Browse Topic: Design processes

Items (4,396)
ABSTRACT BAE Systems Combat Simulation and Integration Labs (CSIL) are a culmination of more than 14 years of operational experience at our SIL facility in Santa Clara. The SIL provides primary integration and test functions over the entire life cycle of a combat vehicle’s development. The backbone of the SIL operation is the Simulation-Emulation-Stimulation (SES) process. The SES process has successfully supported BAE Systems US Combat Systems (USCS) SIL activities for many government vehicle development programs. The process enables SIL activities in vehicle design review, 3D virtual prototyping, human factor engineering, and system & subsystem integration and test. This paper describes how CSIL applies the models, software, and hardware components in a hardware-in-the-loop environment to support USCS combat vehicle development in the system integration lab
Lin, TCChang, KevinJohnson, ChristopherNaghshineh, KasraKwon, SungLi, Hsi Shang
ABSTRACT A key objective of the Vehicular Integration for C4ISR/EW Interoperability (VICTORY) Architecture is to use open standards to increase the portability of C4ISR/EW systems and enhance interoperability within military ground vehicles. When possible these technologies are adopted by VICTORY and when existing specifications are inadequate, best-practices are used to develop the necessary adaptations. Many Commercial Off-The-Shelf (COTS) publish/subscribe messaging solutions are available and the Open Management Group (OMG) Data-Distribution Service (DDS) is one such technology that provides open interfaces, open data formats, and open protocols. This paper will discuss the current VICTORY messaging approach and the benefits and disadvantages of using OMG-DDS as a data transport for VICTORY services
Elliott, LeonardWilliams, NikiaSiddapureddy, Venu
ABSTRACT The Bradley Combat Vehicle Motor Chatter case study focuses on one aspect of a combat vehicle program, specifically, responding to a vehicle production situation where combat vehicles produced with in-spec components and subsystems exhibit out-of-spec and failing system behavior. This typically results in an extended production line-down or line-degraded situation lasting for several quarters until the problem can be diagnosed, fixed, validated and verified. Subsequently, adequate quantities of the modified or replaced sub-systems must be put back into the production flow. The direct and indirect costs of an occurrence like this in peace-time are measured in the 10’s to 100’s of Millions of dollars. The schedule, program and perception impact to the vehicle platform can be potentially devastating. In war-time all of these impacts are magnified greatly by the added risk to soldiers’ lives. This paper describes the Bradley Combat Vehicle Motor Chatter case study and the
Scheitrum, MarkWillhoft, MarkSmith, AlanDavis, Annette
ABSTRACT In development of next generation products, 80% or more of the downstream costs associated are committed during design phase. If we could predict, with reasonable confidence, the long-term impact of design decisions, it would open opportunities to develop better designs that result in tremendous future cost savings, often with no compromise in key performance objectives. Systems engineering is, by its nature, multi-disciplinary. The aim of Integrated Product and Process Development is to bring these disciplines together in order to assess various downstream implications of early design decisions, creating better designs, avoiding dead-end designs that are costly in terms of design cycle-time, and realizing designs that are manufacturable while achieving the performance objectives. The goal is to build a downstream value analysis tool that links all the conceptual design activities. This capability allows a designer to realize the long-range impacts of key up-front design
Sarkar, SohiniSoltisz, Jim
ABSTRACT The Center for Ground Vehicle Development and Integration (CGVDI) is a U.S. Army Tank Automotive Research, Development, and Engineering Center (TARDEC) capability responsible for design, fabrication, integration, and support of additional capabilities for fielded systems as well as overall project management. CGVDI provides customers a single office that coordinates activities across the U.S. Army Research Development and Engineering Command (RDECOM) to conduct the complete spectrum of activities required to support Project Management Offices with design, development, integration, and testing of ground systems to meet the needs of the Warfighter. To better serve the organizations and programs supported by CGVDI, the TARDEC Systems Engineering Group worked to infuse Systems Engineering (SE) processes into CGVDI standard operating procedures as a way to effectively meet project cost, schedule, risk, and performance goals
Yee, AndrewBrendle, Bruce
ABSTRACT The Vehicular Integration for C4ISR/EW Interoperability (VICTORY) Standard adopts many protocols that are traditionally used for developing enterprise application software deployed on general-purpose or server/workstation based computing platforms. This has led to discussions regarding the suitability of the VICTORY Standard for deployment to embedded and resource-constrained platforms. An independent software implementation of VICTORY core services was developed within the U.S Army Tank and Automotive Research, Development and Engineering Center (TARDEC) VICTORY System Integration Lab (SIL). These services were ported from a general-purpose computing platform to an embedded environment. Test procedures were developed and extensive performance tests were conducted to determine the feasibility of operating in this resource-constrained environment. This paper discusses the development procedures, implementation, test procedures, and performance results
Russell, Mark
ABSTRACT As contracts move from cost plus to fixed deliverables, total project cost and reducing schedules become more important. This paper will show how Model Driven Development can address common challenges in the system design, verification & testing of complex systems and systems of systems. Project success requires that hardware, software, and test teams fluently integrate application software, controlling firmware, analog and digital hardware, and mechanical components, which often proves to be costly in terms of time, money, and engineering resources. Model Driven Development and virtual prototyping using a tools flow emphasizing requirements tracing, UML / SysML system modeling, and linking to functional FPGA, IC, PCB and cabling domains supports system engineering teams along with software, digital hardware, analog hardware, system interconnect algorithm development, hardware / software co-simulation, and virtual system integration. This paper covers such solutions that
Vargas, John
ABSTRACT This paper will incorporate product development methodology from the FED program where AVL is responsible in collaboration with World Technical Services Inc., for delivering a fully developed hybrid propulsion system integrated into the demonstrator vehicle. Specifically, the paper will discuss via case study the unique methodology employed by AVL Powertrain to develop, validate, and integrate our hybrid propulsion system into the FED vehicle. Content will include traditional and virtual powertrain development methodologies that maximize product development efficiency, ensure a robust final design, and minimize development costs. Hybrid controls development, calibration techniques and vehicle design issues will also be discussed
Holtz, Jeffrey B.Uppal, Faisal J.Naick, Pratap
ABSTRACT The Vehicular Integration for C4ISR/EW Interoperability (VICTORY) Systems Integration Lab (SIL) is established and developed at the U.S. Army Tank-Automotive Research, Development, and Engineering Command (TARDEC). The VICTORY SIL will be utilized for the development and integration of the extensive set of C4ISR/EW technologies that are to be systematically down selected to provide the comprehensive VICTORY services & infrastructure required in the development of mission capabilities of the Army’s tactical and combat vehicles. A fully functioning VICTORY SIL will be utilized for validation and independent verification of the Army’s and the vendor provided C4ISR/EW sub-systems. The lab will emphasize the importance of testing the data, power & physical interface strategy of the sub-systems in a low-cost laboratory environment before integration onto a vehicle. This paper describes how the VICTORY SIL will advance the RDECOM’s vision for a standardized electronic architecture
Williams, NikiaSiddapureddy, VenuElliott, LeonardEllis, NathanGriffin, PatrickReddmann, SteveBerry, HeatherRussell, Mark
ABSTRACT Global Positioning System (GPS) technology has seen increased use in many different military applications worldwide, beyond navigation. The Warfighter uses GPS to enhance Situational Awareness on the battle field with systems such as Land Warrior, Blue Force Tracker, TIGR, and various electronic mission planning tools in locations where the GPS signals are normally not available. For example, this includes the inside of a HMMWV, Stryker, or MRAP. GPS retransmission, or the art of repeating a live GPS signal, has evolved into a technically advanced solution to provide GPS signals to the Warfighter mounted inside ground vehicles, protecting themselves from sniper and IED threats, while providing mobility and Situational Awareness from vehicle mounted communication & navigation systems. The objective of this technical paper is to communicate a relevant understanding of how this technology is being embraced by the Warfighter to accomplish their mission safer and more efficiently
Paul, Mr. Brian
ABSTRACT Current written system specifications have a high degree of uncertainty which causes specifications to be changed because they are incorrect, incomplete or do not possess the degree of rigor to make them precise. Even when generated by modeling methods such as UML/SySML or standards such as DoDAF, these functional specifications still lack any validation with respect to architecture, mission, and scenario impacts. The lack of consideration of these aspects creates design errors are usually exposed during the test and integration phases where the expense is greater to correct than in the early conceptual design phase. This paper will introduce the concept of Validated Executable Specifications (VES) that will enable Model Based Systems Engineering (MBSE) to validate early in the design process to reduce risk and save costs in a System of System (SoS) model
Fortney, George
ABSTRACT The United States Army Tank Automotive Research, Development and Engineering Center (TARDEC) is actively investigating and researching ways to advance the state of combat hybrid-electric power system technology for use in military vehicles including the Future Combat Systems’ family of manned and unmanned ground vehicles. Science Applications International Corporation (SAIC) is the lead contractor for operating the Power and Energy System Integration Laboratory (P&E SIL) in Santa Clara, CA. The P&E SIL houses a combat hybrid electric power system including a diesel engine, generator, high voltage bus, DC-DC converter, lithium ion battery pack, left and right induction motors, and left and right dynamometers. The power system is sized for a 20-22 ton tracked vehicle. The dynamometers are responsible for emulating loads that the vehicle would see while running over a course. This paper discusses the control system design for achieving mobility load emulation. Mobility load
Goodell, JarrettSmith, WilfordWong, Byron
ABSTRACT Increasing power requirements along with weight and space constrains requires implementation of more intelligent thermal management systems. The design and development of such systems can only be possible with a thorough understanding of component and system level thermal loads. The present work implements 1-D and 3-D unsteady CFD based simulation tools in vehicle design process. Both under-the-hood cooling and HVAC systems are simulated in various operating conditions on a HPC Computer Cluster. System variables are optimized with gradient based BCSLIB and SciPy optimization libraries. The simulation results are compared and validated with experimental tests
Bayraktar, Ilhan
An innovative new approach is presented that addresses the challenges of design in a constantly changing environment. New solutions that satisfy changing requirements are generated by rapidly reconfiguring ongoing projects and effectively reusing trusted designs. Design is essentially a process of generating knowledge about how to build new systems. Reuse is difficult because this knowledge is amorphous and difficult to access. Hierarchical platform-based engineering is used to structure and categorize this knowledge to make it easily accessible. This approach has three essential components: 1) Hierarchical platform-based design method organizes design projects into a structured library; 2) Transformational systems engineering and concurrent risk assessment are used to capture complex interactions between different CPS elements. These captured interactions help assess reusability and reconfigurability of each element; 3) A new design flow integrates platform-based design methods into
Mehta, SandeepCooper, Stephen
ABSTRACT The goal of the human factors engineer is to work within the systems engineering process to ensure that a Crew Centric Design approach is utilized throughout system design, development, fielding, sustainment, and retirement. To evaluate the human interface, human factors engineers must often start with a low fidelity mockup, or virtual model, of the intended design until a higher fidelity physical representation or the working hardware is available. Testing the Warrior-Machine Interface needs to begin early and continue throughout the Crew Centric Design process to ensure optimal soldier performance. This paper describes a Four Step Process to achieve this goal and how it has been applied to the ground combat vehicle programs. Using these four steps in the ground combat vehicle design process improved design decisions by including the user throughout the process either in virtual or real form, and applying the user’s operational requirements to drive the design
Vala, MarilynNavarre, RussellKempf, PeterSmist, Thomas
ABSTRACT There is a dire need for low-cost mobile robots for the purpose of mine detection and disposal. Countries with low gross domestic product (GDP) and infected with landmines generally cannot support expensive high-tech solution. A de-mining mobile robot has to be cost effective compared to local labor costs. Presently commercially available mobile robots consist of mainly custom made parts. The design and manufacturing of such parts make the robots very expensive. This paper describes how careful selection of commercially available parts leads to reducing the development time and costs for a demining robot while ensuring its reliability, convenient operation and application domain. An actual example of how a low cost mine detection robot was successfully integrated within two months is outlined
Pajaziti, A.Cheok, K.Radovnikovich, M.Baftiu, I.Godo, G.
ABSTRACT As the industry looks towards Condition Based Maintenance (CBM) as the next maintenance paradigm, OEMs and suppliers are looking into their readiness in meeting the CBM challenges for the future. The US armed forces are currently investigating CBM for their Tactical and Combat vehicles as a means of improving combat readiness & equipment reliability, and reducing maintenance costs. Many cutting-edge technologies will have to be integrated in designing the CBM systems that will support the next generation of vehicles. While most of the required technologies exist, a comprehensive design will be required to make CBM systems feasible and economical
Prasad, SrinivasaZachos, Mark
ABSTRACT Advanced Survivability Systems will be fully utilized by the Soldiers in the battlefield when the spatial, power and data integration issues are effectively managed during the vehicle integration process. Challenges faced during the integration process range from the packaging of oversized legacy equipment to the environmental requirements of advanced sensory systems. This paper discusses such integration efforts and the lessons accumulated during this resource intensive process. The utility of this complex integrated system was tested and validated by the Soldiers recently returning from the theater. Some surprising aspects of the testing resulted in questioning our traditional view of information presentation to the Soldier
Siddapureddy, VenuFountain, NathanSanders, DavidBudzik, Stacy
ABSTRACT Over the last several years all branches of the United States military have experienced an increased number of orthopedic and internal injuries to knees lower back, neck, and digestive system. Additionally the level of severity has also been increasing. Primary cause factors contributing to the overall increase in injuries to US military personnel include the increase in overall individual loads being carried by the individual soldier which at times can approach 150 pounds, higher operations tempo which results in greater exposure to higher levels of impact forces and for a greater duration. The greater impact forces are a result of the poor design of the current bench deployed on United States tactical vehicles, and the brutal nature of the third world transportation networks in Afghanistan and Iraq. This paper documents the engineering approach utilized by AOM Engineering Solutions to achieve the following primary design objectives; improved ergonomic design for injury
Micheli, JohnDonovan, LTC Ken
ABSTRACT Battelle has built multiple auxiliary power generators using liquid logistic fuels that tightly couple fuel cell and fuel processing systems, providing new control challenges. Acting as an auxiliary power supply places difficult requirements for load following and transients. Additional challenges arise from the differing time constraints of the fuel processor and fuel cell systems and the need to maintain water balance. A novel method of controlling the system has been formulated and applied, providing pushbutton start capabilities. The control system has proven to be robust and easily adaptable to system design and operating parameter changes. In addition to control concerns, the requirements for vehicle integration and desulphurization have been investigated
Thornton, DouglasContini, VinceMcCandlish, Todd
ABSTRACT A functionally-graded NPR (Negative Poisson’s Ratio) material concept has been developed for a critical Army application – blast protection. The objective is to develop a combined computational design methodology and innovative structural-material concept for a blast-protective deflector, which can concentrate material into areas most needed and adapt its shape utilizing the blast energy to improve blast mitigation and crew protection. Included in the computational design methodology is optimal deflector shape design and optimal NPR material distribution to further improve the protection while minimizing the C.G. height of the vehicle and the weight of the deflector. Structures fabricated using this new concept react to the explosion and reconfigure themselves under the blast force to provide maximum blast protection. The presented research work consists of two basic approaches to deflector design: optimal deflector shape design and optimal NPR material configuration and
Ma, Zheng-DongBian, HongxinSun, CeHulbert, Gregory M.Bishnoi, KrishanRostam-Abadi, Farzad
ABSTRACT Raytheon is in the final stages of production of three high performance thermal imaging / fire control systems being integrated on existing USMC and US Army armored vehicles. A goal in the design of these systems was to provide integration into the host vehicle that when viewed by the customer and user provided the enhanced capabilities of today’s latest thermal imaging and image processing technology as well as operating in concert with the vehicle as originally designed. This paper will summarize the technical solutions for each of these programs emphasizing the thermal imaging, fire control, image processing and vehicle integration technologies. It will also outline guiding philosophies and lessons learned used to focus the design team in achieving the successful integration. The programs to be reviewed are; USMC 2nd Gen Thermal Imaging System, the USMC LAV-25 Improved Thermal Sight System (ITSS) and the USMC / US Army M1A1 50 Cal Thermal Sight / DayTV System
LaSala, Paul V.Raaum, Bryan J.
Many organizations are falling far short of achieving the lifecycle potential of their new product designs. One major source of this suboptimal business performance stems from underleveraging key Systems Engineering and Design Engineering principles in the early phases of the design process. If these are being poorly applied, the following will likely occur: Inefficient use of engineering (and other cross-functional) resources Unnecessarily high product development costs Delayed time-to-market Subpar launch quality Poor system-level safety Suboptimal lifecycle sustainability-related performance Compromised design innovation This report addresses these challenges and articulates how an integrated approach of “Systems Design Engineering” provides nonburdensome and quickly applied methods for overcoming these shortcomings, placing a dedicated focus on the three high-level principles that govern lifecycle product design success. Excellent and efficient performance against each of them is
Genter, David Paul
Automotive radar plays a crucial role in object detection and tracking. While a standalone radar possesses ideal characteristics, integrating it within a vehicle introduces challenges. The presence of vehicle body, bumper, chassis, and cables in proximity influences the electromagnetic waves emitted by the radar, thereby impacting its performance. To address these challenges, electromagnetic simulations can guide early-stage design modifications. However, operating at very high frequencies around 77GHz and dealing with the large electrical size of complex structures demand specialized simulation techniques to optimize radar integration scenarios. Thus, the primary challenge lies in achieving an optimal balance between accuracy and computational resources/simulation time. This paper outlines the process of radar vehicle integration from an electromagnetic perspective and demonstrates the derivation of optimal solutions through RF simulation
Rao, SukumaraM K, Yadhu Krishnan
This document provides an overview of currently available and need to be developed modeling and simulation capabilities required for implementing robust and reliable Aerospace WDM LAN applications
AS-3 Fiber Optics and Applied Photonics Committee
Turbocharger design involves adjustment of various geometric parameters to improve the performance and suit mechanical constraints, depending on the application-specific requirements. In designing the turbine stage, these parameters are optimized to maximize durability and efficiencies at the required operating points. For a heavy-duty class eight truck, “road load” and “rated power” are generally considered the two most important operating points. The objective of this article is to improve the efficiencies of these two operating points. The common challenge in the development of a turbine wheel design is the large number and interdependence of parameters to optimize. For example, increasing the blade thickness improves structural strength but reduces the mass flow capacity, thus influencing its performance. It is general practice to optimize the wheel geometry using iterative CFD analysis. However, running simulations for every single change in geometry involves significant
Wichlinski, JosephGonser, LukasNaik, PavanTaylor, Alexander H.Al-Hasan, Nisar S.
Paris, June 18, 1914: Crowds gathered at the “Concours de la Sécurité en Aéroplane” to witness 21-year-old Lawrence Sperry demonstrate his newly invented gyroscopic stabilizer. With his hands in the air, the device flew his Curtiss C-2 flying boat. Only a decade after the Wright brothers’ initial flight, the first n “autopilot” made its public debut. As impressive as this public demonstration was, it was merely a humble, although spectacular moment of foreshadowing. Even today—110 years later—the process of automating aspects of flight has not yet fully concluded, leading to deteriorating insight into the automatic behavior of aircraft systems, and even the waning of human instincts and intuition. Controlling Aircraft—From Humans to Autonomous Systems: Rise of the Machines covers the distancing of humans from their flying machines through more than a century-long process of “assisting” systems introduction, the positive and negative consequences of this process, and mitigation
David, Aharon
Thermal management is paramount in electric vehicles (EVs) to ensure optimal performance, battery longevity, and overall safety. This paper presents a novel approach to improving the efficiency of cooling systems in automotive passenger vehicles, focusing specifically on battery circuits and e-motor cooling. Current systems employ separate pumps, degassing tanks, valves, and numerous mechanical components, resulting in complex layouts and increased assembly efforts. The primary challenge with the existing setup lies in its complexity and the associated drawbacks, including heat energy loss, increased weight, and space constraints. Moreover, the traditional approach necessitates a significant number of components, leading to higher system costs and maintenance requirements. To address these challenges, this paper proposes an integrated cooling system where the pump, degassing tank, and valves are consolidated into a single housing. This streamlined design reduces the component count by
Anandan, RamThiyagarajan, RajeshSharma, AkashVenkataraman, P
This paper presents a case study in which tailored analytical models are utilized to improve decision making in the design process. This methodology was leveraged in the design of improvements for the Heavy Assault Scissor Bridge (HASB), which resulted in an optimized end product that added new functionality to the legacy bridge system while reducing weight by 36%. The study demonstrates the importance of adapting the analytical approach to the specific problem at hand, highlighting the iterative and recursive nature of trade studies in navigating complex design challenges. By isolating variables at key decision points, the study shows how trade studies can inform more efficient and effective design choices. Through practical examples and simulations, the paper illustrates how this tailored approach can lead to the development of a robust and reliable control mechanism for a folding bridge
Jolma, CarlMinger, Robert
A digital twin is a virtual model that accurately imitates a physical asset. This can be as complex as an entire vehicle, a subsystem, and down to a small functioning component. The digital twin has a level of fidelity that aligns to the goals of the project team. The usage of a digital twin inside a digital engineering (DE) ecosystem permits architecture and design decisions for optimized product behavior, performance, and interactions. This paper demonstrates a methodology to incorporate the digital twin concept from requirement analysis, low fidelity feature level simulation, rapid prototypes running inside a System Integration Lab, and high fidelity virtual prototypes executing in an entirely virtual environment
Kanon, Robert J.Griffin, Kevin W.Fernando, RaveenShah, AmirKouba, RussFeury, Mark
The Army can increase its software modernization effort for Embedded System software development by leveraging the Cloud to expand the capability of the DevSecOps environment to include automated testing at scale. The Cloud will support the integration of current and new off-the-shelf technologies; and merging next generation technologies from industry partners into a coherent DevSecOps Cloud ecosystem. The following areas are critical to meeting mission requirements and applications: virtual simulation, trade study analytics, technology adoption, DevSecOps capabilities, artificial intelligence applications and infrastructure, and collaborative single vehicle Systems Integration Laboratory (SIL). These areas are all essential to shortening the vehicle product lifecycle and time to deliver mission essential capabilities to the field to support warfighter needs
Brabbs, JohnJones, B. Colby
With the arrival of robotic autonomy in future Army ground combat vehicles there is an intrinsic need for modeling and simulation infrastructure for autonomy. Taking a Modular Open System Approach to designing modeling and simulation architecture facilitates creating a flexible, scalable, and adaptable infrastructure that can be applied to a wide range of scenarios to assist Army programs of record and accelerate technology maturation while providing a low-cost, efficient way to reduce program risk and ensure next-generation robotic ground vehicles provide greater value to the soldier
Roberts, GeraldSimmons, CalebPalmer, Tim
The once rarified field of Artificial Intelligence, and its subset field of Machine Learning have very much permeated most major areas of engineering as well as everyday life. It is already likely that few if any days go by for the average person without some form of interaction with Artificial Intelligence. Inexpensive, fast computers, vast collections of data, and powerful, versatile software tools have transitioned AI and ML models from the exotic to the mainstream for solving a wide variety of engineering problems. In the field of braking, one particularly challenging problem is how to represent tribological behavior of the brake, such as friction and wear, and a closely related behavior, fluid consumption (or piston travel in the case of mechatronic brakes), in a model. This problem has been put in the forefront by the sharply crescendo-ing push for fast vehicle development times, doing high quality system integration work early on, and the starring role of analysis-based tools in
Antanaitis, David
Designing a brake disc is a very challenging job. Besides to being a key item in vehicle safety, we are referring to a product that goes through several manufacturing processes and during its application it is exposed to extreme conditions of mechanical stress, temperature and vibration. The raw material for a large portion of commercial brake discs is normally gray cast iron with the possibility of adding alloy elements. This material is characterized by having high resistance to wear due to friction and having practically zero plasticity. As it is a material without a plastic working regime, it is very important to properly size the product for use, once the material’s resistance limit is reached, a catastrophic failure in operation may be inevitable. Quality control systems in casting and machining have great importance in the development of the disc, but physical tests are always essential in this type of product. Dynamometer tests are great options for validating brake discs, due
Deckmann, Jardel Luisdo Nascimento, Vagner
A Columbia Engineering team has published a paper in the journal Joule that details how nuclear magnetic resonance spectroscopy techniques can be leveraged to design the anode surface in lithium metal batteries. The researchers also present new data and interpretations for how this method can be used to gain unique insight into the structure of these surfaces
Occupant packaging is one of the key tasks involved in the early architectural phase of a vehicle. Accommodation, as a convention, is generally considered related to a car’s interior. Typical roominess metrics of the occupant like hip room, shoulder room, and elbow room are defined with the door in its closed condition. Several other roominess metrics like knee room, leg room, head room, and the like are also specified. While all the guidelines are defined with doors in their closed condition, it is also important to consider the dynamics that exist while the occupant is entering the vehicle. This article expands the traditional understanding of occupant accommodation beyond conventionally considering the vehicle interior’s ability to accommodate anthropometry. It broadens the scope to include dynamic conditions, such as when doors are opened, providing a more realistic and practical perspective. As a luxury car manufacturer, it is important to ensure the best overall customer
Rajakumaran, SriramSreenivas, Kalyan
Liquid hydrogen (LH2) is playing a key role in decarbonization of the global energy landscape. Its large-scale continuous use in the space industry provides a foundation for transitioning state-of-the-art capabilities to other sectors. Key advancements in materials, cryogenics, and system optimization are being applied to reduce costs and increase performance for various mobile and stationary use cases. However, some unsettled topics remain to be addressed related to production, liquefaction, storage, distribution, safety, and economics. The optimal solutions to these unsettled topics will vary depending on the region, industry sector, and application. Decarbonizing Mobility with Liquid Hydrogen provides a brief and balanced assessment of the relevant technologies, established practices, system operations, emerging trends, strategic considerations, and economic drivers. Addressing these unsettled topics is tied to the evolving economic strategies of governmental policies, public and
Moran, Matthew
Semi-automated computational design methods involving physics-based simulation, optimization, machine learning, and generative artificial intelligence (AI) already allow greatly enhanced performance alongside reduced cost in both design and manufacturing. As we progress, developments in user interfaces, AI integration, and automation of workflows will increasingly reduce the human inputs required to achieve this. With this, engineering teams must change their mindset from designing products to specifying requirements, focusing their efforts on testing and analysis to provide accurate specifications. Generative Design in Aerospace and Automotive Structures discusses generative design in its broadest sense, including the challenges and recommendations regarding multi-stage optimizations. Click here to access the full SAE EDGETM Research Report portfolio
Muelaner, Jody Emlyn
This study aims to design a supersonic ejector, referred to as a liquid spray gun, with a simple operating procedure for producing an aerosol spray with adjustable droplet size distributions. A CFD model was developed to determine the influence of nozzle exit position and the primary air pressure on the supersonic patterns formed within the ejectors, providing a valuable insight into their internal physics. Based on the single-phase numerical results, at an air primary pressure of 2 bar, the flow may not reach a choking condition, possibly resulting in unstable ejector operation. However, at pressures exceeding 5 bar, the jet patterns emerging from the primary nozzle cause flow separation or the formation of vortex rings. This phenomenon leads to a flow configuration comparable to the diameter of the mixing tube, thereby reducing the available area for entrainment of suction flow. The suitable ejector was identified with a nozzle exit position of 13 mm and a primary pressure ranging
Nguyen, Quan Q.Phung, Duoc V.Nguyen, Kien T.Pham, Hoang Q.Pham, Thin V.Vu, Tuan N.Pham, Phuong X.Duong, Cuong Q.
Particle Dampers (PDs) are passive devices employed in vibration and noise control applications. They consist of a cavity filled with particles that, when fixed to a vibrating structure, dissipate vibrational energy through friction and collisions among the particles. These devices have been extensively documented in the literature and find widespread use in reducing vibrations in structural machinery components subjected to significant dynamic loads during operation. However, their application in reducing the vibration of vehicle body panels as well as vehicle interior noise has received, up to now, relatively little attention. Previous work by the authors [9] has proven the effectiveness of particle dampers in mitigating vibrations in vehicle body panels, achieving a notable reduction in structure-borne noise within the vehicle cabin with an additional weight comparable to or even lower than that of bituminous damping treatments traditionally used for this purpose. This effect may be
Sanchez Climent, Francisco VicenteBertolini, Claudio
The modern automotive industry is facing challenges of ever-increasing complexity in the electrified powertrain era. On-board diagnostic (OBD) systems must be thoroughly calibrated and validated through many iterations to function effectively and meet the regulation standards. Their development and design process are more complex when prototype hardware is not available and therefore virtual testing is a prominent solution, including Model-in-the-loop (MIL), Software-in-the-loop (SIL) and Hardware-in-the-loop (HIL) simulations. Virtual prototype testing relying on real-time simulation models is necessary to design and test new era’s OBD systems quickly and in scale. The new fuel cell powertrain involves new and previously unexplored fail modes. To make the system robust, simulations are required to be carried out to identify different fails. Thus, it is imminent to build simulation models which can reliably reproduce failures of components like the compressor, recirculation pump
Pandit, Harshad RajendraDimitrakopoulos, PantelisShenoy, ManishAltenhofen, Christian
This research employs a comprehensive methodology to explore the stability and transition dynamics of hypersonic boundary layers, focusing specifically on the influence of sharp and blunt leading edges. The Stanford University Unstructured (SU2) Computational Fluid Dynamics (CFD) solver is utilised to compute the mean flow over a flat plate, establishing a foundational basis for subsequent stability analysis. The extracted boundary layer profiles undergo validation against existing literature, ensuring accuracy and reliability. The linear stability Solver analysis constitutes a crucial phase wherein the research focuses on the eigenvalue spectra, identifying dominant modes and closely scrutinising the transition process within the hypersonic boundary layers. This investigation into stability characteristics is paramount for designing and optimising hypersonic vehicles, providing valuable insights to enhance their efficiency and security. By comprehending the intricate interplay between
Mehta, Urvi SanjivSivasubramanian, Jayahar
A Gerotor pump is a positive displacement pump consisting of inner and outer rotors, with the axis of inner rotor offset from axis of outer rotor. Both rotors rotate about their respective axes. The volume between the rotors changes dynamically, due to which suction and compression occurs. Due to their high-speed rotations, a Gerotor pump may be subjected to erosion due to cavitation. This paper details about the Computational Fluid Dynamics (CFD) based methodology that has been used to capture cavitation bubbles, which might form during the operation of Gerotor pump and to identify the erosion zone which might be occur due to cavitation bubble getting burst near the surface layers of the gears. A full scale (3D) transient CFD model of a Gerotor pump has been developed using commercial CFD code ANSYS FLUENT. The most challenging part of this CFD flow modeling is to create a dynamic volume mesh that perfectly represents the dynamically changing rotor fluid volume of the Gerotor pump
Vasudevan, Dinesh BabuTuraga, Vijay Kumar
The design of aerospace applications necessities precise predictions of aerodynamic properties, often obtained through resource-intensive numerical simulations. These simulations, though they are accurate, but are unsuitable for iterative design processes due to their computational complexity and time-consuming nature. To address this challenge, machine learning, with its data-driven approach and advanced algorithms, offers a novel and cost-effective solution for predicting airfoil characteristics with exceptional precision and speed. This study explores the application of the Back-Propagation Neural Network (BPNN), a machine learning model, to forecast critical aerodynamic coefficients such as lift and drag for airfoils. The BPNN model is fed with input parameters including the airfoils name, flow Reynolds number, and angle of attack in relation to incoming flows. Training the BPNN model is accomplished using a dataset derived from CFD simulations employing the Spalart–Allmaras
M N, LochanN, RakshithaPrasad, B K SwathiSivasubramanian, Jayahar
Items per page:
1 – 50 of 4396