Browse Topic: Design processes

Items (4,430)
Letter from the Guest Editors
Zhu, Shun-PengZhan, ZhenfeiHuang, Shiyao
Continuous rubber track systems for heavy applications are typically designed using multiple iterations of full-scale physical prototypes. This costly and time-consuming approach limits the possibility of exploring the design space and understanding how the design space of that kind of system is governed. A multibody dynamic simulation has recently been developed, but its complexity (due to the number of model’s inputs) makes it difficult to understand and too expensive to be used with multi-objective optimization algorithms (approximately 3 h on a desktop computer). This article aims to propose a first design space exploration of continuous rubber track systems via multi-objective optimization methods. Using an existing expensive multibody dynamic model as original function, surrogate models (artificial neural networks) have been trained to predict the simulation responses. These artificial neural networks are then used to explore the design space efficiently by using optimization
Faivre, AntoineRancourt, DavidPlante, Jean-Sébastien
A good Noise, Vibration, and Harshness (NVH) environment in a vehicle plays an important role in attracting a large customer base in the automotive market. Hence, NVH has been given significant priority while considering automotive design. NVH performance is monitored using simulations early during the design phase and testing in later prototype stages in the automotive industry. Meeting NVH performance targets possesses a greater risk related to design modifications in addition to the cost and time associated with the development process. Hence, a more enhanced and matured design process involves Design Point Analysis (DPA), which is essentially a decision-making process in which analytical tools derived from basic sciences, mathematics, statistics, and engineering fundamentals are used to develop a product model that better fulfills the predefined requirement. This paper shows the systematic approach of conducting a Design Point Analysis-level NVH study to evaluate the acoustic
Ranade, Amod A.Shirode, Satish V.Miskin, AtulMahamuni, Ketan J.Shinde, RahulChowdhury, AshokGhan, Pravin
Electrification in the automotive industry has been steadily rising in popularity for many years, and with any technology there is always a desire to reduce development cost by efficiently iterating designs using accurate simulation models. In the case of rotating machinery and other devices that produce vibrations, an important physical behavior to simulate is Noise Vibration and Harshness (NVH). Efficient workflow to account for NVH was established at Schaeffler for eMotor design. Quantitative prediction is difficult to achieve and is occasionally intended only for faster iterations and trend prediction. A good validated qualitative simulation model would help achieve early NVH risk assessment based on the specified requirement and provide design direction and feasibility guidance across the design process to mitigate NVH concerns. This paper seeks to provide a general approach to validate the simulation model. The correlation methods used in this paper consist of a combination of
Proben, JoelHuang, FataoPasagada, Keerti VardhanHilty, Drew
Powertrain mounts are vital for isolating vibrations and enhancing vehicle ride comfort and performance, making their dynamic behavior critical for effective design. This study provides a comprehensive analysis of powertrain mount decoupling by integrating virtual simulations, physical testing, and analytical calculations. In our approach, we first derived stiffness data through analytical calculations, which were validated through multi-body dynamics (MBD) simulations that modeled interactions within the powertrain mounts. By adjusting bush stiffness parameters within the MBD framework, we predicted decoupling frequencies and analyzed kinetic energy distribution. The iterated stiffness values from simulations were then confirmed through physical testing, ensuring consistency in decoupling frequencies and energy distribution. This alignment between virtual and experimental data enhances the reliability of our findings and helps identify overlapping frequencies across vehicle systems
Shende, KalyaniShingavi, ShreyasRane, VisheshHingade, Nikhil
This paper presents a fully parallelized Computational Acoustics (CA) module, integrated within the Simerics-MP+ platform, developed for the prediction of noise source power and far-field propagation across a range of Computational Fluid Dynamics (CFD) applications. Utilizing the Ffowcs Williams-Hawkings (FWH) acoustic analogy, the CA module seamlessly integrates with existing CFD workflows, offering minimal computational overhead with less than a 5% increase in runtime. Extensive validation has been conducted against analytical, numerical, and experimental data in various acoustic scenarios, including monopole and dipole noise emissions, flow around slender bodies, circular cylinders and aero-propellers. These validation studies underscore the reliability of the framework in accurately identifying noise sources and assessing the impact of design modifications, significantly reducing the need for expensive physical prototyping in industries such as automotive and aerospace. Building
Taghizadeh, SalarCzwielong, FelixBecker, StefanVarghese, JoelRaj, GowthamDhar, Sujan
The multifaceted, fast-paced evolution in the automotive industry includes noise and vibration (NVH) behavior of products for regulatory requirements and ever-increasing customer preferences and expectations for comfort. There is pressing need for automotive engineers to explore new and advanced technologies to achieve a ‘First Time Right’ product development approach for NVH design and deliver high-quality products in shorter timeframes. Artificial Intelligence (AI) and Machine Learning (ML) are trending transformative technologies reshaping numerous industries. AI enables machines to replicate human cognitive functions, such as reasoning and decision-making, while ML, a branch of AI, employs algorithms that allow systems to learn and improve from data over time. The purpose of the paper is to show an approach of using machine learning techniques to analyze the impact of variations in structural design parameters on vehicle NVH responses. The study begins by executing the Design of
Miskin, Atul R.Parmar, AzanRaj, SoniaHimakuntla, Uma Maheswar
Exterior noise (EN) regulations for earth-moving machines (EMMs) require original equipment manufacturers (OEMs) to develop noise mitigation solutions early in the design process. Predicting the effectiveness of these solutions at this stage, however, is challenging. Excavators differ from other EMMs due to their rotating upper frame, which operates atop a fixed lower frame. Regulations such as ISO 6395 and EC/2000/14 mandate specific operating maneuvers, where noise sources dynamically change their position, directivity, and speed throughout the operating cycle. This complexity makes noise contribution analysis more difficult, as it must account for variations in angular position and operating conditions. While previous studies successfully applied Acoustic Source Quantification (ASQ) and contribution analysis to linearly moving EMMs, the angular motion of an excavator’s cab with respect to fixed target microphones introduces additional data processing challenges. This study addresses
Vesikar, Prasad BalkrishnaChaduvula, PrasannaAquino Arriaga, Adrian AntonioHaynes, TimothyDrabison II, John
High-frequency whine noise in electric vehicles (EVs) is a significant issue that impacts customer perception and alters their overall view of the vehicle. This undesirable acoustic environment arises from the interaction between motor polar resonance and the resonance of the engine mount rubber. To address this challenge, the proposal introduces an innovative approach to predicting and tuning the frequency response by precisely adjusting the shape of rubber flaps, specifically their length and width. The approach includes the cumulation of two solutions: a precise adjustment of rubber flap dimensions and the integration of ML. The ML model is trained on historical data, derived from a mixture of physical testing conducted over the years and CAE simulations, to predict the effects of different flap dimensions on frequency response, providing a data-driven basis for optimization. This predictive capability is further enhanced by a Python program that automates the optimization of flap
Hazra, SandipKhan, Arkadip
Every vehicle has to be certified by the concerned governing authority that it matches certain specified criteria laid out by the government for all vehicles made or imported into that country. Horn is one of the components that is tested for its function and sound level before a vehicle is approved for production and sale. Horn, which is an audible warning device, is used to warn others about the vehicle’s approach or presence or to call attention to some hazard. The vehicle horn must comply with the ECE-R28 regulation [1] in the European market. Digital simulation of the horn is performed to validate the ECE-R28 regulation. In order to perform this, a finite element model of a cut model of a vehicle, which includes the horns and other components, is created. Fluid-structure coupled numerical estimation of the sound pressure level of the horn, with the appropriate boundary conditions, is performed at the desired location as per the ECE-R28 regulation. The simulation results thus
Ramachandran, BalachandarRaveendran, RoshinMondal, Arghya
Squeak and Rattle (S&R) issues present significant challenges in the automotive industry, negatively affecting the perceived quality of vehicles. Early identification of these issues through rigorous testing protocols—such as auditory assessments and dynamic simulations—enables the development of more robust systems while optimizing resource use. Finite Element Method (FEM) simulations are crucial for identifying S&R issues during the design phase, allowing engineers to address potential problems before the creation of physical prototypes. By developing high-fidelity virtual models and accurately simulating flexible connections, these simulations effectively capture rattle effects, enhancing prediction reliability. Traditional snap stiffness calculations typically employ a cantilever-based formulation, which is suitable for simple snap-fit designs but insufficient for more complex geometries that require enhanced stiffness. To address this limitation, the proposed methodology utilizes
Rao, SohanElangovan, PraneshReddy, Hari
Silent motors are an excellent strategy to combat noise pollution. Still, they can pose risks for pedestrians who rely on auditory cues for safety and reduce driver awareness due to the absence of the familiar sounds of combustion engines. Sound design for silent motors not only tackles the above issues but goes beyond safety standards towards a user-centered approach by considering how users perceive and interpret sounds. This paper examines the evolving field of sound design for electric vehicles (EVs), focusing on Acoustic Vehicle Alerting Systems (AVAS). The study analyzes existing AVAS, classifying them into different groups according to their design characteristics, from technical concerns and approaches to aesthetic properties. Based on the proposed classification, an (adaptive) sound design methodology, and concept for AVAS are proposed based on state-of-the-art technologies and tools (APIs), like Wwise Automotive, and integration through a functional prototype within a virtual
Rodrigues Ferraz Esteves, Ana RaquelCampos Magalhães, Eduardo MiguelBernardes de Almeida, Gilberto
Researchers from MIT and the Institute of Science and Technology Austria have developed a computational technique that makes it easier to quickly design a metamaterial cell from smaller building blocks like interconnected beams or thin plates, and then evaluate the resulting metamaterial’s properties.
MEMS is a more complex technology than traditional semiconductors. They are 3D structures with moving parts, making them much more difficult to fabricate. If you’re designing a semiconductor, you may be able to take advantage of an existing process development kit (PDK), which your foundry can provide to you. There is no equivalent approach in MEMS. It’s a “one process, one product” paradigm that requires a high level of customization. That takes time, money, and resources.
Muelaner, Jody EmlynMoran, MatthewPhillips, Paul
Wind noise is an important indicator for evaluating cabin comfort, and it is essential to accurately predict the wind noise inside the vehicle. In the early stage of automotive design, since the geometry and properties of the sealing strip are often unknown, the contribution of the sealing strip to the wind noise is often directly ignored, which makes the wind noise obtained through simulation in the pre-design stage to be lower than the real value. To investigate the effect of each seal on wind noise, an SUV model was used to simulate the cases of not adding body seals, adding window seals, and further adding door seals, respectively. The contribution of each seal to wind noise was obtained and verified by comparing it with the test results. The influence of the cavity formed at the door seal was also addressed. In the simulations, a CFD solver based on the lattice Boltzmann method (LBM) was used to solve the external flow field, and the noise transmitted into the interior of the
Zhang, YingchaoHe, TengshengWang, YuqiNiu, JiqiangZhang, ZheShen, ChunZhang, Chengchun
In recent years, climate change and geopolitical instability have intensified the focus on sustainable power generation. This shift seeks alternatives that balance environmental impact, cost-effectiveness, and practicality. Specifically, in transportation and power generation, electric motors face challenges against internal combustion engines due to the high cost and mass of batteries required for energy storage. This makes electric solutions less favorable for these sectors. Conversely, internal combustion engines, when properly fueled, offer cost-effectiveness and a quasi-environmentally-neutral option. To address these challenges, researchers have explored e-fuels derived from renewable sources as a carbon-neutral supply for internal combustion engines. Among these, hydrogen is particularly promising. In hydrogen-powered internal combustion engines, 3D-CFD (Computational Fluid Dynamics) in-cylinder models are crucial. Once validated, these models can speed up the design process. A
Sfriso, StefanoBerni, FabioBreda, SebastianoFontanesi, StefanoCordisco, IlarioLeite, Caio RamalhoBrequigny, PierreFoucher, Fabrice
This paper proposes a structured safety framework tailored for the concept phase of Level 2 and Level 3 automated vehicles, addressing the unique challenges posed by these advanced systems. The framework integrates key principles from ISO 26262 and ISO 21448 to create a safety approach that spans hardware reliability, functional safety, and system performance. Central to the framework is a broad analysis that combines methodologies from System-Theoretic Process Analysis (STPA) and Hazard Analysis and Risk Assessment (HARA). This dual approach enables the identification of potential risks arising from both hardware failures and the intended functionalities of the system. The framework further details a combined specification and design process that aligns the strengths of each standard, ensuring robust sensor architectures and reliable decision-making processes. A case study on Adaptive Cruise Control with Lane Keeping is presented to demonstrate the practical implementation of the
Sari, Ayse AysuSoleimani, Morteza
A team at the Johns Hopkins Applied Physics Laboratory (APL) is creating an artificial intelligence-driven capability that automates much of the work that goes into designing, setting up, developing and running wargames. The effort holds promise to dramatically amplify the impact and value of wargames and similar exercises for the military and other government agencies.
The automotive subframe, also referred to as a cradle, is a critical chassis structure that supports the engine/electric motor, transmission system, and suspension components. The design of a subframe requires specialized expertise and a thorough evaluation of performance, vehicle integration, mass, and manufacturability. Suspension attachments on the subframe are integral, linking the subframe to the wheels via suspension links, thus demanding high performance standards. The complexity of subframe design constraints presents considerable challenges in developing optimal concepts within compressed timelines. With the automotive industry shifting towards electric vehicles, development cycles have shortened significantly, necessitating the exploration of innovative methods to accelerate the design process. Consequently, AI-driven design tools have gained traction. This study introduces a novel AI model capable of swiftly redesigning subframe concepts based on user-defined raw concepts
Yang, JiongzhiSarkaria, BikramjitKumaraswamy, PrashanthKailkere Srinivas, Praveen
Model-Based Systems Engineering (MBSE) enables requirements, design, analysis, verification, and validation associated with the development of complex systems. Obtaining data for such systems is dependent on multiple stakeholders and has issues related to communication, data loss, accuracy, and traceability which results in time delays. This paper presents the development of a new process for requirement verification by connecting System Architecture Model (SAM) with multi-fidelity, multi-disciplinary analytical models. Stakeholders can explore design alternatives at a conceptual stage, validate performance, refine system models, and take better informed decisions. The use-case of connecting system requirements to engineering analysis is implemented through ANSYS ModelCenter which integrates MBSE tool CAMEO with simulation tools Motor-CAD and Twin Builder. This automated workflow translates requirements to engineering simulations, captures output and performs validations. System
Upase, BalasahebShroff, Roopesh
Automotive audio components must meet high quality expectations with ever-decreasing development costs. Predictive methods for the performance of sound systems in view of the optimal locations of loudspeakers in a car can help to overcome this challenge. Use of simulation methods would enable this process to be brought up front and get integrated in the vehicle design process. The main objective of this work is to develop a virtual auralization model of a vehicle interior with audio system. The application of inverse numerical acoustics [INA] to source detection in a speaker is discussed. The method is based on truncated singular value decomposition and acoustic transfer vectors The arrays of transfer functions between the acoustic pressure and surface normal velocity at response sites are known as acoustic transfer vectors. In addition to traditional nearfield pressure measurements, the approach can also include velocity data on the boundary surface to improve the confidence of the
Baladhandapani, DhanasekarThaduturu, Sai RavikiranDu, Isaac
The speed-dependent steering assistance is a fundamental function in electric power steering (EPS) systems. However, excessive levels of steering assistance can result in system instability, causing steering oscillations that compromise steering safety. Consequently, ensuring steering stability has become a primary focus in EPS development. Currently, the design of stability compensators for speed-dependent steering assistance has primarily focused on achieving system stability, often neglecting the attenuation of the designed assist gain by the compensator. In this paper, a novel method for the design of stability compensators within speed-dependent steering assistance is presented, aimed at ensuring system stability while reducing the attenuation of the designed assist gain by the compensator. First, a dynamic model of the EPS system is established, incorporating system inertia and viscous damping. The frequency response characteristics of the EPS system are obtained through vehicle
Kong, YiWei, ZhengjunDuan, XiaochengShangguan, Wen-Bin
The integrated vehicle crash safety design provides longer pre-crash preparation time and design space for the in-crash occupant protection. However, the occupant’s out-of-position displacement caused by vehicle’s pre-crash emergency braking also poses challenges to the conventional restraint system. Despite the long-term promotion of integrated restraint patterns by the vehicle manufacturers, safety regulations and assessment protocols still basically focus on traditional standard crash scenarios. More integrated crash safety test scenarios and testing methods need to be developed. In this study, a sled test scenario representing a moderate rear-end collision in subsequence of emergency braking was designed and conducted. The bio-fidelity of the BioRID II ATD during the emergency braking phase is preliminarily discussed and validated through comparison with a volunteer test. The final forward out-of-position displacement of the BioRID II ATD falls within the range of volunteer
Fei, JingWang, PeifengQiu, HangLiu, YuShen, JiajieCheng, James ChihZhou, QingTan, Puyuan
This paper presents a highly integrated 4-in-1 power electronics solution for 800V electric vehicle applications, combining on-board charging (OBC), DC boost charging, traction drive, and high-voltage/low-voltage (HV/LV) power conversion in a single housing. Integration is achieved through the use of motor windings for charging and a custom-designed three-port transformer that magnetically couples HV and LV batteries while ensuring galvanic isolation. The system also employs a three-phase open-ended winding machine (OEWM) to support both single-(1P) and three-phase (3P) AC charging. A dual-bank DC/DC architecture allows for seamless integration of a redundant auxiliary power module (APM), enhancing functional safety and autonomy. In AC charging mode, the three-level (3L) T-type inverter operates as a Vienna rectifier for 3P charging and as a totem-pole power factor correction (PFC) circuit for 1P charging, with the motor windings utilized as PFC inductors. In DC boost charging mode
Wang, YichengTaha, WesamAnand, Aniket
The vehicle wake region is of high importance when analyzing the aerodynamic performance of a vehicle. It is characterized by turbulent separated flow and large low-pressure regions that contribute significantly to drag. In some cases, the wake region can oscillate between different modes which can pose an engineering challenge during vehicle development. Vehicles that exhibit bimodal wake behavior need to have their drag values recorded over a sufficient time period to take into account the low frequency shift in drag signal, therefore, simulating such vehicle configurations in CFD could consume substantial CPU hours resulting in an expensive and inefficient vehicle design iterations process. As an alternative approach to running simulations for long periods of time, the impact of adding artificial turbulence to the inlet on wake behavior and its potential impact on reduced runtime for design process is investigated in this study. By adding turbulence to the upstream flow, the wake
DeMeo, MichaelParenti, GuidoMartinez Navarro, AlejandroShock, RichardFougere, NicolasRazi, PooyanOliveira, DaniloLindsey, CraigYu, ChenxingBreglia Sales, Flavio
Over the decades, robotics deployments have been driven by the rapid in-parallel research advances in sensing, actuation, simulation, algorithmic control, communication, and high-performance computing among others. Collectively, their integration within a cyber-physical-systems framework has supercharged the increasingly complex realization of the real-time ‘sense-think-act’ robotics paradigm. Successful functioning of modern-day robots relies on seamless integration of increasingly complex systems (coming together at the component-, subsystem-, system- and system-of-system levels) as well as their systematic treatment throughout the life-cycle (from cradle to grave). As a consequence, ‘dependency management’ between the physical/algorithmic inter-dependencies of the multiple system elements is crucial for enabling synergistic (or managing adversarial) outcomes. Furthermore, the steep learning curve for customizing the technology for platform specific deployment discourages domain
Varpe, Harshal BabsahebColeman, JohnSalvi, AmeyaSmereka, JonathonBrudnak, MarkGorsich, DavidKrovi, Venkat N
Comprehensive requirements generation is a critical stage of the design process. Requirements are used to bound the design space and to guide the selection and evaluation of various solutions. Requirements can be categorized as either functional, defining things that the solution must do (such as produce a certain amount of horsepower), or non-functional, defining desirable qualities of the solution (such as weigh less than a particular value). Functional requirements are relatively easy to define and are often associated with particular components or subsystems within the design. As such, they can be the main focus of academic design instruction and therefore the design projects undertaken by novice designers. However, non-functional requirements (NFRs) capture important characteristics of the design solution and should not be ignored. Because of their nature, they are also difficult to assign to a particular subset of components or subsystem within the system. In this study, a group
Sutton, MeredithAnbuvanan, AadithanCastanier, Matthew P.Turner, CameronKurz, Mary E.
Automotive chassis components are considered as safety critical components and must meet the durability and strength requirements of customer usage. The cases such as the vehicle driving through a pothole or sliding into a curb make the design (mass efficient chassis components) challenging in terms of the physical testing and virtual simulation. Due to the cost and short vehicle development time requirement, it is impractical to conduct physical tests during the early stages of development. Therefore, virtual simulation plays the critical role in the vehicle development process. This paper focuses on virtual co-simulation of vehicle chassis components. Traditional virtual simulation of the chassis components is performed by applying the loads that are recovered from multi-body simulation (MBD) to the Finite Element (FE) models at some of the attachment locations and then apply constraints at other selected attachment locations. In this approach, the chassis components are assessed
Behera, DhirenLi, FanTasci, MineSeo, Young-JinSchulze, MartinKochucheruvil, Binu JoseYanni, TamerBhosale, KiranAluru, Phani
In automotive engineering, seam welds are frequently used to join or connect various parts of structures, frames, cradles, chassis, suspension components, and body. These welds usually form the weaker material link for durability and impact loads, which are measured by lab-controlled durability and crash tests, as well as real-world vehicle longevity. Consequently, designing robust welded components while optimizing for material performance is often prioritized as engineering challenge. The position, dimensions, material, manufacturing variation, and defects all affect the weld quality, stiffness, durability, impact, and crash performance. In this paper, the authors present best practices based on studies over many years, a rapid approach for optimizing welds, especially seam welds, by adopting Design For Six Sigma (DFSS) IDDOV (Identify, Define, Develop, Optimization, and Verification) discrete optimization approach. We will present the case testimony to show the approach throughout
Qin, WenxinLi, FanPohl, Kevin J.Pentapati, Venkat
The significance of the liftgate's role in vehicle low-frequency boom noise is highlighted by its modal coupling with the vehicle's acoustic cavity modes. The liftgate's acoustic sensitivity and susceptibility to vehicle vibration excitation are major contributors to this phenomenon. This paper presents a CAE (Computer-Aided Engineering) methodology for designing vehicle liftgates to reduce boom risk. Empirical test data commonly show a correlation between high levels of liftgate vibration response to vehicle excitations and elevated boom risk in the vehicle cabin. However, exceptions to this trend exist; some vehicles exhibit low boom risk despite high vibration responses, while others show high boom risk despite low vibration responses. These discrepancies indicate that liftgate vibratory response alone is not a definitive measure of boom risk. Nonetheless, evidence shows that establishing a vibration level control guideline during the design stage results in lower boom risk. The
Abbas, AhmadHaider, Syed
The suspension Kinematics & compliance (K&C) characteristic test bench can simulate the excitation of the road to the wheels under various typical working conditions in a quasi-static manner on the bench, enabling the measurement of the K&C characteristics of the suspension system without knowing the specific suspension structure form, parameters, etc., assisting in the entire design process of the vehicle. In this paper, aiming at various geometric source errors existing in the processing and assembly process of the K&C characteristic test bench, an evaluation method based on the homogeneous transformation matrix is proposed to establish the position error of the center of the end loading disk in the series motion chain. Firstly, the mapping relationship between the position error of the end loading disk in the series mechanism kinematic chain and the assembly error is established by using the homogeneous transformation matrix. Then, the change matrix of the coordinate system from the
Sun, HaihuaDuan, YupengWu, JinglaiZhang, Yunqing
Opening a tailgate can cause rain that has settled on its surfaces to run off onto the customer or into the rear loadspace, causing annoyance. Relatively small adjustments to tailgate seals and encapsulation can effectively mitigate these effects. However, these failure modes tend to be discovered relatively late in the design process as they, to date, need a representative physical system to test – including ensuring that any materials used on the surface flow paths elicit the same liquid flow behaviours (i.e. contact angles and velocity) as would be seen on the production vehicle surfaces. In this work we describe the development and validation of an early-stage simulation approach using a Smoothed Particle Hydrodynamics code (PreonLab). This includes its calibration against fundamental experiments to provide models for the flow of water over automotive surfaces and their subsequent application to a tailgate system simulation which includes fully detailed surrounding vehicle geometry
Gaylard, Adrian PhilipWeatherhead, Duncan
Designing engine components poses significant challenges due to the long simulation times required to model complex thermal and mechanical loads, such as high-pressure forces, vibration, and fatigue. Accurate simulations are critical for ensuring component reliability and durability, but they are computationally intensive, leading to prolonged development timelines. In the fast-paced automotive industry, where meeting tight deadlines is essential, lengthy simulation processes create bottlenecks that hinder achieving optimal design outcomes on time. To address this, we utilize a Modified Extensible Lattice Sequence (MELS) approach combined with Design of Experiments (DOE). MELS generates low-discrepancy, space-filling sequences that ensure uniform coverage across the design space, minimizing clusters and gaps in experimental designs. This tool streamlines the simulation process, enabling engineers to explore broader design parameters and optimize components efficiently. By forecasting
Dhangar, VinaykumarGoswami, Somshree
The engineering design process employs an iterative approach in which proposed solutions are conceived, evaluated and refined until they satisfy a priori requirements - specifications. This iterative cycle generally uses computer aided designs (CAD), engineering analysis (CAE), numerical simulations per operating scenarios, and laboratory or field prototype testing. The availability of product data can be applied to assess the vehicle requirements – specifications to facilitate the next generation design. However, the calibration and use of a digital twin facilitates exploration of tradeoffs between engineering design, product manufacturing, and business demands, plus a desire to shorten the overall time. For instance, digital twin technology enables the swift evaluation of vehicle performance in various configurations and operating conditions. The question arises of how to best integrate digital twin technology into the design process. This paper will review the engineering design
Manvi, PranavSuber II, DarrylGriffith, KaitlynTurner, CameronCastanier, Matthew P.Wagner, John
Utilization of fiber-reinforced composite laminates to their full potential requires consideration of angle-ply laminates in structural design. This category of laminates, in comparison with orthotropic laminates, imposes an additional degree of challenge, due to a lack of material principal axes, in determination of elastic laminate effective properties if the same has to be done experimentally. Consequentially, there is a strong inclination to resort to the usage of “CLPT” (Classical Laminated Plate Theory) for theoretically estimating the linear elastic mechanical properties including the cross-correlation coefficients coupling normal and shear effects. As an angle-ply laminate is architecturally comprised of layers of biased orthotropic laminas (based on unidirectional or woven bidirectional fibers), an essential prerequisite for the application of CLPT is an a-priori knowledge of elastic mechanical properties of a constituent lamina. It is natural to expect that the properties of
Tanaya, SushreeDeb, Anindya
With the increasing prevalence of electric vehicles (EVs), decreasing vehicle drag is of upmost importance, as range is a primary consideration for customers and has a direct bearing on the cost of the vehicle. While the relationship between drag and range is well understood, there exists a discrepancy between the label range and the real-world range experienced by customers. One of the factors influencing the difference is the ambient wind condition that modifies the resultant air speed and yaw angle, which is typically minimized during SAE coast-down testing. The following study implements a singular wind-averaged drag (WAD) coefficient which is derived from a 3-point yaw curve to show the impact of yaw as compared to the zero-yaw condition. This leads to an interesting dilemma for the vehicle aerodynamicist: whether to optimize the vehicle's exterior shape for low wind (zero yaw) conditions or for real-world conditions where the ambient wind generally produces a few degrees of yaw
Kaminski, MeghanD'Hooge, AndrewBorton, Zackery
In the automotive industry, the durability and thermal analysis of components significantly impact vehicle component robustness and customer satisfaction. Traditional computer-aided engineering (CAE) methods, while effective, often involve extensive design iterations and troubleshooting, leading to prolonged development times and increased costs. The integration of artificial intelligence (AI) and machine learning (ML) into the CAE process presents a transformative solution to these challenges. By leveraging AI and ML, the durability simulation time of automobile components is significantly enhanced. Altair’s Physics AI tool utilizes historical CAE data to train ML models, enabling accurate predictions of model performance in terms of durability and stiffness. This reduces the necessity for multiple simulations, thereby decreasing CAE model design and solution completion times by 30%. By predicting potential issues early in the design phase, AI and ML allow engineers to make informed
Patil, AmolSonavane, Pravinkumar
Any vehicle traveling on roads interacts with various profiles of surface roughness, which can be best characterized by randomness. The resulting random vibrations not only expose passengers to unpleasant physical shakes and noises, but also impart fatigue damage to nearly everything installed on the vehicle. In today’s robust design process, it is highly desirable to predict fatigue damage in the early design phase, in order to prevent any durability problems in the future, especially for electric vehicles. Historically, the conventional approach to tackling the problem of fatigue damage has involved cycle-counting stress or strain responses, obtained through step-by-step numeric solutions in the time-domain. However, the most effective method of predicting fatigue in random vibration lies in the frequency domain. Such a spectrum-based approach is greatly advantageous because it does not have to deal with expensive and tedious simulations involving millions of time instants of
Yang, ZaneFouret, Charles
Background. In 2022, vulnerable road user (VRU) deaths in the United States increased to their highest level in more than 40 years. At the same time, increasing vehicle size and taller front ends may contribute to larger forward blind zones, but little is known about the role that visual occlusion may play in this trend. Goal. Researchers measured the blind zones of six top-selling light-duty vehicle models (one pickup truck, three SUVs, and two passenger cars) across multiple redesign cycles (1997–2023) to determine whether the blind zones were getting larger. Method. To quantify the blind zones, the markerless method developed by the Insurance Institute for Highway Safety was used to calculate the occluded and visible areas at ground level in the forward 180° arc around the driver at ranges of 10 m and 20 m. Results. In the 10-m forward radius nearest the vehicle, outward visibility declined in all six vehicle models measured across time. The SUV models showed up to a 58% reduction
Epstein, Alexander K.Brodeur, AlyssaDrake, JuwonEnglin, EricFisher, Donald L.Zoepf, StephenMueller, Becky C.Bragg, Haden
This study introduces a probabilistic analysis approach to evaluate the gear tooth strength for the hypocycloid engines, which are particularly significant in internal combustion (IC) engine applications due to their unique design and critical requirements for both efficiency and durability. The research utilizes the stress–strength interference (SSI) theory within a “design for reliability” framework to develop a robust methodology for designing the internal gear mechanism required for the hypocycloid gear mechanism (HGM) engine, in accordance with American Gear Manufacturers Association (AGMA) standard gear rating practices. This approach incorporates probabilistic factors to address variations in HGM component parameters, gear material properties, and engine operational conditions. To validate the design and ensure accuracy, a finite element method (FEM)-based verification is employed, to identify potential failure points and enhance the overall reliability of the HGM engine. The
ElBahloul, Mostafa A.Aziz, ELsayed S.Chassapis, Constantin
The Object of research in the article is the ventilation and cooling system of bulb hydrogenerators. The Subject of study in the article is the design and efficiency of using the cooling system of various structural types for bulb hydro units. The Purpose of the work is to carry out a three-dimensional study of two cooling systems (axial and radial) of the bulb hydro unit of the Kanivskaya HPP with a rated 22 MW. Research Tasks include analysis of the main design solutions for effective cooling of bulb-type hydrogenerators, in particular, the use of radial, axial, and mixed cooling systems; formulation of the main assumptions for the three-dimensional ventilation and thermal calculation of the bulb hydrogenerator; carrying out a three-dimensional calculation for a hydrogenerator with axial ventilation; determining airflow speeds in the channels and temperatures of active parts of the hydrogenerator under the conditions of using discharge fans and without them; carrying out a three
Tretiak, OleksiiArefieva, MariiaMakarov, PavloSerhiienko, SerhiiZhukov, AntonShulga, IrynaPenkovska, NataliiaKravchenko, StanislavKovryga, Anton
The growing ubiquity of autonomous vehicles (AVs) has introduced a new attack surface for malicious actors: the embedded systems that govern a vehicle's critical operations. Security breaches in these systems could have catastrophic consequences, potentially leading to loss of control, manipulation of sensor data, or even physical harm. To mitigate these risks, robust cybersecurity measures are paramount. This research delves into a specific threat – side-channel attacks – where attackers exploit data leakage through unintentional physical emanations, like power consumption or electromagnetic waves, to steal cryptographic keys or sensitive information. While various software and hardware countermeasures have been proposed, this study focuses on the implementation of masking techniques within the realm of embedded security. Masking techniques aim to obfuscate sensitive data during cryptographic operations, making it significantly harder for attackers to exploit side-channel
Deepan Kumar, SadhasivamR, Vishnu Ramesh KumarM, BoopathiManojkumar, RR, GobinathM, Vignesh
The popular methods to generate PWM (Pulse width modulation) are triangle comparison method and space vector method. The work evaluates the performance of continuous and discontinuous space vector pulse width modulation techniques based on the switching losses and harmonic distortion. The flexibility in the placement of null vectors and active vectors gives generality in SVPWM (Space Vector PWM) techniques. Continuous SVPWM employs the conventional switching sequences which are equally divided the null vectors and active vectors. Discontinuous PWM are derived based on the different combinations of null and active switching vectors. The discontinuous PWM techniques clamps each phase for either 300 or 600 in each half cycle. Majority of the discontinuous SVPWM uses any one of the null vectors and effectively to reduce the average switching loss in a cycle and the total harmonic distortion.The study brings out the optimum SVPWM sequences for the control of PMSM(PERMENANT MAGNET
Nair, Meenu DivakaranDurai, Saranya
The main design objectives to be achieved in the design of HVAC cowl box includes minimizing the pressure drop and eliminating the chances of water ingress in HVAC. There are CFD tools available to study the cowl box pressure drop. However, methods available to study rain water ingress in HVAC are expensive in both mesh preparation and computational time. Using SPH (Smooth Particle based Hydrodynamics) based Preonlab tool, an attempt has been made in this work to study the design improvements of HVAC cowl box to eliminate the chances of flooding during raining. ANSYS FLUENT tool used to study the pressure drop of each design. The simulation aims to investigate the pressure drop in the cowl box and the amount of water intrusion into the HVAC module. L9 orthogonal array (factorial study) conducted to study the factors influencing the cowl box pressure drop. Inlet area, drain area and outlet area are the factors considered. Designs with segregated airflow path (adding inner duct) in the
Baskar, SubramaniyanA, BoopalshanmugamRaju, Kumar
This work deals with computational investigations of the component performances of Advanced Hexacopters under various maneuverings of the focused mission profiles. The Advanced Hexacopter is a kind of multirotor vehicle that contains more propellers and flexible arms, which makes this multirotor very maneuverable and aerodynamically efficient. This Hexacopter was designed specifically to execute multi-perspective applications along with enhanced payload-carrying capability. This Advanced Hexacopter contains a frame composed of modified arms equipped with coaxial rotors, which servo motors control. By providing specific and simple inputs to the microcontroller, the Hexacopter can autonomously undergo forward and backward maneuverings. The primary objective of this study is to analyze and compare different propeller configurational clearance sets that improve the maneuvering capability of this unmanned aerial vehicle (UAV), specifically emphasizing forward/backward and side maneuvering
Raja, VijayanandhNarayanan, SidharthElangovan, LogeshArumugam, LokeshSourirajan, LaxanaRaji, Arul PrakashKulandaiyappan, Naveen KumarGnanasekaran, Raj KumarMadasamy, Senthil Kumar
Items per page:
1 – 50 of 4430