Browse Topic: Analysis methodologies
Automotive chassis components are considered as safety critical components and must meet the durability and strength requirements of customer usage. The cases such as the vehicle driving through a pothole or sliding into a curb make the design (mass efficient chassis components) challenging in terms of the physical testing and virtual simulation. Due to the cost and short vehicle development time requirement, it is impractical to conduct physical tests during the early stages of development. Therefore, virtual simulation plays the critical role in the vehicle development process. This paper focuses on virtual co-simulation of vehicle chassis components. Traditional virtual simulation of the chassis components is performed by applying the loads that are recovered from multi-body simulation (MBD) to the Finite Element (FE) models at some of the attachment locations and then apply constraints at other selected attachment locations. In this approach, the chassis components are assessed
The electric motor is a significant source of noise in electric vehicles (EVs). Traditional hardware-based NVH optimization techniques can prove insufficient, often resulting in trade-offs between motor torque or efficiency performance. The implementation of motor control-based torque ripple cancellation (TRC) technology provides an effective and flexible solution to reduce the targeted orders. This paper presents an explanation of the mathematical theory underlying the TRC method, with a particular focus on the various current injection methods, including those that allow up to 4DOFs (degrees-of-freedom). In the case study, the injection of controlled fifth or seventh order current harmonics into a three-phase AC motor is shown to be an effective method for cancelling the most dominant sixth order torque ripple. A dedicated feedforward harmonic current generation module is developed the allows the application of harmonic current commands to a motor control system with adjustable
Automotive audio components must meet high quality expectations with ever-decreasing development costs. Predictive methods for the performance of sound systems in view of the optimal locations of loudspeakers in a car can help to overcome this challenge. Use of simulation methods would enable this process to be brought up front and get integrated in the vehicle design process. The main objective of this work is to develop a virtual auralization model of a vehicle interior with audio system. The application of inverse numerical acoustics [INA] to source detection in a speaker is discussed. The method is based on truncated singular value decomposition and acoustic transfer vectors The arrays of transfer functions between the acoustic pressure and surface normal velocity at response sites are known as acoustic transfer vectors. In addition to traditional nearfield pressure measurements, the approach can also include velocity data on the boundary surface to improve the confidence of the
Opening a tailgate can cause rain that has settled on its surfaces to run off onto the customer or into the rear loadspace, causing annoyance. Relatively small adjustments to tailgate seals and encapsulation can effectively mitigate these effects. However, these failure modes tend to be discovered relatively late in the design process as they, to date, need a representative physical system to test – including ensuring that any materials used on the surface flow paths elicit the same liquid flow behaviours (i.e. contact angles and velocity) as would be seen on the production vehicle surfaces. In this work we describe the development and validation of an early-stage simulation approach using a Smoothed Particle Hydrodynamics code (PreonLab). This includes its calibration against fundamental experiments to provide models for the flow of water over automotive surfaces and their subsequent application to a tailgate system simulation which includes fully detailed surrounding vehicle geometry
The proliferation of the electric vehicle (EVs) in the US market led to an increase in the average vehicle weight due to the assembly of the larger high-voltage (HV) batteries. To comply with this weight increase and to meet stringent US regulations and Consumer Ratings requirements, Vehicle front-end rigidity (stiffness) has increased substantially. This increased stiffness in the larger vehicles (Large EV pickups/SUVs) may have a significant impact during collision with smaller vehicles. To address this issue, it is necessary to consider adopting a vehicle compatibility test like Euro NCAP MPDB (European New Car Assessment Program Moving Progressive Deformable Barrier) for the North American market as well. This study examines the influence of mass across vehicle classes and compares the structural variations for each impact class. The Euro NCAP MPDB (European New Car Assessment Program Moving Progressive Deformable Barrier) protocol referenced for this analysis. Our evaluation
Image-based machine learning (ML) methods are increasingly transforming the field of materials science, offering powerful tools for automatic analysis of microstructures and failure mechanisms. This paper provides an overview of the latest advancements in ML techniques applied to materials microstructure and failure analysis, with a particular focus on the automatic detection of porosity and oxide defects and microstructure features such as dendritic arms and eutectic phase in aluminum casting. By leveraging image-based data, such as metallographic and fractographic images, ML models can identify patterns that are difficult to detect through conventional methods. The integration of convolutional neural networks (CNNs) and advanced image processing algorithms not only accelerates the analysis process but also improves accuracy by reducing subjectivity in interpretation. Key studies and applications are further reviewed to highlight the benefits, challenges, and future directions of
High-efficiency manufacturing involves the transmission of copious amounts of data, exemplified both by trends in the automotive industry and advances in technology. In the automotive industry, products have been growing increasingly complex, owing to multiple SKUs, global supply chains and the involvement of many tier 2 / Just-In Time (JIT) suppliers. On top of that, recalls and incidents in recent years have made it important for OEMs to be able to track down affected vehicles based on their components. All of this has increased the need for OEMs to be able to collect and analyze component data. The advent of Industry 4.0 and IoT has provided manufacturing with the ability to efficiently collect and store large amounts of data, lining up with the needs of manufacturing-based industries. However, while the needs to collect data have been met, corporations now find themselves facing the need to make sense of the data to provide the insights they need, and the data is often unstructured
Parts in automotive exhaust assembly are joined to each other using welding process. When the exhaust is subjected to dynamic loads, most of these weld joints experience high stresses. Hence it should be ensured that the exhaust assembly is designed to meet the requirements of exhaust durability for the estimated life of the vehicle. We also know that all parts used in manufacturing of exhaust system have inherent variations with respect to sheet metal thickness, dimensions and shape. Some parts like flex coupling and isolators have high variations in their stiffness based on their material and manufacturing processes. This all leads to a big challenge to ensure that the exhaust system meets the durability targets on a vehicle manufactured with all these variations. This works aims to evaluate the statistical spread in weld life of an exhaust with respect to inherent variations of its components. For the purpose of variational analysis, a Design of Experiments (DOE) is done where
The modern luxurious electric vehicle (EV) demands high torque and high-speed requirements with increased range. Fulfilling these requirements, arises the need for increased electric current supply to motors. Increased amperage through the stator causes higher losses resulting in elevated temperature across the motor components and its housing. In most of the cases, stator is mounted on the housing through interference fit to avoid any slippage during operation conditions. High temperature across the stator and housing causes significant thermal expansions of the components which is uneven in nature due to the differences in corresponding coefficient of thermal expansion (CTE) values. Housings are generally made of aluminium and tends to expand more having higher value of CTE than that of steel core of stator which may give rise to a failure mode related to stator slippage. To address this slippage if the amount of interference fit is increased, that’ll result in another failure mode
Items per page:
50
1 – 50 of 9310