. The two software packages are different in nature: one code is an Eulerian Computational Fluid Dynamics (CFD) Finite Volume Solver while the other code is a Lagrangian Finite Element Analysis (FEA) Solver with the ability to couple structures to fluids through a special technique called Arbitrary Lagrangian Eulerian (ALE). The simulation models in this paper have been set up for both CFD and FEA using a commercial pre-processing tool to study the effect of an idealized blast on the vehicle configuration: A pressure blast charge has been placed under the center of the vehicle at the symmetry line. The charge is composed of a prescribed pressure and a temperature pulse in a medium with the properties of air. In the CFD solver, an explicit unsteady solver has been chosen for analysis purposes. This was done
Khatib-Shahidi, BijanSmith, Rob E.
ABSTRACT Design for structural topology optimization is a method of distributing material within a design domain of prescribed dimensions. This domain is discretized into a large number of elements in which the optimization algorithm removes, adds, or maintains the amount of material. The resulting structure maximizes a prescribed mechanical performance while satisfying functional and geometric constraints. Among different topology optimization algorithms, the hybrid cellular automaton (HCA) method has proven to be efficient and robust in problems involving large, plastic deformations. The HCA method has been used to design energy absorbing structures subject to crash impact. The goal of this investigation is to extend the use of the HCA algorithm to the design of an advanced composite armor (ACA) system subject to a blast load. The ACA model utilized consists of two phases: ceramic and metallic. In this work, the proposed algorithm drives the optimal distribution of a metallic phase
Goetz, John C.Tan, HuadeRenaud, John E.Tovar, Andrés
ABSTRACT At the request of the US Army’s Tank Automotive Command (TACOM) a device was built to measure the suspension parameters of any military wheeled vehicle. This is part of an ongoing effort to model and predict vehicle dynamic behavior. The new machine is called the Suspension Parameter Identification and Evaluation Rig (SPIdER) and has a capacity intended to cover all of the military’s wheeled vehicles. The machine operates by holding the vehicle body nominally fixed while hydraulic cylinders move an “axle frame” in bounce or roll under each axle being tested. Up to two axles may be tested at once. Forces at the tires and motions of the wheel centers in three dimensions and two angles are measured. Other motions of the suspension and the minimal motions of the vehicle body are measured. For steer axles the steering ratio, Ackerman steer characteristics, and kingpin orientation are measured
Andreatta, DaleHeydinger, GarySidhu, AnmolBixel, RonaldKurec, AleksanderSingh, AmandeepBaseski, IgorSkorupa, Thomas
ABSTRACT With the development of the next generation of military vehicles, the demand for significant amounts of electrical power is increasing, making the design of electrical machines, such as the vehicle alternator, integral to the powertrain design. This shows the importance of the machines’ size and efficiency, and the great influence they will have on the vehicle powertrain design process. In this paper, a finite-element-based scaling technique, capable of quickly generating torque-speed curves and efficiency maps for new machine designs, is improved to have two dimensional scaling factors instead of scaling the dimensions uniformly, thus increasing the flexibility of the tool. First, a magnetostatic finite-element-analysis (FEA) is conducted on a base machine, producing data such as torque, flux linkage, and demagnetizing field intensity in the permanent magnets, over a wide range of current magnitudes and phase angles. Then, based on the dimensional and winding scaling factors
Wang, YuanyingHofmann, HeathIvanco, AndrejRizzo, Denise
ABSTRACT Tools have been developed to compare the dynamic deformation of vehicle hulls as they undergo blast-testing with numerical simulations. These tools allow quantitative comparisons and measurements over a wide area of the hull surface, rather than point comparisons as have been performed in the past. The experimental measurements are performed with the Dynamic Deformation Instrumentation System (DDIS) that was developed for TARDEC. Numerical simulations of the test article attached to Southwest Research Institute’s Landmine Test Fixture were performed with LS-DYNA using an empirical blast-loads model. The specific example highlighted in this paper is the deformation by blast testing of a hull component
Walker, James D.Grosch, Donald J.Chocron, SidneyGrimm, MattCarpenter, Alexander J.Moore, Thomas Z.Weiss, CarlBigger, Rory P.Mathis, James T.McLoud, Katie
ABSTRACT The OMU (orientation measurement unit), a combination of inertial (accelerometer, gyroscope), magnetometer and GPS/GNSS sensors, can play a significant role in the stabilization, orientation, navigation and munitions guidance applications performed in ground-based military vehicles. The raw data measured by the OMU’s sensor array includes angular rate, acceleration, magnetic field strength as well as position. By blending these sensor measurements with the use of software algorithms (a.k.a. sensor fusion), the data can be transformed into orientation data (pitch, roll & yaw), commonly referred to as Euler Angles. OMUs have a wide range of price that depends on the quality of its individual device sensors, environmental packaging, standards met and the sophistication of the device firmware used to filter, correct and smooth the inertial inputs used in the computation of application output data. In the ground-based military vehicle industry, applications supported by the OMU
Wright, Ronnie L.Wilson, Chad J.Petty, Millard E.Wong, Michael C.Smith, Michael R.
ABSTRACT A time-accurate multibody dynamics model of the suspension system of a tracked vehicle is experimentally validated using a full-scale tracked-vehicle on an N-post motion simulator. The experiments consist of harmonic excitations at various amplitudes and frequencies and ramp excitations of the vehicle road-wheels (without the track), with each road wheel under one linear actuator of the N-post motion simulator. A high-fidelity multibody dynamics model of the vehicle along with the N-post motion simulator is constructed. The multibody dynamics model consists of rigid bodies, joints, rotational springs (that include non-linear rotational stiffness, damping and friction), actuators and contact surfaces. The rigid bodies rotational equations of motion are written in a body-fixed frame with the total rigid-body rotation matrix updated each time step using incremental rotations. Connection points on the rigid bodies are used to define joints between the bodies including revolute
Wasfy, Tamer M.O’Kins, JamesRyan, David
ABSTRACT A new integrated testing system for the validation of stochastic vehicle-snow interaction models is presented in this paper. The testing system consists of an instrumented test vehicle, vehicle-mounted laser profilometer and a snow micropenetrometer. The test vehicle is equipped on each tire with a set of 6-axis wheel transducers, and a GPS-based data logger tracks vehicle motion. Data is also simultaneously acquired from the sensors from the test vehicle’s Electronic Stability Program. The test vehicle provides measurements that include three forces and moments at each wheel center, vehicle body slip angle, speed, acceleration, yaw rate, roll, and pitch. The profilometer has a 3-D scanning laser and an Inertial Measurement Unit to compensate for vehicle motion. Depth of snow cover, profile of snow surface and wheel sinkage can be obtained from the profilometer. The snow micropenetrometer measures the strength of the snow cover before and after vehicle traversal. Preliminary
Lee, Jonah H.Johnson, Thomas H.Huang, DaisyMeurer, StephenReid, Alexander A.Meldrum, Bill R.
ABSTRACT This paper presents modeling methodology and results for a study of Soldier effectiveness in a hot environment. The effectiveness of Soldiers is diminished under conditions of high heat stress. Excessive heat stress will degrade mental and physical performance capabilities and eventually cause heat casualties. The core temperature of a human body provides the “best” single physiological measure to estimate physical work capabilities during hot weather operations. Prediction of Soldier effectiveness in extreme environments can be accomplished through the use of segmental human thermoregulation models. Differences in physiological characteristics among Soldiers can affect thermoregulatory response and must be accounted for when predicting effectiveness. Additionally, prediction accuracy can be improved by combining human thermoregulatory models with a complete characterization of the thermal environment. Human thermal models representing Soldiers with significant physiological
Hepokoski, MarkCurran, AllenKlein, MarkSmith, RobKorivi, Vamshi
In non-cooperative environments, unmanned aerial vehicles (UAVs) have to land without artificial markers, which is a key step towards achieving full autonomy. However, the existing vision-based schemes have the common problems of poor robustness and generalization, and the LiDAR-based schemes have the disadvantages of low resolution, high power consumption and high weight. In this paper, we propose an UAV landing system equipped with a binocular camera to preform 3D reconstruction and select the safe landing zone. The whole system only consists of a stereo camera, and the innovation of the solution is fusing the stereo matching algorithm and monocular depth estimation(MDE) model to get a robust prediction on the metric depth. The whole landing system consists of a stereo matching module, a monocular depth estimation (MDE) module, a depth fusion module, and a safe landing zone selection module. The stereo matching module uses Semi-Global Matching (SGM) algorithm to calculate the
Zhou, YiBiaoZhang, BiHui
ABSTRACT The Optical Warhead Lethality Sensor Suite (OWLSS) was designed specifically for tracking dense, fast fragment fields generated in warhead arena testing. OWLSS is an optimized hardware/software solution for measuring correlated properties of detonating warhead fragment distributions. The OWLSS automated track algorithm returns time-dependent 3D position, velocity, size, aerodynamic drag, and mass estimates for each fragment tracked. These data products fill a significant gap in our ability to characterize munitions for weapon effectiveness modeling. Furthermore, the system is modular and can be reconfigured for many tracking applications. In this paper, we present an overview of legacy arena measurement techniques, an overview of the OWLSS optical tracking approach, and we discuss how OWLSS can be employed to collect test data needed to improve the survivability of armored vehicles. Citation: J. P. Burke, Jr, J. Roe, S. F. Henke, B. P. Walker, W. Koons, “An Enhanced Optical
Burke, James P.Roe, JeffreyHenke, Steven F.Walker, Bradley P.Koons, William A.
ABSTRACT: Ground vehicle survivability and protection systems and subsystems are increasingly employing sensors to augment and enhance overall platform survivability. These systems sense and measure select attributes of the operational environment and pass this measured “data” to a computational controller which then produces a survivability or protective system response based on that computed data. The data collected is usually narrowly defined for that select system’s purpose and is seldom shared or used by adjacent survivability and protection subsystems. The Army approach toward centralized protection system processing (MAPS Modular APS Controller) provides promise that sensor data will be more judiciously shared between platform protection subsystems in the future. However, this system in its current form, falls short of the full protective potential that could be realized from the cumulative sum of sensor data. Platform protection and survivability can be dramatically enhanced if
ABSTRACT In this context, a damage model is a mathematical algorithm that is used to predict if and when in a given loading history a structure will fail by ductile fracture. Increments in a damage parameter are related to strain increments and state of stress. The damage model would operate as part of a numerical simulation, or separately on an output file. A scale effect in ductile fracture is widely recognized from test data, where a large structure tends to fail at lower strain than a smaller structure that is geometrically similar and of the same material. Most damage models are not scale sensitive, and when they are calibrated to data from small laboratory specimens, they will tend to over-predict the performance (i.e., energy absorbing capability) of a larger structure. Another factor is scatter in test results even when specimens are made with care to be as identical as possible. Both of these factors are addressed in the proposed statistics-based damage model. Scale effects
Gurson, Arthur L.
The highway diverging area is a crucial zone for highway traffic management. This study proposes an evaluation method for traffic flow operations in the diverging area within an Intelligent and Connected Environment (ICE), where the application of Connected and Automated Vehicles (CAVs) provides essential technical support. The diverging area is first divided into three road sections, and a discrete state transition model is constructed based on the discrete dynamic traffic flow model of these sections to represent traffic flow operations in the diverging area under ICE conditions. Next, an evaluation method for the self-organization degree of traffic flow is developed using the Extended Entropy Chaos Degree (EECD) and the discrete state transition model. Utilizing this evaluation method and the Deep Q-Network (DQN) algorithm, a short-term vehicle behavior optimization method is proposed, which, when applied continuously, leads to a vehicle trajectory optimization method for the
Fang, ZhaodongQian, PinzhengSu, KaichunQian, YuLeng, XiqiaoZhang, Jian
Electrohydrodynamic (EHD) technology, noted for its absence of moving mechanical parts and silent operation, has attracted significant interest in plane propulsion. However, its low thrust and efficiency remain key challenges hindering broader adoption. This study investigates methods to enhance the propulsion and efficiency of EHD systems, by examining the electrohydrodynamic flow within a wire-cylinder corona structure through both experimental and numerical approaches. A multi-wire-cylinder positive corona discharge experimental platform was established using 3D printing technology, and measurements of flow velocity, voltage, and current at the cathode outlet were conducted. A two-dimensional simulation model for multi-wire-cylinder positive corona discharge was developed using Navier-Stokes equations and FLUENT user-defined functions (UDF), with the simulation results validated against experimental data. The analysis focused on the effects of varying anode diameters and the
Huang, GuozhaoDong, GuangyuZhou, Yanxiong
To gain high efficiencies and long lifetimes, polymer electrolyte membrane fuel cell systems require precise control of the relative humidity of the cathode supply air. This is usually achieved by the use of membrane humidifiers. These are passive components that transfer the product water of the cathode exhaust air to humidify the supply air. Due to the passive design, controllability is achieved via a bypass. It is possible to use map-based control strategies to avoid the use of humidity sensors. Such map-based control requires deep insights into the humidifier behavior in all possible thermodynamic operating states, including various water loads. This paper focuses on typical operating conditions of heavy-duty application at high load, specifically on the occurrence of liquid water in the cathode exhaust gas, which has not been sufficiently investigated in the literature yet. In order to simulate these conditions, we built a test rig with an optically accessible single-channel set
Mull, SophieWeiss, LukasWensing, Michael
The objective of this study is to develop a new aerofoil shape to enhance aerodynamic efficiency in turbo machinery applications. Numerical and experimental analyses were conducted by solving the RANS equations using the k-omega SST and standard k-epsilon models. A wind tunnel was employed to measure the lift and drag coefficients of the aerofoil, and these results were compared with those of existing turbo machinery designs. The results indicate a 38% increase in the peak lift coefficient and a 25% improvement in stall characteristics. Additionally, a 20% reduction in overall drag was observed across both methods. The novelty of this work lies in creating a more curved aerofoil using the Bézier curve method and the subsequent assessment of its aerodynamic performance through numerical and experimental approaches. The proposed method can be applied to various aerofoil types to enhance the aerodynamic performance of low-speed turbo machinery
R Vala, JigneshPatel, D. K.Umathe, ManishaBalaji, K.
Pipeline inspection is a crucial aspect of maintaining the integrity, safety, and reliability of the planet’s energy infrastructure. However, due to cost and scale challenges, infrastructure operators struggle to conduct accurate, large-scale inspections. A French startup, HyLight, offers a solution to precisely detect issues on the infrastructure, such as methane leaks on pipelines and defects on power lines at an industrial scale, without emitting greenhouse gases
This SAE Recommended Practice establishes the test procedure, environment, instrumentation, and data analyses for comparing interior sound level of passenger cars, multipurpose vehicles, and light trucks having gross vehicle weight rating (GVWR) of 4540 kg (10 000 lb) or less. The test procedure is characterized by having fixed initial conditions (specified initial vehicle speed and gear selection at the starting point on the test site) to obtain vehicle interior sound measurement during road load operation over various road surfaces at specified constant speeds. The measurement data so derived is useful for vehicle engineering development and analysis
Light Vehicle Exterior Sound Level Standards Committee
Lasers are essential tools for observing, detecting, and measuring things in the natural world that we can’t see with the naked eye. But the ability to perform these tasks is often restricted by the need to use expensive and large instruments
Airplane turbines and rocket engines are very powerful, hot and noisy and yet in need of extremely sensitive measurement technology. And they have another thing in common: They are most efficient when they run on a constant and even flame. Specialized measurement technology helps aerospace engineers improve combustion chambers and fuel injectors. In Switzerland, two ambitious student organizations have been using iterative pressure measurements to develop and build a significantly more efficient next generation of rocket engines
Solving a decades-old problem, a multi-disciplinary team of Caltech researchers has figured out a method to noninvasively and continually measure blood pressure anywhere on the body with next to no disruption to the patient. A device based on the new technique holds the promise to enable better vital-sign monitoring at home, in hospitals, and possibly even in remote locations where resources are limited
Nanosensors are transforming the field of disease detection by offering unprecedented sensitivity, precision, and speed in identifying biomarkers associated with various health conditions. These tiny sensors, often built at the molecular or atomic scale, can detect minute changes in biological samples, enabling the early diagnosis of diseases such as cancer, infectious diseases, and neurological disorders
Measuring fluid mass in microgravity, where fluid behavior is dominated by fluid properties, is a challenging problem. To address this problem engineers at NASA are developing a capacitance-based, mass-fraction gauge for vessels containing two-phase fluids. The vessel volume is enclosed with an array of electrodes, and a unique set of capacitance measurements of the enclosed volume are made between the electrodes. The capacitance measurements are scaled with appropriate weighting factors derived from Laplace’s Equation to compensate for the highly non-uniform electric fields inside the measurement volume and achieve a greater level of mass fraction accuracy
Residual thermal energy, a by-product of automobiles, contributes notably to climate change and global warming. This energy is produced as exhaust gases in vehicles with internal combustion engines and as heat from batteries and fuel cells in eco-friendly vehicles. A thermo-electric generator (TEG) can transform this waste heat into useful electrical energy. The efficiency of the TEG is influenced by several factors, including the properties of the materials used, the geometrical design (form factor), and the conditions under which it operates. In this study, we examine how the choice of materials for the semiconductors, electrodes, ceramics, and joining components influences the overall performance of the TEG. We evaluate the TEG’s performance based on output power, and efficiency. The findings from these measurements allow us to determine which material and its properties significantly impact the TEG’s performance. For optimal TEG performance, seek materials with high Seebeck
Ponangi, Babu RaoMutagi, MeghaBali, Gaurav
Items per page:
1 – 50 of 1256