Browse Topic: Design processes

Items (4,410)
Automotive chassis components are considered as safety critical components and must meet the durability and strength requirements of customer usage. The cases such as the vehicle driving through a pothole or sliding into a curb make the design (mass efficient chassis components) challenging in terms of the physical testing and virtual simulation. Due to the cost and short vehicle development time requirement, it is impractical to conduct physical tests during the early stages of development. Therefore, virtual simulation plays the critical role in the vehicle development process. This paper focuses on virtual co-simulation of vehicle chassis components. Traditional virtual simulation of the chassis components is performed by applying the loads that are recovered from multi-body simulation (MBD) to the Finite Element (FE) models at some of the attachment locations and then apply constraints at other selected attachment locations. In this approach, the chassis components are assessed
Behera, DhirenLi, FanTasci, MineSeo, Young-JinSchulze, MartinKochucheruvil, Binu JoseYanni, TamerBhosale, KiranAluru, Phani
The integrated vehicle crash safety design provides longer pre-crash preparation time and design space for the in-crash occupant protection. However, the occupant’s out-of-position displacement caused by vehicle’s pre-crash emergency braking also poses challenges to the conventional restraint system. Despite the long-term promotion of integrated restraint patterns by the vehicle manufacturers, safety regulations and assessment protocols still basically focus on traditional standard crash scenarios. More integrated crash safety test scenarios and testing methods need to be developed. In this study, a sled test scenario representing a moderate rear-end collision in subsequence of emergency braking was designed and conducted. The bio-fidelity of the BioRID II ATD during the emergency braking phase is preliminarily discussed and validated through comparison with a volunteer test. The final forward out-of-position displacement of the BioRID II ATD falls within the range of volunteer
Fei, JingWang, PeifengQiu, HangLiu, YuShen, JiajieCheng, James ChihZhou, QingTan, Puyuan
The significance of the liftgate's role in vehicle low-frequency boom noise is highlighted by its modal coupling with the vehicle's acoustic cavity modes. The liftgate's acoustic sensitivity and susceptibility to vehicle vibration excitation are major contributors to this phenomenon. This paper presents a CAE (Computer-Aided Engineering) methodology for designing vehicle liftgates to reduce boom risk. Empirical test data commonly show a correlation between high levels of liftgate vibration response to vehicle excitations and elevated boom risk in the vehicle cabin. However, exceptions to this trend exist; some vehicles exhibit low boom risk despite high vibration responses, while others show high boom risk despite low vibration responses. These discrepancies indicate that liftgate vibratory response alone is not a definitive measure of boom risk. Nonetheless, evidence shows that establishing a vibration level control guideline during the design stage results in lower boom risk. The
Abbas, AhmadHaider, Syed
Comprehensive requirements generation is a critical stage of the design process. Requirements are used to bound the design space and to guide the selection and evaluation of various solutions. Requirements can be categorized as either functional, defining things that the solution must do (such as produce a certain amount of horsepower), or non-functional, defining desirable qualities of the solution (such as weigh less than a particular value). Functional requirements are relatively easy to define and are often associated with particular components or subsystems within the design. As such, they can be the main focus of academic design instruction and therefore the design projects undertaken by novice designers. However, non-functional requirements (NFRs) capture important characteristics of the design solution and should not be ignored. Because of their nature, they are also difficult to assign to a particular subset of components or subsystem within the system. In this study, a group
Sutton, MeredithAnbuvanan, AadithanCastanier, Matthew P.Turner, CameronKurz, Mary E.
Model-Based Systems Engineering (MBSE) enables requirements, design, analysis, verification, and validation associated with the development of complex systems. Obtaining data for such systems is dependent on multiple stakeholders and has issues related to communication, data loss, accuracy, and traceability which results in time delays. This paper presents the development of a new process for requirement verification by connecting System Architecture Model (SAM) with multi-fidelity, multi-disciplinary analytical models. Stakeholders can explore design alternatives at a conceptual stage, validate performance, refine system models, and take better informed decisions. The use-case of connecting system requirements to engineering analysis is implemented through ANSYS ModelCenter which integrates MBSE tool CAMEO with simulation tools Motor-CAD and Twin Builder. This automated workflow translates requirements to engineering simulations, captures output and performs validations. System
Upase, BalasahebShroff, Roopesh
This paper presents a highly integrated 4-in-1 power electronics solution for 800V electric vehicle applications, combining on-board charging (OBC), DC boost charging, traction drive, and high-voltage/low-voltage (HV/LV) power conversion in a single housing. Integration is achieved through the use of motor windings for charging and a custom-designed three-port transformer that magnetically couples HV and LV batteries while ensuring galvanic isolation. The system also employs a three-phase open-ended winding machine (OEWM) to support both single-(1P) and three-phase (3P) AC charging. A dual-bank DC/DC architecture allows for seamless integration of a redundant auxiliary power module (APM), enhancing functional safety and autonomy. In AC charging mode, the three-level (3L) T-type inverter operates as a Vienna rectifier for 3P charging and as a totem-pole power factor correction (PFC) circuit for 1P charging, with the motor windings utilized as PFC inductors. In DC boost charging mode
Wang, YichengTaha, WesamAnand, Aniket
The automotive subframe, also referred to as a cradle, is a critical chassis structure that supports the engine/electric motor, transmission system, and suspension components. The design of a subframe requires specialized expertise and a thorough evaluation of performance, vehicle integration, mass, and manufacturability. Suspension attachments on the subframe are integral, linking the subframe to the wheels via suspension links, thus demanding high performance standards. The complexity of subframe design constraints presents considerable challenges in developing optimal concepts within compressed timelines. With the automotive industry shifting towards electric vehicles, development cycles have shortened significantly, necessitating the exploration of innovative methods to accelerate the design process. Consequently, AI-driven design tools have gained traction. This study introduces a novel AI model capable of swiftly redesigning subframe concepts based on user-defined raw concepts
Yang, JiongzhiSarkaria, BikramjitKumaraswamy, PrashanthKailkere Srinivas, Praveen
Automotive audio components must meet high quality expectations with ever-decreasing development costs. Predictive methods for the performance of sound systems in view of the optimal locations of loudspeakers in a car can help to overcome this challenge. Use of simulation methods would enable this process to be brought up front and get integrated in the vehicle design process. The main objective of this work is to develop a virtual auralization model of a vehicle interior with audio system. The application of inverse numerical acoustics [INA] to source detection in a speaker is discussed. The method is based on truncated singular value decomposition and acoustic transfer vectors The arrays of transfer functions between the acoustic pressure and surface normal velocity at response sites are known as acoustic transfer vectors. In addition to traditional nearfield pressure measurements, the approach can also include velocity data on the boundary surface to improve the confidence of the
Baladhandapani, DhanasekarThaduturu, Sai RavikiranDu, Isaac
The suspension Kinematics & compliance (K&C) characteristic test bench can simulate the excitation of the road to the wheels under various typical working conditions in a quasi-static manner on the bench, enabling the measurement of the K&C characteristics of the suspension system without knowing the specific suspension structure form, parameters, etc., assisting in the entire design process of the vehicle. In this paper, aiming at various geometric source errors existing in the processing and assembly process of the K&C characteristic test bench, an evaluation method based on the homogeneous transformation matrix is proposed to establish the position error of the center of the end loading disk in the series motion chain. Firstly, the mapping relationship between the position error of the end loading disk in the series mechanism kinematic chain and the assembly error is established by using the homogeneous transformation matrix. Then, the change matrix of the coordinate system from the
Sun, HaihuaDuan, YupengWu, JinglaiZhang, Yunqing
In automotive engineering, seam welds are frequently used to join or connect various parts of structures, frames, cradles, chassis, suspension components, and body. These welds usually form the weaker material link for durability and impact loads, which are measured by lab-controlled durability and crash tests, as well as real-world vehicle longevity. Consequently, designing robust welded components while optimizing for material performance is often prioritized as engineering challenge. The position, dimensions, material, manufacturing variation, and defects all affect the weld quality, stiffness, durability, impact, and crash performance. In this paper, the authors present best practices based on studies over many years, a rapid approach for optimizing welds, especially seam welds, by adopting Design For Six Sigma (DFSS) IDDOV (Identify, Define, Develop, Optimization, and Verification) discrete optimization approach. We will present the case testimony to show the approach throughout
Qin, Wenxin (Daniel)
Utilization of fiber-reinforced composite laminates to their full potential requires consideration of angle-ply laminates in structural design. This category of laminates, in comparison with orthotropic laminates, imposes an additional degree of challenge, due to a lack of material principal axes, in determination of elastic laminate effective properties if the same has to be done experimentally. Consequentially, there is a strong inclination to resort to the usage of “CLPT” (Classical Laminated Plate Theory) for theoretically estimating the linear elastic mechanical properties including the cross-correlation coefficients coupling normal and shear effects. As an angle-ply laminate is architecturally comprised of layers of biased orthotropic laminas (based on unidirectional or woven bidirectional fibers), an essential prerequisite for the application of CLPT is an a-priori knowledge of elastic mechanical properties of a constituent lamina. It is natural to expect that the properties of
Tanaya, SushreeDeb, Anindya
Over the decades, robotics deployments have been driven by the rapid in-parallel research advances in sensing, actuation, simulation, algorithmic control, communication, and high-performance computing among others. Collectively, their integration within a cyber-physical-systems framework has supercharged the increasingly complex realization of the real-time ‘sense-think-act’ robotics paradigm. Successful functioning of modern-day robots relies on seamless integration of increasingly complex systems (coming together at the component-, subsystem-, system- and system-of-system levels) as well as their systematic treatment throughout the life-cycle (from cradle to grave). As a consequence, ‘dependency management’ between the physical/algorithmic inter-dependencies of the multiple system elements is crucial for enabling synergistic (or managing adversarial) outcomes. Furthermore, the steep learning curve for customizing the technology for platform specific deployment discourages domain
Varpe, Harshal BabsahebColeman, JohnSalvi, AmeyaSmereka, JonathonBrudnak, MarkGorsich, DavidKrovi, Venkat N
Any vehicle traveling on roads interacts with various profiles of surface roughness, which can be best characterized by randomness. The resulting random vibrations not only expose passengers to unpleasant physical shakes and noises, but also impart fatigue damage to nearly everything installed on the vehicle. In today’s robust design process, it is highly desirable to predict fatigue damage in the early design phase, in order to prevent any durability problems in the future, especially for electric vehicles. Historically, the conventional approach to tackling the problem of fatigue damage has involved cycle-counting stress or strain responses, obtained through step-by-step numeric solutions in the time-domain. However, the most effective method of predicting fatigue in random vibration lies in the frequency domain. Such a spectrum-based approach is greatly advantageous because it does not have to deal with expensive and tedious simulations involving millions of time instants of
Yang, ZaneFouret, Charles
The engineering design process employs an iterative approach in which proposed solutions are conceived, evaluated and refined until they satisfy a priori requirements - specifications. This iterative cycle generally uses computer aided designs (CAD), engineering analysis (CAE), numerical simulations per operating scenarios, and laboratory or field prototype testing. The availability of product data can be applied to assess the vehicle requirements – specifications to facilitate the next generation design. However, the calibration and use of a digital twin facilitates exploration of tradeoffs between engineering design, product manufacturing, and business demands, plus a desire to shorten the overall time. For instance, digital twin technology enables the swift evaluation of vehicle performance in various configurations and operating conditions. The question arises of how to best integrate digital twin technology into the design process. This paper will review the engineering design
Manvi, PranavSuber II, DarrylGriffith, KaitlynTurner, CameronCastanier, Matthew P.Wagner, John
Opening a tailgate can cause rain that has settled on its surfaces to run off onto the customer or into the rear loadspace, causing annoyance. Relatively small adjustments to tailgate seals and encapsulation can effectively mitigate these effects. However, these failure modes tend to be discovered relatively late in the design process as they, to date, need a representative physical system to test – including ensuring that any materials used on the surface flow paths elicit the same liquid flow behaviours (i.e. contact angles and velocity) as would be seen on the production vehicle surfaces. In this work we describe the development and validation of an early-stage simulation approach using a Smoothed Particle Hydrodynamics code (PreonLab). This includes its calibration against fundamental experiments to provide models for the flow of water over automotive surfaces and their subsequent application to a tailgate system simulation which includes fully detailed surrounding vehicle geometry
Gaylard, Adrian PhilipWeatherhead, Duncan
The speed-dependent steering assistance is a fundamental function in electric power steering (EPS) systems. However, excessive levels of steering assistance can result in system instability, causing steering oscillations that compromise steering safety. Consequently, ensuring steering stability has become a primary focus in EPS development. Currently, the design of stability compensators for speed-dependent steering assistance has primarily focused on achieving system stability, often neglecting the attenuation of the designed assist gain by the compensator. In this paper, a novel method for the design of stability compensators within speed-dependent steering assistance is presented, aimed at ensuring system stability while reducing the attenuation of the designed assist gain by the compensator. First, a dynamic model of the EPS system is established, incorporating system inertia and viscous damping. The frequency response characteristics of the EPS system are obtained through vehicle
Kong, YiWei, ZhengjunDuan, XiaochengShangguan, Wen-Bin
The vehicle wake region is of high importance when analyzing the aerodynamic performance of a vehicle. It is characterized by turbulent separated flow and large low-pressure regions that contribute significantly to drag. In some cases, the wake region can oscillate between different modes which can pose an engineering challenge during vehicle development. Vehicles that exhibit bimodal wake behavior need to have their drag values recorded over a sufficient time period to take into account the low frequency shift in drag signal, therefore, simulating such vehicle configurations in CFD could consume substantial CPU hours resulting in an expensive and inefficient vehicle design iterations process. As an alternative approach to running simulations for long periods of time, the impact of adding artificial turbulence to the inlet on wake behavior and its potential impact on reduced runtime for design process is investigated in this study. By adding turbulence to the upstream flow, the wake
DeMeo, MichaelParenti, GuidoMartinez Navarro, AlejandroShock, RichardFougere, NicolasRazi, PooyanOliveira, DaniloLindsey, CraigYu, ChenxingBreglia Sales, Flavio
With the increasing prevalence of electric vehicles (EVs), decreasing vehicle drag is of upmost importance, as range is a primary consideration for customers and has a direct bearing on the cost of the vehicle. While the relationship between drag and range is well understood, there exists a discrepancy between the label range and the real-world range experienced by customers. One of the factors influencing the difference is the ambient wind condition that modifies the resultant air speed and yaw angle, which is typically minimized during SAE coast-down testing. The following study implements a singular wind-averaged drag (WAD) coefficient which is derived from a 3-point yaw curve to show the impact of yaw as compared to the zero-yaw condition. This leads to an interesting dilemma for the vehicle aerodynamicist: whether to optimize the vehicle's exterior shape for low wind (zero yaw) conditions or for real-world conditions where the ambient wind generally produces a few degrees of yaw
Kaminski, MeghanD'Hooge, AndrewBorton, Zackery
In the automotive industry, the durability and thermal analysis of components significantly impact vehicle component robustness and customer satisfaction. Traditional computer-aided engineering (CAE) methods, while effective, often involve extensive design iterations and troubleshooting, leading to prolonged development times and increased costs. The integration of artificial intelligence (AI) and machine learning (ML) into the CAE process presents a transformative solution to these challenges. By leveraging AI and ML, the durability simulation time of automobile components is significantly enhanced. Altair’s Physics AI tool utilizes historical CAE data to train ML models, enabling accurate predictions of model performance in terms of durability and stiffness. This reduces the necessity for multiple simulations, thereby decreasing CAE model design and solution completion times by 30%. By predicting potential issues early in the design phase, AI and ML allow engineers to make informed
Patil, AmolSonavane, Pravinkumar
Designing engine components poses significant challenges due to the long simulation times required to model complex thermal and mechanical loads, such as high-pressure forces, vibration, and fatigue. Accurate simulations are critical for ensuring component reliability and durability, but they are computationally intensive, leading to prolonged development timelines. In the fast-paced automotive industry, where meeting tight deadlines is essential, lengthy simulation processes create bottlenecks that hinder achieving optimal design outcomes on time. To address this, we utilize a Modified Extensible Lattice Sequence (MELS) approach combined with Design of Experiments (DOE). MELS generates low-discrepancy, space-filling sequences that ensure uniform coverage across the design space, minimizing clusters and gaps in experimental designs. This tool streamlines the simulation process, enabling engineers to explore broader design parameters and optimize components efficiently. By forecasting
Dhangar, VinaykumarGoswami, Somshree
Background. In 2022, vulnerable road user (VRU) deaths in the United States increased to their highest level in more than 40 years. At the same time, increasing vehicle size and taller front ends may contribute to larger forward blind zones, but little is known about the role that visual occlusion may play in this trend. Goal. Researchers measured the blind zones of six top-selling light-duty vehicle models (one pickup truck, three SUVs, and two passenger cars) across multiple redesign cycles (1997–2023) to determine whether the blind zones were getting larger. Method. To quantify the blind zones, the markerless method developed by the Insurance Institute for Highway Safety was used to calculate the occluded and visible areas at ground level in the forward 180° arc around the driver at ranges of 10 m and 20 m. Results. In the 10-m forward radius nearest the vehicle, outward visibility declined in all six vehicle models measured across time. The SUV models showed up to a 58% reduction
Epstein, Alexander K.Brodeur, AlyssaDrake, JuwonEnglin, EricFisher, Donald L.Zoepf, StephenMueller, Becky C.Bragg, Haden
This study introduces a probabilistic analysis approach to evaluate the gear tooth strength for the hypocycloid engines, which are particularly significant in internal combustion (IC) engine applications due to their unique design and critical requirements for both efficiency and durability. The research utilizes the stress–strength interference (SSI) theory within a “design for reliability” framework to develop a robust methodology for designing the internal gear mechanism required for the hypocycloid gear mechanism (HGM) engine, in accordance with American Gear Manufacturers Association (AGMA) standard gear rating practices. This approach incorporates probabilistic factors to address variations in HGM component parameters, gear material properties, and engine operational conditions. To validate the design and ensure accuracy, a finite element method (FEM)-based verification is employed, to identify potential failure points and enhance the overall reliability of the HGM engine. The
ElBahloul, Mostafa A.Aziz, ELsayed S.Chassapis, Constantin
The Object of research in the article is the ventilation and cooling system of bulb hydrogenerators. The Subject of study in the article is the design and efficiency of using the cooling system of various structural types for bulb hydro units. The Purpose of the work is to carry out a three-dimensional study of two cooling systems (axial and radial) of the bulb hydro unit of the Kanivskaya HPP with a rated 22 MW. Research Tasks include analysis of the main design solutions for effective cooling of bulb-type hydrogenerators, in particular, the use of radial, axial, and mixed cooling systems; formulation of the main assumptions for the three-dimensional ventilation and thermal calculation of the bulb hydrogenerator; carrying out a three-dimensional calculation for a hydrogenerator with axial ventilation; determining airflow speeds in the channels and temperatures of active parts of the hydrogenerator under the conditions of using discharge fans and without them; carrying out a three
Tretiak, OleksiiArefieva, MariiaMakarov, PavloSerhiienko, SerhiiZhukov, AntonShulga, IrynaPenkovska, NataliiaKravchenko, StanislavKovryga, Anton
This work deals with computational investigations of the component performances of Advanced Hexacopters under various maneuverings of the focused mission profiles. The Advanced Hexacopter is a kind of multirotor vehicle that contains more propellers and flexible arms, which makes this multirotor very maneuverable and aerodynamically efficient. This Hexacopter was designed specifically to execute multi-perspective applications along with enhanced payload-carrying capability. This Advanced Hexacopter contains a frame composed of modified arms equipped with coaxial rotors, which servo motors control. By providing specific and simple inputs to the microcontroller, the Hexacopter can autonomously undergo forward and backward maneuverings. The primary objective of this study is to analyze and compare different propeller configurational clearance sets that improve the maneuvering capability of this unmanned aerial vehicle (UAV), specifically emphasizing forward/backward and side maneuvering
Raja, VijayanandhNarayanan, SidharthElangovan, LogeshArumugam, LokeshSourirajan, LaxanaRaji, Arul PrakashKulandaiyappan, Naveen KumarGnanasekaran, Raj KumarMadasamy, Senthil Kumar
This paper presents a complete approach to the optimized design and analysis of a trach-focused quad bike suitable for the Indian market. The process of design integrates several analytical factors, including driver ergonomics, aesthetics, and strategic component placement, to establish optimum vehicle dimensions. The primary objective is to address the unique demands of the Indian terrain and user preferences through ensure comfort, functionality, and visual appeal. The selection process for tires and suspension geometry is precisely conducted with the advanced OptimumKinematics software. This optimization provides greater performance and stability that the vehicle can accurately manage a variety of road conditions. The space frame chassis of a vehicle’s core structure features, engineered to minimalize tubing and facilitate ease of fabrication, contributing to both structural integrity and weight reduction. A robust 600cc four-cylinder engine is selected that emphasizing an optimal
Thanikonda, Praveen KumarShaik, AmjadTappa, RajuRatlavath, RamuNavar, AdarshChalla, Ajith Kumar
Automotive powertrains are being refined to give good comfort to the occupants. With the refinement of the internal combustion engine, the NVH is improved, and other vehicle noises are surfacing in the vehicle cabin. One such noise is the synchronizer ring rattle noise from the gearbox. The synchronizer rings are assembled freely between the gear and the hub in the gearbox. The manufacturing variations in the gearbox shafts, bearing, and housing bore cause misalignment to the synchronizer ring assembly. This excites the synchronizer rings to rattle. The rattle noise increases when the synchronizer ring is positioned between two different shafts. This rattling reduces the life of the synchronizer. And the rattling noise causes discomfort to the occupants. This research work discusses the different dampening strategies for the synchronizer ring rattle. Higher rattle reduction can be achieved with the wave spring between the input and output shaft. However, the wave spring changes the
K, Barathi RajaSenthil Raja, TKumar, AneeshR, ManikandanOstwal, Amit
This paper presents the development of a cost-effective assistive headgear designed to address the navigation challenges faced by millions of visually impaired individuals in India. Existing solutions are often prohibitively expensive, leaving a significant portion of this population underserved. To address this gap, we propose a novel human-machine interface that utilizes a synergistic combination of computer vision, stereo imaging, and haptic feedback technologies. The focus of this project lies in the creation of a practical and affordable headgear that empowers visually impaired users with real time obstacle detection and navigation capabilities. The solution leverages computer vision for environmental analysis and integrates haptic feedback for intuitive user guidance. This paper details the design intricacies of the headgear, along with the implementation methodologies employed. We present comprehensive testing results and discuss the project's potential to significantly enhance
Manu, RohithS Nair, SreeramBiju, MariyaKM, DevikaSadique, Anwar
The popular methods to generate PWM (Pulse width modulation) are triangle comparison method and space vector method. The work evaluates the performance of continuous and discontinuous space vector pulse width modulation techniques based on the switching losses and harmonic distortion. The flexibility in the placement of null vectors and active vectors gives generality in SVPWM (Space Vector PWM) techniques. Continuous SVPWM employs the conventional switching sequences which are equally divided the null vectors and active vectors. Discontinuous PWM are derived based on the different combinations of null and active switching vectors. The discontinuous PWM techniques clamps each phase for either 300 or 600 in each half cycle. Majority of the discontinuous SVPWM uses any one of the null vectors and effectively to reduce the average switching loss in a cycle and the total harmonic distortion.The study brings out the optimum SVPWM sequences for the control of PMSM(PERMENANT MAGNET
Nair, Meenu DivakaranDurai, Saranya
In electric vehicles development, manufacturing variations pose big challenge in designing various mechanical components as these variations directly impact various customer perceivable performance outputs. If the manufacturing variations can be included in design phase itself, overall robustness of the design can be enhanced. This paper delineates machine learning based methods to include manufacturing variations in designing drive units for electric vehicles. In an electric vehicle, the drive unit transfers power or torque from a battery through an inverter to wheels. The drive units are subjected to different types of loads under various vehicle maneuvers. To evaluate the drive unit system virtually, system level simulations are performed. Traditionally, nominal values of the several inputs such as bearing parameters, gear parameters and clearances etc. are used. However, the drive unit must be designed in such a way that outputs meet target considering all the variations of inputs
Penumatsa, Venkata Ramana RajuKatha, VenkateswarBlack, DerrickJain, SachinMaddipati, Seshagiri
This article explores the utilization of simple-cubic, diamond, octet-truss, and X-type lattice structures for low-pressure turbine blades in engine turbines to enhance natural frequency and decrease overall engine weight while maintaining structural integrity. The research method involves analyzing polylactic acid (PLA) hollow T106C blades with fully infilled and 50–80 location-based lattice arrangements. The study modifies the strut thickness of lattice structures using both constant and variable-based approaches and applies a generalized formula based on relative density to evaluate how changes in lattice thickness and arrangements influence natural frequencies. Furthermore, the investigation extends to multi-lattice configurations, introducing a parameter 𝑘 to signify the transition between different lattices. The modified blades were 3D printed using PLA and tested for natural frequencies through modal testing. The results demonstrate that location-based 50–80 exponential-based
Reewarabundith, Siwachai
There are various steering technologies are available in market nowadays. Hydraulic Power Steering (HPS) is one of them. As hydraulic name is linked to it the temperature role comes to play. While doing hard cornering the hydraulic oil used to assist the working in steering system get over heated, due to which oil loses its viscosity became one of the major causes of hard steer in trucks. Also, due to limited space the large heat exchanger cannot be used there. So, objective of this Thesis is to examine an effective solution which can be compact in design and at the same time should be effective to solve this problem. After going through literature analysis, we finalize that the Principal of Pulsating Heat Pipe could be a possible solution. So, for that we design different model based on previous research work in Creo and simulate them in Star CCM+ to finalize the optimality.
Saikrishna, VNLP, RudreshaYadav, SatyendraB, RuthvikaVishwasa, Viditha
The main design objectives to be achieved in the design of HVAC cowl box includes minimizing the pressure drop and eliminating the chances of water ingress in HVAC. There are CFD tools available to study the cowl box pressure drop. However, methods available to study rain water ingress in HVAC are expensive in both mesh preparation and computational time. Using SPH (Smooth Particle based Hydrodynamics) based Preonlab tool, an attempt has been made in this work to study the design improvements of HVAC cowl box to eliminate the chances of flooding during raining. ANSYS FLUENT tool used to study the pressure drop of each design. The simulation aims to investigate the pressure drop in the cowl box and the amount of water intrusion into the HVAC module. L9 orthogonal array (factorial study) conducted to study the factors influencing the cowl box pressure drop. Inlet area, drain area and outlet area are the factors considered. Designs with segregated airflow path (adding inner duct) in the
Baskar, SubramaniyanA, BoopalshanmugamRaju, Kumar
Currently, the application scope of fuel cell vehicles is gradually expanding. There is currently no durability testing method for the entire vehicle level in its research and development design process. In this article, a certain fuel cell passenger car is taken as the research object. The load spectrum data of its key components is collected. A ‘user goal test field’ multi-channel multi-dimensional load correlation optimization model is established. The goal is to minimize the difference in pseudo damage of special components such as the fuel cell vehicle stack structure under the user’s full life cycle target load and the test field test load. The characteristics of the multi-dimensional load of the fuel cell components corresponding to the optimized solution in the rainflow distribution and frequency domain distribution are calculated. And a durability reliability acceleration testing specification for fuel cell vehicle test fields for special components such as the stack structure
Wu, ShiyuGuo, TingWang, YupengWu, ZhenWang, Guozhuo
This paper designs a low-budget yokeless and segmented armature (YASA) axial flux permanent magnet synchronous machine, which replaces some of the PMs attached to the rotor with silicon steel plates. For the purpose of checking the effectiveness of the proposed machine, the equivalent magnetic circuits of the typical and proposed YASA machines are first compared and analyzed, and then the models of the two machines are constructed and simulated. The results prove that the proposed YASA machine significantly reduces the quantity of permanent magnets compared to the typical machine. In addition, the thickness of the machine rotor disc has been reduced by optimizing the machine, which both enhances the power density and reduces the volume of the machine. Finally, the rotor-stator magnetic pulling force of the machine is simulated and analyzed, and the results prove that the proposed machine can operate stably.
Li, TaoWang, BitanDiao, ChengwuZhao, Wenliang
Metal bipolar plates are important components of fuel cells, playing a role in conducting electricity, gas, and heat during the operation of fuel cells. The sealing and joint quality of the bipolar plates have a significant impact on the performance and service life of fuel cell stacks. In actual production, laser technology is often used for welding bipolar plates, and the welding quality is ensured by laser process parameters when using the same equipment. Therefore, in order to further optimize the laser welding process of metal bipolar plates, this paper selects three laser parameters for single-factor analysis to evaluate the impact of each parameter on laser welding quality. The Box-Behnken design-response surface method is used for multi-factor analysis, with process parameters as inputs and weld quality parameters as outputs, to assess the sensitivity of each laser process parameter to laser welding quality, and to fit a nonlinear function. Based on the results, the optimal
Li, WeiChang, GuofengXu, HuashengHuang, Ziheng
Nowadays, there are many technologies emerging like firefighting robots, quadcopters, and drones which are capable of operating in hazardous disaster scenarios. In recent years, fire emergencies have become an increasingly serious problem, leading to hundreds of deaths, thousands of injuries, and the destruction of property worth millions of dollars. According to the National Crime Records Bureau (NCRB), India recorded approximately 1,218 fire incidents resulting in 1,694 deaths in 2020 alone. Globally, the World Health Organization (WHO) estimates that fires account for around 265,000 deaths each year, with the majority occurring in low- and middle-income countries. The existing fire-extinguishing systems are often inefficient and lack proper testing, causing significant delays in firefighting efforts. These delays become even more critical in situations involving high-rise buildings or bushfires, where reaching the affected areas is particularly challenging. The leading causes of
Karthikeyan, S.Nithish, U.Sanjay, S.Sibiraj, T.Vishnu, J.
Competitive companies constantly seek continuous increases in productivity, quality and services level. Lean Thinking (LT) is an efficient management model recognized in organizations and academia, with an effective management approach, well consolidated theoretically and empirically proven Within Industry 4.0 (I4.0) development concept, manufacturers are confident in the advantages of new technologies and system integration. The combination of Lean and I4.0 practices emerges from the existence of a positive interaction for the evolutionary step to achieve a higher operational performance level (exploitation of finances, workload, materials, machines/devices). In this scenario where Lean Thinking is an excellent starting point to implement such changes with a method and focus on results; that I4.0 offers powerful technologies to increase productivity and flexibility in production processes; but people need to be more considered in processes, in a context aligned with the Industry 5.0
Braggio, LuisMarinho, OsmarSoares, LuisLino, AlanRabelo, FábioMuniz, Jorge
This study focuses on machining automobile parts such as drive shafts and axles made of low alloy steel AISI 4140. The influence of cutting inserts geometrical parameters, viz., relief angle (RIA), rake angle (RAA), and nose radius (NA) are studied by designing experiments using Taguchi’s methodology. Numerical simulation is conducted using DEFORM-2D; a suitable L9 orthogonal array (OA) is considered for this work for varying combinations of inputs, and the resultant cutting force, maximum principal stress, and tool life are determined. Adopting a signal-to-noise (S/N) ratio minimizes the outputs for better machining conditions and achieves high-quality components with precision, tolerance, and accuracy. The ideal conditions obtained from the S/N ratio are RAA of 6°, RIA of 3°, and NR of 0.6 mm. Analysis of variance presents that the NR influences the resultant cutting force, wear depth, and work piece damage 73.51%, RAA following by 23.99%, and RIA by 2.03% achieved with a R2 value of
Senthilkumar, N.
The goal of this work is to increase the accuracy and efficiency of hose cutting operations in small scale industries is by designing and building an automatic hose-cutting equipment. The device uses a computer-controlled system to autonomously cut pipes of various sizes and lengths. By means of a stepper motor-driven, rapidly spinning blade, the cutting process is accomplished. Additionally, the machine has sensors that measure the hose's length and modify the cutting position as necessary. Premium components and materials are used in the machine's construction; these are chosen for their performance and longevity. The device is able to boost cut precision and raise industry production all around from 100% to 190% efficient system thereby decreasing labor and time needed for hose cutting operations.
Feroz Ali, L.Manikandan, R.Madhankumar, S.Sri Hari, P.Suriya Prakash, T.Vishnu Doss, G.
The undercarriage is a critical component in machines such as crawlers, excavators, and compact track loaders. It includes vital elements such as the track frame, chain guides, rollers, track chains, idlers, carrier rollers, final drive, and sprockets. Among all these machines, crawler dozers encounter harsh environments with various ground conditions. During operations, the chains are subjected to traverse and side loads, which cause the chains to tend to slip out of the bottom rollers. The chain guide plays a crucial role in assisting and maintaining the chain in the correct position. The forces acting on chain guides are influenced by factors such as track chain tension, roller wear, chain link wear, and counter-rotation (where one track moves forward while the other moves in reverse). Among all the load cases, there are two critical load cases which are vital to be studied in order to determine the required number of chain guides along with other attributes like profile or section
Masane, NishantBhosale, DhanajiSarma, Neelam K
Driving at night presents a myriad of challenges, with one of the most significant being visibility, especially on curved roads. Despite the fact that only a quarter of driving occurs at night, research indicates that over half of driving accidents happen during this period. This alarming statistic underscores the urgent need for improved illumination solutions, particularly on curved roads, to enhance driver visibility and consequently, safety. Conventional headlamp systems, while effective in many scenarios, often fall short in adequately illuminating curved roads, thereby exacerbating the risk of accidents during nighttime driving. In response to this critical issue, considerable efforts have been directed towards the development of alternative technologies, chief among them being Adaptive Front Lighting Systems (AFS). The primary objective of this endeavor is to design and construct a prototype AFS that can seamlessly integrate into existing fixed headlamp systems. Throughout the
T, KarthiG, ManikandanP C, MuruganS, SakthivelN, VinuP, Dineshkumar
Assembly simulation plays a pivotal role in predicting and optimizing the distortion of an assembly, particularly in the automotive industry where precision and efficiency are paramount. In BIW parts assembly, factors such as clamping, mechanical & thermal joining, and loading direction are important. These factors affect the quality of the final assembly. Predicting and optimizing these parameters in the early design stage can help reduce development time, cost and improve the quality of the final product. Currently, LS-DYNA is used for closures like doors, hoods, and fenders. However, the pre-processing, computation and post-processing time is significantly high in LS-DYNA making it challenging to use for the Entire BIW. Employing a comprehensive approach, authors assess the distortion results, preprocessing, calculation, and post-processing time of both simulation techniques. Notably, the study reveals that AutoForm offers over 50%-time savings across all stages compared to LS-DYNA
Talawar, VaishnavchandanNalam, Swaroop RajuDhanajkar, NarendraKumar, AjayPasupathy, VivekanandChava, Seshadri
In India, Driver Drowsiness and Attention Warning (DDAW) system-based technologies are rising due to anticipation on mandatory regulation for DDAW. However, readiness of the system to introduce to Indian market requires validations to meet standard (Automotive Industry Standard 184) for the system are complex and sometimes subjective in nature. Furthermore, the evaluation procedure to map the system accuracy with the Karolinska sleepiness scale (KSS) requirement involves manual interpretation which can lead to false reading. In certain scenarios, KSS validation may entail to fatal risks also. Currently, there is no effective mechanism so far available to compare the performance of different DDAW systems which are coming up in Indian market. This lack of comparative investigation channel can be a concerning factor for the automotive manufactures as well as for the end-customers. In this paper, a robust validation setup using motion drive simulator with 3 degree of freedom (DOF) is
Raj, Prem raj AnandSelvam, Dinesh KumarThanikachalam, GaneshSivakumar, Vishnu
Properly sized under hood components in an electric vehicle is important for effective thermal cooling at different load conditions. Powertrain aggregate loop plays significant role in generating heat with heat sources like eMotor, inverter, variable frequency drivers, on board charger and so on. Radiator being the most critical part in electric vehicle which acts as a heat sink for these powertrain components. Radiator with the help of coolant removes heat generated by different components in powertrain loop. It becomes important to understand the heat generated by the powertrain components at different drive/load scenarios and decide on the correctly sized radiator and fan. Rightly sized radiator and fan combination helps to balance the tradeoff of precise thermal needs in eTruck to an oversized/undersized component. Main objective of this study is to estimate heat loads from system model representing powertrain aggregate components to study the existing radiator capacity and propose
Koti, ShivakumarPatel, VedantChalla, KrishnaGurdak, Michael
Innovators at NASA Johnson Space Center have developed an adjustable thermal control ball valve (TCBV) assembly which utilizes a unique geometric ball valve design to facilitate precise thermal control within a spacesuit. The technology meters the coolant flow going to the cooling and ventilation garment, worn by an astronaut in the next generation space suit, that expels waste heat during extra vehicular activities (EVAs) or spacewalks.
Researchers have been testing ways to continuously and more comfortably detect these tiny fluctuations in pressure. A prototype smart contact lens measures eye pressure accurately, regardless of temperature. The contact lens wirelessly transmits real-time signals about eye pressure across a wide range of temperatures.
In this work, we evaluated computational fluid dynamics (CFD) methods for predicting the design trends in flow around a mass-production luxury sport utility vehicle (SUV) subjected to incremental design changes via spoiler and underbody combinations. We compared Reynolds-averaged Navier–Stokes (RANS) using several turbulence models and a delayed detached eddy simulation (DDES) to experimental measurements from a 40% scale wind tunnel test model at matched full-scale Reynolds number. Regardless of turbulence model, RANS was unable to consistently reproduce the design trends in drag from wind tunnel data. This inability of RANS to reproduce the drag trends stemmed from inaccurate base pressure predictions for each vehicle configuration brought on by highly separated flow within the vehicle wake. When taking A-B design trends, many of these errors compounded together to form design trends that did not reflect those measured in experiments. On the other hand, DDES proved to be more
Aultman, MatthewDisotell, KevinDuan, LianMetka, Matthew
A novel design for a radial field switching reluctance motor with a sandwich-type C-core architecture is proposed. This approach combines elements of both traditional axial and radial field distribution techniques. This motor, similar to an in-wheel construction, is mounted on a shared shaft and is simple to operate and maintain. The rotor is positioned between the two stators in this configuration. The cores and poles of the two stators are separated from one another both magnetically and electrically. Both stators can work together or separately to produce the necessary torque. This adds novelty and improves the design’s suitability for use with electrical vehicles (EVs). A good, broad, and adaptable torque profile is provided by this setup at a modest excitation current. This work presents the entire C-core radial field switched reluctance motor (SRM) design process, including the computation of motor parameters through computer-aided design (CAD). The CAD outputs are verified via
Patel, Nikunj R.Mokariya, Kashyap L.Chavda, Jiten K.Patil, Surekha
As a novel passive control method, the acoustic black hole (ABH) structure demonstrates achieve energy aggregation efficiently and has the characteristics of lightweight and wide-band noise reduction. This study applies ABH theory to aircraft ducts by incorporating an additional ABH structure into the inner wall design. The spiral structure is specifically engineered to increase the characteristic length of the black hole and lower the cutoff frequency. To validate the effectiveness of this ABH structural design, finite element analysis was conducted to investigate structural frequency response, acoustic energy concentration characteristics, as well as damping and energy dissipation effects. Simulation results indicate significant energy accumulation on the inner wall with ABH structure in frequencies above 800Hz. Additionally, through acoustic-structure coupling analysis, far-field acoustic radiation characteristics were determined for this structural design followed by a
Guo, YaningLv, PengLiu, PengfeiNing, Donghong
Items per page:
1 – 50 of 4410