Browse Topic: Measurements

Items (1,213)
ABSTRACT At the request of the US Army’s Tank Automotive Command (TACOM) a device was built to measure the suspension parameters of any military wheeled vehicle. This is part of an ongoing effort to model and predict vehicle dynamic behavior. The new machine is called the Suspension Parameter Identification and Evaluation Rig (SPIdER) and has a capacity intended to cover all of the military’s wheeled vehicles. The machine operates by holding the vehicle body nominally fixed while hydraulic cylinders move an “axle frame” in bounce or roll under each axle being tested. Up to two axles may be tested at once. Forces at the tires and motions of the wheel centers in three dimensions and two angles are measured. Other motions of the suspension and the minimal motions of the vehicle body are measured. For steer axles the steering ratio, Ackerman steer characteristics, and kingpin orientation are measured
Andreatta, DaleHeydinger, GarySidhu, AnmolBixel, RonaldKurec, AleksanderSingh, AmandeepBaseski, IgorSkorupa, Thomas
ABSTRACT This paper describes the VIPER II, the Vehicle Inertia Parameter Evaluation Rig, developed by SEA, Ltd at the request of the US Army’s Tank Automotive Research, Development and Engineering Center (TARDEC). The previous machine was the VIPER I, built in 2000. The new machine is built to measure vehicle center-of-gravity height, the pitch, roll, and yaw moments of inertia, and the roll/yaw cross product of inertia. It is made to test nearly all of the Army’s wheeled vehicles, covering a range of weights from 3000 to 100,000 lbs, up to 150 inches in width and up to 600 inches in length. Commercial vehicles could also be tested. The machine was installed in March, 2014 in the TARDEC facility in Warren, MI. The paper describes the need for such measurements, the basic features of the machine, the test procedure, and the results of early testing. The design specification for accuracy was 3% for all measurements, but the actual VIPER II accuracy is usually better than 1
Andreatta, DaleHeydinger, Gary J.Bixel, Ronald A.Sidhu, AnmolKurec, AleksanderBaseski, IgorSkorupa, Thomas
This SAE Recommended Practice establishes the test procedure, environment, instrumentation, and data analyses for comparing interior sound level of passenger cars, multipurpose vehicles, and light trucks having gross vehicle weight rating (GVWR) of 4540 kg (10 000 lb) or less. The test procedure is characterized by having fixed initial conditions (specified initial vehicle speed and gear selection at the starting point on the test site) to obtain vehicle interior sound measurement during road load operation over various road surfaces at specified constant speeds. The measurement data so derived is useful for vehicle engineering development and analysis
Light Vehicle Exterior Sound Level Standards Committee
Residual thermal energy, a by-product of automobiles, contributes notably to climate change and global warming. This energy is produced as exhaust gases in vehicles with internal combustion engines and as heat from batteries and fuel cells in eco-friendly vehicles. A thermo-electric generator (TEG) can transform this waste heat into useful electrical energy. The efficiency of the TEG is influenced by several factors, including the properties of the materials used, the geometrical design (form factor), and the conditions under which it operates. In this study, we examine how the choice of materials for the semiconductors, electrodes, ceramics, and joining components influences the overall performance of the TEG. We evaluate the TEG’s performance based on output power, and efficiency. The findings from these measurements allow us to determine which material and its properties significantly impact the TEG’s performance. For optimal TEG performance, seek materials with high Seebeck
Ponangi, Babu RaoMutagi, MeghaBali, Gaurav
This SAE Recommended Practice is intended for use in testing and evaluating the approximate performance of engine-driven cooling fans. This performance would include flow, pressure, and power. This flow and pressure information is used to estimate the engine cooling performance. This power consumption is used to estimate net engine power per SAE J1349. The procedure also provides a general description of equipment necessary to measure the approximate fan performance. The test conditions in the procedure generally will not match those of the installation for which cooling and fuel consumption information is desired. The performance of a given fan depends on the geometric details of the installation, including the shroud and its clearance. These details should be duplicated in the test setup if accurate performance measurement is expected. The performance at a given air density and speed also depends on the volumetric flow rate, or the pressure rise across the fan, since these two
Cooling Systems Standards Committee
Vehicle chassis design can take great advantage from a virtual design approach, as it helps tackle the complexity of modern machines, bringing benefits in performance, development cost, and lead-time. For specific applications such as construction or defense vehicles, the simulation design chain may lack significant input model bricks due to the physical limitations of existing test equipment which limit their ability to characterize the large components and extreme loading conditions (high loads, large torques, extreme slip angles. etc.). Michelin SIMIX proposes / develops an innovative solution to fill the gap by combining physical real world measured data with virtual measurements, allowing the creation of digital models relevant to the full usage perimeter
Andrews, MikeMaclanders, JustinKhayat, CédricLeymin, FrédéricSpetler, Frédéric
Cars and vans are accountable for 14.5% of the total CO2 emissions in the European Union, exerting a significant impact on public health and the environment. To align with the climate objectives set by the Council and the European Parliament, the Fit for 55 package encompasses a series of proposals aimed at revising and modernizing EU legislation while introducing new initiatives. The ultimate goal is to ensure that EU policies are in harmony with the climate targets, specifically the EU’s aspiration to reduce greenhouse gases (GHGs) by at least 55% by 2030 compared to 1990 levels and achieve climate neutrality by 2050. To meet the fleet average emissions targets, automotive Original Equipment Manufacturers (OEMs) are compelled to reduce emissions from their vehicles by addressing various components. The urgent need for car makers to reduce their carbon footprint, combined with the imperative to improve the mileage range of electric vehicles, has led to the creation of a novel
Bogliacino, FabioRe, PaoloFerrero, Alessandro
Sensor calibration plays an important role in determining overall navigation accuracy of an autonomous vehicle (AV). Calibrating the AV’s perception sensors, typically, involves placing a prominent object in a region visible to the sensors and then taking measurements to further analyses. The analysis involves developing a mathematical model that relates the AV’s perception sensors using the measurements taken of the prominent object. The calibration process has multiple steps that require high precision, which tend to be tedious and time-consuming. Worse, calibration has to be repeated to determine new extrinsic parameters whenever either one of the sensors move. Extrinsic calibration approaches for LiDAR and camera depend on objects or landmarks with distinct features, like hard edges or large planar faces that are easy to identify in measurements. The current work proposes a method for extrinsically calibrating a LiDAR and a forward-facing monocular camera using 3D and 2D bounding
Omwansa, MarkSharma, SachinMeyer, RichardBrown, Nicholas
A research team at The University of Texas at Austin created a noninvasive electroencephalogram (EEG) sensor that was installed in a Meta VR headset that can be worn comfortably for long periods. The EEG measures the brain’s electrical activity during the immersive VR interactions
A wearable health monitor can reliably measure levels of important biochemicals in sweat during physical exercise. The 3D-printed monitor could someday provide a simple and non-invasive way to track health conditions and diagnose common diseases, such as diabetes, gout, kidney disease or heart disease
Light measurement devices called optical frequency combs have revolutionized metrology, spectroscopy, atomic clocks, and other applications. Yet challenges with developing frequency comb generators at a microchip scale have limited their use in everyday technologies such as handheld electronics
If an external force with changing amplitude acts on an elastic medium such as a gas, a liquid or a solid, an undulating propagation of pressure and density fluctuation occurs in space and time, starting from the point where the force is applied. This is known as sound. The frequency of sound waves ranges from a few hertz (Hz) up to several gigahertz (see Figure 1). Infrasound, the sound humans cannot hear, lies at frequencies below 16 Hz. It is followed by the hearing range, which reaches up to 20 kHz. Ultrasonic waves, which cannot be heard, lie in the frequency range from 20 kHz to 1.6 GHz, which equals 16 billion cycles per second. A prominent application example in medical technology is the use of ultrasound for diagnostic imaging techniques. In industry and research, ultrasound is mainly used in measurement technology, where sound waves with low power are used. The intensity of the sound describes the power that hits a certain surface. If it exceeds 10 W/cm2, we speak of power
This recommended practice contains dimensions and tolerances for spindles in the interface area. Interfacing components include axle spindle, bearing cones, bearing spacer, and seal. This recommended practice is intended for axles commonly used on Class 7 and 8 commercial vehicles. Included are SAE axle configurations FF, FL, I80, L, N, P, R, U, and W
Truck and Bus Wheel Committee
This study develops an image measurement system that accurately measures rotating tires’ deformed shape. Noncontact image measurement presents challenges such as difficulty in achieving a high sampling frequency and high pixel count, and achieving high resolution in feature point tracking as a subset in image processing because of the curvature, expansion, and contraction of the tire sidewall. The shape of the sidewall affects the mechanical properties of the tire, and the deformation shape during actual operation provides important information for tire design. In this study, a system integrating phase-locked loop imaging, dot centroid tracking (DCT), and stereo methods is used to achieve high-resolution measurements of tire deformation shapes. In particular, the DCT method typically improves the accuracy of tracking by setting the markers in black and the background in white and ignoring imaging noise from the background with white halation depending on the amount of light. 3D
Matsubara, MasamiShibataka, SeikiTachiya, HiroshiKawamura, ShozoTajiri, DaikiShibuya, AkiraHiguchi, Masahiro
The optimization and further development of automated driving functions offers great potential to relieve the driver in various driving situations and increase road safety. Simulative testing in particular is an indispensable tool in this process, allowing conclusions to be drawn about the design of automated driving functions at a very early stage of development. In this context, the use of driving simulators provides support so that the driving functions of tomorrow can be experienced in a very safe and reproducible environment. The focus of the acceptance and optimization of automated driving functions is particularly on vehicle lateral control functions. As part of this paper, a test person study was carried out regarding manual vehicle lateral control on the dynamic vehicle road simulator at the Institute of Automotive Engineering. The basis for this is the route generation as a result of the evaluation of curve radii from several hundred thousand kilometers of real measurement
Iatropoulos, JannesPanzer, AnnaHenze, Roman
Previous studies have shown that dosing AdBlue into the exhaust system of diesel engines to reduce nitrogen oxides can lead to an increase in the number of particles (PN). In addition to the influencing factors of exhaust gas temperature, exhaust gas mass flow and dosing quantity, the dosed medium itself (AdBlue) is not considered as a possible influence due to its regulation in ISO-standard 22241. However, as the standard specifies limit value ranges for the individual regulated properties and components for newly sold AdBlue, in reality there is still some margin in the composition. This paper investigates the particle number increase due to AdBlue dosing using several CPCs. The increase in PN is determined by measuring the number of particles after DPF and thus directly before dosing as well as tailpipe. Several AdBlue products from different sources and countries are measured and their composition is also analyzed with regard to the limit values regulated in the standard. This
Herold, TimNoone, PatrickBeidl, ChristianBoldt, ThomasHochholzner, MichaelKontin, Sinisa
Society is moving towards climate neutrality where hydrogen fuelled combustion engines (H2 ICE) could be considered a main technology. These engines run on hydrogen (H2) so carbon-based emission are only present at a very low level from the lube oil. The most important pollutants NO and NO2 are caused by the exhaust aftertreatment system as well as CO2 coming from the ambient air. For standard measurement technologies these low levels of CO2 are hard to detect due to the high-water content. Normal levels of CO2 are between 400-500 ppm which is very close or even below the detection limit of commonly used non-dispersive-infrared-detectors (NDIR). As well the high-water content is very challenging for NOx measuring devices, like chemiluminescence detectors (CLD), where it results in higher noise and therefore a worse detection limit. Even for Fourier-transformed-infrared-spectroscopy-analysers (FT-IR) it is challenging to deal with water content over 15% without increased noise. The goal
Jakubec, PhilippRoiser, Sebastian
With the automotive industry’s increasing focus on electromobility and the growing share of electric cars, new challenges are arising for the development of electric motors. The requirements for torque and power of traction motors are constantly growing, while installation space, costs and weight are increasingly becoming limiting factors. Moreover, there is an inherent conflict in the design between power density and efficiency of an electric motor. Thus, a main focus in today’s development lies on space-saving and yet effective and innovative cooling systems. This paper presents an approach for a multi-physical optimization that combines the domains of electromagnetics and thermodynamics. Based on a reference machine, this simulative study examins a total of nine different stator cooling concepts varying the cooling duct positions and end-winding cooling concepts. To ensure the highest possible comparability, the rotor geometry as well as the overall dimensions in terms of outer
Reinecke, MikeKarayel, Akifvon Schöning, HendrikSchaefer, UweMoullion, MatthiasFaessler, VictorLehmann, Robert
This SAE Aerospace Recommended Practice (ARP) provides guidance on the engine performance parameters that may be selected by airframe and engine manufacturers, and used by a pilot or operator, to monitor the thermodynamic health of a turboshaft engine installed in a rotorcraft and the measurement system accuracies desired. Different accuracies may be required for in-flight operations such as engine control
S-12 Powered Lift Propulsion Committee
The axle, or differential, flange is understood to be a large source of vehicle driveline imbalance, or unbalance, through defining the center of rotation of a driveshaft. The tolerances and methods of manufacturing and assembly are therefore very important. The aim of the current investigation, is to understand and quantify the imbalance contributions from flange radial and axial runout, along with location error between the driveshaft and axle flange. An overview of the measured radial and axial runouts from a population of 100 axle assemblies is presented, including correlation of the imbalance amplitude distributions to some standard probability density functions. It was found from the investigation, that it is important to understand the nature of any source of runout, relative to any subassembly/component-level balancing, in modeling the transfer function from runout to imbalance loading. Methods for calculating the imbalance of an assembled driveline are presented, which include
Leslie, Andrew C.Liew, AndrewBaddeley, VivDent, SolomonMeehan, Paul A.
When dealing with the structural behavior of a car body, analyzing the dynamic distortion in all body closure openings in a complete vehicle, provides a better understanding of the body characteristics compared to traditional static load cases such as static torsional body stiffness. This is particularly relevant for non-traditional vehicle layouts and electric vehicle architectures where mass distribution and in particular battery mass and stiffness play a completely different effect with respect to the internal combustion engine vehicles. A methodology typically adopted to measure the body response, e.g. when driving a vehicle on a rough pavé road, is the so-called Multi Stethoscope (MSS). The MSS is measuring the distortion in each body closure opening in two diagonals. During the virtual development, the distortion is described by the relative displacement in diagonal direction in time domain using a modal transient analysis. The results are shown as Opening Distortion Fingerprint
Weber, JensLuiz Felipe, Faria RicardoBäcklund, JesperVignati, MicheleCheli, Federico
When traveling in an open-jet wind tunnel, the path of an acoustic wave is affected by the flow causing a shift of source positions in acoustical maps of phased arrays outside the flow. The well-known approach of Amiet attempts to correct for this effect by computing travel times between microphones and map points based on the assumption that the boundary layer of the flow, the so-called shear layer, is infinitely thin and refracts the acoustical ray in a conceptually analogy to optics. However, in reality, the turbulent nature of both the not-so-thin shear layer and the acoustic emission process itself causes an additional smearing of sources in acoustic maps, which in turn causes deconvolution methods based on these maps – the most prominent example being CLEAN-SC – to produce certain ring effects, so-called halos, around sources. In this paper, we intend to cast some light on this effect by describing our path of analyzing/circumventing these halos and how they are linked to the
Puhle, ChristofMeyer, AndyDöbler, Dirk
Dynamic substructuring enables the dynamic behavior analysis of intricate systems. In this context, the precise description of individual subsystem interfaces is crucial. Coupling components through virtual points is suitable, especially when it comes to experimental substructuring. The complex contact situations that arise from joint descriptions in thin-walled structures, like those found in vehicle seats, present a challenging task. This investigation aims to visualize the complex coupling of thin-walled structures by applying the virtual point transformation. Individual subsystems are analyzed through experiments and coupled using the Lagrange multiplier frequency-based substructuring to achieve this goal. For validation purposes, a completely assembled vehicle seat has been investigated. Identification of the connecting elements between the substructures is achieved using decoupling techniques. As a result, the stiffness of the sleeve can be determined through various approaches
Wagner, PhilippLanger, PatrickMäder, MarcusMarburg, Steffen
With the increasing importance of electrified powertrains, electric motors and gear boxes become an important Noise Vibration & Harshness (NVH) source especially regarding whining noises in the high frequency range. Engine encapsulation noise treatments become often necessary and present some implementation, modeling as well as optimization issues due to complex environments with contact uncertainties, pass-throughs and critical uncovered areas. Relying purely on mass spring systems is often a too massive and relatively unefficient solution whenever the uncovered areas are dominant. Coverage is key and often a combination of hybrid backfoamed porous stiff shells with integral foams for highly complex shapes offer an optimized trade-off between acoustic performance, weight and costs. A dedicated experimental set-up has been designed in order to measure both structureborne and airborne NVH performances of engine encapsulation insulators applied on an engine casing placed in a coupled
Duval, ArnaudCrignon, GuillaumeGoret, Mickaellei, LeiWilkinson, AlexandreDauchez, NicolasPOLAC, Laurent
While conventional methods like classical Transfer Path Analysis (TPA), Multiple Coherence Analysis (MCA), Operational Deflection Shape (ODS), and Modal Analysis have been widely used for road noise reduction, component-TPA from Model Based System Engineering (MBSE) is gaining attention for its ability to efficiently develop complex mobility systems. In this research, we propose a method to achieve road noise targets in the early stage of vehicle development using component-level TPA based on the blocked force method. An important point is to ensure convergence of measured test results (e.g. sound pressure at driver ear) and simulation results from component TPA. To conduct component-TPA, it is essential to have an independent tire model consisting of wheel-tire blocked force and tire Frequency Response Function (FRF), as well as full vehicle FRF and vehicle hub FRF. In this study, the FRF of the full vehicle and wheel-tire blocked force are obtained using an in-situ method with a
Park, JunminPark, Sangyoung
Though modal analysis is a common tool to evaluate the dynamic properties of a structure, there are still many individual decisions to be made during the process which are often based on experience and make it difficult for occasional users to gain reliable and correct results. One of those experience-based choices is the correct number and placement of reference points. This decision is especially important, because it must be made right in the beginning of the process and a wrong choice is only noticeable by chance in the very end of the process. Picking the wrong reference points could result in incomplete modal analysis outcomes, as it might make certain modes undetectable, compounded by the user's lack of awareness about these missing modes. In the paper an innovative approach will be presented to choose the minimal number of mandatory reference points and their placement. While other approaches use results of numerical simulations or rely on a visual evaluation of measurement
Kamper, TimBeljan, DenisBrücher, HaikoWegerhoff, Matthias
The photochemical etching (PCE) process is distinguished by its capacity to fabricate metal parts with unparalleled accuracy. This process sidesteps the typical stresses and deformations linked to conventional metal-working, like stamping or laser cutting, which can compromise material integrity. Such fidelity is crucial in the manufacture of components for thermal management systems, where material integrity and component precision are non-negotiable for ensuring effective heat creation or dissipation. PCE’s ability to craft parts with smooth, burr-free edges and exact dimensions means heat management components work more effectively, bolstering the reliability and extending the service life of micro electronic devices
For decades, people with diabetes have relied on finger pricks to withdraw blood or adhesive microneedles to measure and manage their glucose levels. In addition to being painful, these methods can cause itching, inflammation and infection
Dimensional optimization has always been a time-consuming process, especially for aerodynamic bodies, requiring much tuning of dimensions and testing for each sample. Aerodynamic auxiliaries, especially wings, are design dependent on the primary model attached, as they influence the amount of lift or reduction in drag which is beneficial to the model. This study aims to reduce the time period taken to finalize the design parameter for the same. For a wing, the angle of attack is essential in creating proper splits to incoming winds, even under high velocities with larger distances from the separation point. In the case of a group of wings, each wing is then mentioned as a wing element, and each wing is strategically positioned behind the previous wing in terms of its vertical height and its self-angle of attack to create maximum lift. At the same time, its drag remains variable to its shape ultimately maximizing the CL/CD ratio. A high value of CL indicates a significant component of
Hujare, Pravin PHujare, Deepak PChoudhary, PrateekSakat, AbhishekKaranjkar, Rushil
During landing of re-entry modules in manned missions, one of the most critical parameters to be monitored is its terminal velocity. As human safety is prioritized in manned missions, the module’s maximum permissible terminal velocity values are pre-determined based on the human tolerance levels. The entire deceleration system of the module is then optimized for achieving terminal velocities below these limits to ensure safe touchdown of the crew. In addition to vertical velocity, the module also experiences lateral and rotational velocities during its descent. Characterizing these velocities lead to a more comprehensive understanding of the dynamics faced by the module while landing. Therefore, acquiring accurate in-flight velocity data is a fundamental requirement for Gaganyaan missions. Existing methods for measuring terminal and lateral velocities have limitations in terms of accuracy, feasibility, and cost-effectiveness. In response to the need for an accurate and precise
Girish, GayathriKS, SmithaM P, RizwanaK, Anand
Indian Space Research Organisation (ISRO) uses indigenously developed launch vehicles like PSLV, GSLV, LVM3 and SSLV for placing remote sensing and communication satellites along with spacecrafts for other important scientific applications into earth bound orbits. Navigation systems present in the launch vehicle play a pivotal role in achieving the intended orbits for these spacecrafts. During the assembly of these navigation packages on the launch vehicle, it is required to measure the initial tilt of the navigation sensors for any misalignment corrections, which is given as input to the navigation software. A high precision inclinometer is required to measure these tilts with a resolution of 1 arc-second. In this regard, an indigenous inclinometer is being designed. The sensing element of this design comprises of a compliant mechanism which is designed to sense the tilt by measuring the displacement of a proof mass occurring due to the respective component of earth’s gravitational
Shaju, Tony MKrishna, NirmalRao, G NagamalleswaraKumar, T SureshK, Pradeep
Metasurfaces comprised of sub-wavelength structures, possess remarkable electromagnetic (EM) wave manipulation capabilities. Their application as radar absorbers has gained widespread recognition, particularly in modern stealth technology, where their main role is to minimize the radar cross-section (RCS) of military assets. Conventional radar absorber design is tedious because of its time-consuming, computationally intensive, iterative nature, and demand for a high level of expertise. In contrast, the emergence of machine/deep learning-based metasurface design for RCS reduction represents a rapidly evolving field. This approach offers automated and computationally efficient means to generate radar absorber designs. In this article, an inverse approach, using machine/deep learning methodology is presented for multilayered broadband microwave absorber. The proposed method is primarily based on geometry and absorption characteristics. The proposed design is based on an in-depth
P K, AnjanaV, Abhilash PBisariya, SiddharthSutrakar, Vijay Kumar
Severe problem of aerodynamic heating and drag force are inherent with any hypersonic space vehicle like space shuttle, missiles etc. For proper design of vehicle, the drag force measurement become very crucial. Ground based test facilities are employed for these estimates along with any suitable force balance as well as sensors. There are many sensors (Accelerometer, Strain gauge and Piezofilm) reported in the literature that is used for evaluating the actual aerodynamic forces over test model in high speed flow. As per previous study, the piezofilm also become an alternative sensor over the strain gauges due to its simple instrumentation. For current investigation, the piezofilm and strain gauge sensors have mounted on same stress force balance to evaluate the response time as well as accuracy of predicted force at the same instant. However, these force balance need to be calibrated for inverse prediction of the force from recorded responses. A reliable multi point calibration
Kamal, AbhishekDeka, SushmitaSahoo, NiranjanKulkarni, Vinayak
RTCA DO-178C, guideline in the aviation industry for the development of airworthiness of aviation software mandates the analysis of data and control coupling using requirement-based testing for safety-critical avionics software (Refer the Table 1). DO-178C defines Control Coupling as the manner or degree by which one software component influences the execution of another software component. Data Coupling as the dependence of a software component on data not exclusively under the control of that software component. The intent of the analysis of data coupling and control coupling is to ensure that each module/component are interacting with each other as expected. That is, the intent is to show that the software modules/components affect one another in the ways in which the software designer intended and do not affect one another in ways in which they were not intended, thus resulting in unplanned, anomalous, or erroneous behavior. The measurements and assurance should be conducted using
Ramegowda, Yogesha Aralakuppe
This AIR was prepared to inform the aerospace industry about the electromagnetic interference measurement capability of spectrum analyzers. The spectrum analyzers considered are of the wide dispersion type which are electronically tuned over an octave or wider frequency range. The reason for limiting the AIR to this type of spectrum analyzer is that several manufacturers produce them as general-purpose instruments, and their use for EMI measurement will give significant time and cost savings. The objective of the AIR is to give a description of the spectrum analyzers, consider the analyzer parameters, and describe how the analyzers are usable for collection of EMI data. The operator of a spectrum analyzer should be thoroughly familiar with the analyzer and the technical concepts reviewed in this AIR before performing EMI measurements
AE-4 Electromagnetic Compatibility (EMC) Committee
Most heavy trucks should be fully electric, using a combination of batteries and catenary electrification, but heavy trucks requiring very long unsupported range will need chemical fuels. Hydrogen is the key to storing renewably generated electricity chemically. At the scale of heavy trucks, compressed hydrogen can match the specific energy of diesel, but its energy density is five times lower, limiting the range to around 2,000 km. Scaling green hydrogen production and addressing leakage must be priorities. Hydrogen-derived electrofuels—or “e-fuels”—have the potential to scale, and while the economic comparison currently has unknowns, clean air considerations have gained new importance. The limited supply of bioenergy should be reserved for critical applications, such as bioenergy with carbon capture and storage (BECCS), aviation, shipping, and road freight in the most remote locations. Additionally, there are some reasons to prefer ethanol or methanol to diesel-type fuels as they are
Muelaner, Jody E.
This article introduces an innovative method for predicting tire–road interaction forces by exclusively utilizing longitudinal and lateral acceleration measurements. Given that sensors directly measuring these forces are either expensive or challenging to implement in a vehicle, this approach fills a crucial gap by leveraging readily available sensor data. Through the application of a multi-output neural network architecture, the study focuses on simultaneously predicting the longitudinal, lateral, and vertical interaction forces exerted by the rear wheels, specifically those involved in traction. Experimental validation demonstrates the efficacy of the methodology in accurately forecasting tire–road interaction forces. Additionally, a thorough analysis of the input–output relationships elucidates the intricate dynamics characterizing tire–road interactions. This research underscores the potential of neural network models to enhance predictive capabilities in vehicle dynamics, offering
Marotta, RaffaeleStrano,  SalvatoreTerzo, MarioTordela, Ciro
Items per page:
1 – 50 of 1213