Browse Topic: Design processes

Items (4,484)
Competitive companies constantly seek continuous increases in productivity, quality and services level. Lean Thinking (LT) is an efficient management model recognized in organizations and academia, with an effective management approach, well consolidated theoretically and empirically proven Within Industry 4.0 (I4.0) development concept, manufacturers are confident in the advantages of new technologies and system integration. The combination of Lean and I4.0 practices emerges from the existence of a positive interaction for the evolutionary step to achieve a higher operational performance level (exploitation of finances, workload, materials, machines/devices). In this scenario where Lean Thinking is an excellent starting point to implement such changes with a method and focus on results; that I4.0 offers powerful technologies to increase productivity and flexibility in production processes; but people need to be more considered in processes, in a context aligned with the Industry 5.0
Braggio, LuisMarinho, OsmarSoares, LuisLino, AlanRabelo, FábioMuniz, Jorge
This study focuses on machining automobile parts such as drive shafts and axles made of low alloy steel AISI 4140. The influence of cutting inserts geometrical parameters, viz., relief angle (RIA), rake angle (RAA), and nose radius (NA) are studied by designing experiments using Taguchi’s methodology. Numerical simulation is conducted using DEFORM-2D; a suitable L9 orthogonal array (OA) is considered for this work for varying combinations of inputs, and the resultant cutting force, maximum principal stress, and tool life are determined. Adopting a signal-to-noise (S/N) ratio minimizes the outputs for better machining conditions and achieves high-quality components with precision, tolerance, and accuracy. The ideal conditions obtained from the S/N ratio are RAA of 6°, RIA of 3°, and NR of 0.6 mm. Analysis of variance presents that the NR influences the resultant cutting force, wear depth, and work piece damage 73.51%, RAA following by 23.99%, and RIA by 2.03% achieved with a R2 value of
Senthilkumar, N.
The goal of this work is to increase the accuracy and efficiency of hose cutting operations in small scale industries is by designing and building an automatic hose-cutting equipment. The device uses a computer-controlled system to autonomously cut pipes of various sizes and lengths. By means of a stepper motor-driven, rapidly spinning blade, the cutting process is accomplished. Additionally, the machine has sensors that measure the hose's length and modify the cutting position as necessary. Premium components and materials are used in the machine's construction; these are chosen for their performance and longevity. The device is able to boost cut precision and raise industry production all around from 100% to 190% efficient system thereby decreasing labor and time needed for hose cutting operations
Feroz Ali, L.Manikandan, R.Madhankumar, S.Sri Hari, P.Suriya Prakash, T.Vishnu Doss, G.
In India, Driver Drowsiness and Attention Warning (DDAW) system-based technologies are rising due to anticipation on mandatory regulation for DDAW. However, readiness of the system to introduce to Indian market requires validations to meet standard (Automotive Industry Standard 184) for the system are complex and sometimes subjective in nature. Furthermore, the evaluation procedure to map the system accuracy with the Karolinska sleepiness scale (KSS) requirement involves manual interpretation which can lead to false reading. In certain scenarios, KSS validation may entail to fatal risks also. Currently, there is no effective mechanism so far available to compare the performance of different DDAW systems which are coming up in Indian market. This lack of comparative investigation channel can be a concerning factor for the automotive manufactures as well as for the end-customers. In this paper, a robust validation setup using motion drive simulator with 3 degree of freedom (DOF) is
Raj, Prem raj AnandSelvam, Dinesh KumarThanikachalam, GaneshSivakumar, Vishnu
Assembly simulation plays a pivotal role in predicting and optimizing the distortion of an assembly, particularly in the automotive industry where precision and efficiency are paramount. In BIW parts assembly, factors such as clamping, mechanical & thermal joining, and loading direction are important. These factors affect the quality of the final assembly. Predicting and optimizing these parameters in the early design stage can help reduce development time, cost and improve the quality of the final product. Currently, LS-DYNA is used for closures like doors, hoods, and fenders. However, the pre-processing, computation and post-processing time is significantly high in LS-DYNA making it challenging to use for the Entire BIW. Employing a comprehensive approach, authors assess the distortion results, preprocessing, calculation, and post-processing time of both simulation techniques. Notably, the study reveals that AutoForm offers over 50%-time savings across all stages compared to LS-DYNA
Talawar, VaishnavchandanNalam, Swaroop RajuDhanajkar, NarendraKumar, AjayPasupathy, VivekanandChava, Seshadri
Properly sized under hood components in an electric vehicle is important for effective thermal cooling at different load conditions. Powertrain aggregate loop plays significant role in generating heat with heat sources like eMotor, inverter, variable frequency drivers, on board charger and so on. Radiator being the most critical part in electric vehicle which acts as a heat sink for these powertrain components. Radiator with the help of coolant removes heat generated by different components in powertrain loop. It becomes important to understand the heat generated by the powertrain components at different drive/load scenarios and decide on the correctly sized radiator and fan. Rightly sized radiator and fan combination helps to balance the tradeoff of precise thermal needs in eTruck to an oversized/undersized component. Main objective of this study is to estimate heat loads from system model representing powertrain aggregate components to study the existing radiator capacity and propose
Koti, ShivakumarPatel, VedantChalla, KrishnaGurdak, Michael
Driving at night presents a myriad of challenges, with one of the most significant being visibility, especially on curved roads. Despite the fact that only a quarter of driving occurs at night, research indicates that over half of driving accidents happen during this period. This alarming statistic underscores the urgent need for improved illumination solutions, particularly on curved roads, to enhance driver visibility and consequently, safety. Conventional headlamp systems, while effective in many scenarios, often fall short in adequately illuminating curved roads, thereby exacerbating the risk of accidents during nighttime driving. In response to this critical issue, considerable efforts have been directed towards the development of alternative technologies, chief among them being Adaptive Front Lighting Systems (AFS). The primary objective of this endeavor is to design and construct a prototype AFS that can seamlessly integrate into existing fixed headlamp systems. Throughout the
T, KarthiG, ManikandanP C, MuruganS, SakthivelN, VinuP, Dineshkumar
The undercarriage is a critical component in machines such as crawlers, excavators, and compact track loaders. It includes vital elements such as the track frame, chain guides, rollers, track chains, idlers, carrier rollers, final drive, and sprockets. Among all these machines, crawler dozers encounter harsh environments with various ground conditions. During operations, the chains are subjected to traverse and side loads, which cause the chains to tend to slip out of the bottom rollers. The chain guide plays a crucial role in assisting and maintaining the chain in the correct position. The forces acting on chain guides are influenced by factors such as track chain tension, roller wear, chain link wear, and counter-rotation (where one track moves forward while the other moves in reverse). Among all the load cases, there are two critical load cases which are vital to be studied in order to determine the required number of chain guides along with other attributes like profile or section
Masane, NishantBhosale, DhanajiSarma, Neelam K
Innovators at NASA Johnson Space Center have developed an adjustable thermal control ball valve (TCBV) assembly which utilizes a unique geometric ball valve design to facilitate precise thermal control within a spacesuit. The technology meters the coolant flow going to the cooling and ventilation garment, worn by an astronaut in the next generation space suit, that expels waste heat during extra vehicular activities (EVAs) or spacewalks
Researchers have been testing ways to continuously and more comfortably detect these tiny fluctuations in pressure. A prototype smart contact lens measures eye pressure accurately, regardless of temperature. The contact lens wirelessly transmits real-time signals about eye pressure across a wide range of temperatures
In this work, we evaluated computational fluid dynamics (CFD) methods for predicting the design trends in flow around a mass-production luxury sport utility vehicle (SUV) subjected to incremental design changes via spoiler and underbody combinations. We compared Reynolds-averaged Navier–Stokes (RANS) using several turbulence models and a delayed detached eddy simulation (DDES) to experimental measurements from a 40% scale wind tunnel test model at matched full-scale Reynolds number. Regardless of turbulence model, RANS was unable to consistently reproduce the design trends in drag from wind tunnel data. This inability of RANS to reproduce the drag trends stemmed from inaccurate base pressure predictions for each vehicle configuration brought on by highly separated flow within the vehicle wake. When taking A-B design trends, many of these errors compounded together to form design trends that did not reflect those measured in experiments. On the other hand, DDES proved to be more
Aultman, MatthewDisotell, KevinDuan, LianMetka, Matthew
A novel design for a radial field switching reluctance motor with a sandwich-type C-core architecture is proposed. This approach combines elements of both traditional axial and radial field distribution techniques. This motor, similar to an in-wheel construction, is mounted on a shared shaft and is simple to operate and maintain. The rotor is positioned between the two stators in this configuration. The cores and poles of the two stators are separated from one another both magnetically and electrically. Both stators can work together or separately to produce the necessary torque. This adds novelty and improves the design’s suitability for use with electrical vehicles (EVs). A good, broad, and adaptable torque profile is provided by this setup at a modest excitation current. This work presents the entire C-core radial field switched reluctance motor (SRM) design process, including the computation of motor parameters through computer-aided design (CAD). The CAD outputs are verified via
Patel, Nikunj R.Mokariya, Kashyap L.Chavda, Jiten K.Patil, Surekha
ABSTRACT Determining the required power for the tractive elements of off-road vehicles has always been a critical aspect of the design process for military vehicles. In recent years, military vehicles have been equipped with hybrid, diesel-electric drives to improve stealth capabilities. The electric motors that power the wheel or tracks require an accurate estimation of the power and duty cycle for a vehicle during certain operating conditions. To meet this demand, a GPS-based mobility power model was developed to predict the duty cycle and energy requirements of off-road vehicles. The dynamic vehicle parameters needed to estimate the forces developed during locomotion are determined from the GPS data, and these forces include the following: the gravitational, acceleration, motion resistance, aerodynamic drag, and drawbar forces. Initial application of the mobility power concept began when three U.S. military’s Stryker vehicles were equipped with GPS receivers while conducting a
Ayers, PaulBozdech, George
ABSTRACT Combat vehicle design necessarily involves trade studies that attempt to balance varying performance criteria against associated burdens, such as weight, cost, and risk. Typically, trade studies quantify the value of different options by evaluating each on the individual criteria and then generating a weighted sum score. In the method described here the score is generated multiplicatively rather than additively. In addition, the importance of each evaluation criterion is used to generate the utility scores for that criterion. This improves the trade study process in two significant ways. First, making the overall score multiplicative greatly reduces the “compensation” problem, where good performance in some criteria can outweigh exceedingly poor performance in others. With a multiplicative method, only balanced solutions can score well. Second, using importance weights to establish utility scores for individual criteria simplifies the process, making it easier to conduct
Eridon, James
ABSTRACT As contracts move from cost plus to fixed deliverables, total project cost and reducing schedules become more important. This paper will show how Model Driven Development can address common challenges in the system design, verification & testing of complex systems and systems of systems. Project success requires that hardware, software, and test teams fluently integrate application software, controlling firmware, analog and digital hardware, and mechanical components, which often proves to be costly in terms of time, money, and engineering resources. Model Driven Development and virtual prototyping using a tools flow emphasizing requirements tracing, UML / SysML system modeling, and linking to functional FPGA, IC, PCB and cabling domains supports system engineering teams along with software, digital hardware, analog hardware, system interconnect algorithm development, hardware / software co-simulation, and virtual system integration. This paper covers such solutions that
Vargas, John
ABSTRACT The IGVC offers a design experience that is at the very cutting edge of engineering education, with a particular focus in developing engineering control/sensor integration experience for the college student participants. A main challenge area for teams is the proper processing of all the vehicle sensor feeds, optimal integration of the sensor feeds into a world map and the vehicle leveraging that world map to plot a safe course using robust control algorithms. This has been an ongoing challenge throughout the 27 year history of the competition and is a challenge shared with the growing autonomous vehicle industry. High consistency, reliability and redundancy of sensor feeds, accurate sensor fusion and fault-tolerant vehicle controls are critical, as even small misinterpretations can cause catastrophic results, as evidenced by the recent serious vehicle crashes experienced by self-driving companies including Tesla and Uber Optimal control techniques & sensor selection
Kosinski, AndrewIyengar, KiranTarakhovsky, JaneLane, JerryCheok, KaCTheisen, BernieOweis, Sami
ABSTRACT Often during Product Development, externalities or requirements change, forcing design change. This uncertainty adversely affects program outcome, adding to development time and cost, production cost, and can compromise system performance. We present a development approach that minimizes impacts, by proactively considering the possibility of changes in the externalities and mid-course design changes. The approach considers the set of alternative designs and the burdens of a mid-course change from one design to another in determining the relative value of a specific design through the set-based design methodology. The approach considers and plans parallel (redundant) development of alternative designs with progressive selection of options, including time-versus-cost tradeoffs and the impact change-costs. The approach includes a framework of the development process addressing design and integration lead-times, their relationship to the time-order of design decisions, and the
Rapp, StephenDoerry, NorbertChinnam, RatnaMonplaisir, LeslieMurat, AlperWitus, Gary
ABSTRACT The classic trinity of armored fighting vehicle design is the tradeoff between Armament, Armor, and Mobility. In a practical design, all three cannot be simultaneously maximized, so engineers must determine the proper balance between these capabilities, which would offer optimal combat performance, taking into account the limitations of industrial mass production. This study explores trends in the historical evolution of combat vehicles, from their initial appearance on the battlefields of World War 1 to the modern era. Additionally, this study also examines the basic physical limitations of combat vehicle design as a whole, by presenting fundamental performance limits that are universal to all classes of combat vehicles. This analysis is used to identify key areas of research that would be of significant benefit to the development of future combat vehicles. Citation: O. Sapunkov, “Historical Trends and Parameter Relationships in the Design of Armored Fighting Vehicles”, in
Sapunkov, Oleg B.
ABSTRACT The Vehicular Integration for Command, Control, Communications, Computers, Intelligence, and Surveillance/Electronic Warfare (C4ISR/EW) Interoperability (VICTORY) Standard provides an open architecture and technical specifications to promote sharing and reuse of resources within the military ground vehicle (MGV). The VICTORY Access Control Framework (VACF) provides services and mechanisms for protecting many of these shared-resources through the adoption of standards such as Security Attribute Markup Language (SAML) and eXtensible Access Control Markup Language (XACML). These technologies are typically used for securing an Enterprise Architecture and no fundamental issues appear to preclude their successful use within a MGV. However, despite consistent demand and pressure from Program Managers, and the successful deployment of many other VICTORY components, there has been no successful demonstration of these security components in an integrated vehicular environment. This
Elliott, LeonardWoodward, KimLaBerge, Alex
ABSTRACT As the United States’ (US) Department of Defense (DoD) works to maintain our battlefield superiority in the ground domain, we rapidly integrate new electronic capabilities into vehicles that communicate and cooperate over vehicle-to-infrastructure networks. These new capabilities contribute to increasing the potential attack surface, as described in the 2018 Government Accountability Office (GAO) report on Weapon System Cyber Security [1]. To understand the increasingly complex attack surface and to reduce ground platform exposures through cyberspace, we need new engineering analysis and design techniques. Today, most engineering methodologies treat cybersecurity as an add-on to traditional process flows. For example, until recently, the International Council on Systems Engineering (INCOSE) gave little attention to cybersecurity in their industry definition of the Vee-Model used widely in defense contracting. We argue that until we give cybersecurity first-class status and
Lofy, CheriVriesenga, Mark
ABSTRACT With more advanced technology and simulation software becoming available, the idea of incorporating immersive technologies, such as virtual and augmented reality in mechanical design. Specifically, this research seeks to understand the current state of the art use of immersive technologies within the DoD Acquisition Process. First, the state-of-the-art needs is analyzed, so that research can be adequately directed to make this future a reality. Three opportunities are identified 1) use of immersive technology to support design reviews, 2) the use of current technology to support engineering design review tasks, and 3) experiments and formal studies to evaluate the impact of immersive technologies on engineering design review tasks. Citation: W. Hawthorne, M. Sutton, V. Ransing, G. Mocko, C. Turner, J. Walton, “The use of virtual reality to support engineering design reviews,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi
Hawthorne, WilliamSutton, MeredithRansing, VishwajeetMocko, GregoryTurner, CameronWalton, Jamaihus
ABSTRACT Design for structural topology optimization is a method of distributing material within a design domain of prescribed dimensions. This domain is discretized into a large number of elements in which the optimization algorithm removes, adds, or maintains the amount of material. The resulting structure maximizes a prescribed mechanical performance while satisfying functional and geometric constraints. Among different topology optimization algorithms, the hybrid cellular automaton (HCA) method has proven to be efficient and robust in problems involving large, plastic deformations. The HCA method has been used to design energy absorbing structures subject to crash impact. The goal of this investigation is to extend the use of the HCA algorithm to the design of an advanced composite armor (ACA) system subject to a blast load. The ACA model utilized consists of two phases: ceramic and metallic. In this work, the proposed algorithm drives the optimal distribution of a metallic phase
Goetz, John C.Tan, HuadeRenaud, John E.Tovar, Andrés
ABSTRACT A methodology for rapid development of purpose-built, heavy-fueled engines is being created. The methodology leverages best-in-class computational tools, component supplier expertise, user-programmable ECUs, and rapid prototyping to quickly provide custom engines for demanding military applications. . First-tier automotive suppliers are being used extensively on non-complex standard components to reduce the development time. Our design methodology aggressively eliminates unnecessary components and incorporates various other weight-saving features to minimize system weight. The anticipated total development time to a working prototype is less than 15 months for this first iteration of the methodology, and will be further reduced for any subsequent design iterations
Sykes, David M.Ratowski, Jeffrey
ABSTRACT Global Positioning System (GPS) technology has seen increased use in many different military applications worldwide, beyond navigation. The Warfighter uses GPS to enhance Situational Awareness on the battle field with systems such as Land Warrior, Blue Force Tracker, TIGR, and various electronic mission planning tools in locations where the GPS signals are normally not available. For example, this includes the inside of a HMMWV, Stryker, or MRAP. GPS retransmission, or the art of repeating a live GPS signal, has evolved into a technically advanced solution to provide GPS signals to the Warfighter mounted inside ground vehicles, protecting themselves from sniper and IED threats, while providing mobility and Situational Awareness from vehicle mounted communication & navigation systems. The objective of this technical paper is to communicate a relevant understanding of how this technology is being embraced by the Warfighter to accomplish their mission safer and more efficiently
Paul, Mr. Brian
ABSTRACT Designing robots for military applications requires a greater understanding between the engineer and the Soldier. Soldier considerations result from experiences not common to the engineer in the lab and, when understood, can minimize the design time and provide a more capable product that is more readily deployed into the unit
Stehle, Brian C.
ABSTRACT The Bradley Combat Vehicle Motor Chatter case study focuses on one aspect of a combat vehicle program, specifically, responding to a vehicle production situation where combat vehicles produced with in-spec components and subsystems exhibit out-of-spec and failing system behavior. This typically results in an extended production line-down or line-degraded situation lasting for several quarters until the problem can be diagnosed, fixed, validated and verified. Subsequently, adequate quantities of the modified or replaced sub-systems must be put back into the production flow. The direct and indirect costs of an occurrence like this in peace-time are measured in the 10’s to 100’s of Millions of dollars. The schedule, program and perception impact to the vehicle platform can be potentially devastating. In war-time all of these impacts are magnified greatly by the added risk to soldiers’ lives. This paper describes the Bradley Combat Vehicle Motor Chatter case study and the
Scheitrum, MarkWillhoft, MarkSmith, AlanDavis, Annette
ABSTRACT The Modular Open RF Architecture’s (MORA) core objective is to logically decompose radio frequency (RF) systems for efficiency, flexibility, reusability, and scalability while enabling management, health monitoring, and sharing of raw and/or processed data. MORA extends the Army’s Vehicular Integration for C4ISR/EW Interoperability (VICTORY) architecture. MORA was introduced to the GVSETS community in 2015 at version 1.0 of the specification, and has matured with the help of community, industry, and academia partners to its current version 2.3. This paper discusses the current state of the MORA specification and how it has evolved beyond its initial topology to encompass the entirety of the RF chain in an open and modular fashion. In addition, this paper will describe the purpose of MORA, the objectives of its development, its foundation, and the basic concepts and core features. Citation: J. Broczkowski, D. Bailey, T. Ryder, J. Dirner, “Modular Open RF Architecture (MORA
Broczkowski, JasonBailey, DerekRyder, TroyDirner, Jason
Items per page:
1 – 50 of 4484