Browse Topic: Analysis methodologies

Items (9,326)
Wheel bearings play a critical role in providing smooth rotation when vehicles move in straight line and turning motions. Automotive electrification continues to accelerate, emphasizing specific market demands such as lightweighting, lower torque, and quietness. In addition to the above requirements, reduced development timing for automotive programs is required. Recently, the number of bearing manufacturers that utilize Model-Based Development (MBD) have been increasing in order to reduce development time. NTN has developed an integrated calculation automated system which is called Axle Bearing Integrated Calculation System (ABICS) that automates each step of the design processes for third generation hub bearings. After ABICS was released, man-hours per development project were reduced by 80 percent compared to previously used design flows in which each step of the design processes had been performed by a human. In order to further reduce development timing, even more focus has been
Kitada, TatsuyaBarrett, RobMatsubuchi, HirokiSuma, Hiroto
Bearings are essential mechanical components that support external loads and facilitate rotational motion. With the increasing demand for high-performance applications in industries such as semiconductors, aerospace, and robotics, the need for accurate and robust performance evaluation has intensified. Traditionally, bearing performance has been assessed using static or quasi-static theoretical approaches. However, these methods are limited in their ability to capture time-dependent behaviors, which are critical in real-world applications. In this study, a rigid body dynamics analysis was proposed to evaluate the time-dependent behavior of bearings. The methodology was first applied to a deep groove ball bearing, and the results were compared with those obtained from bearing theory to validate the approach. Subsequently, the method was extended to an automotive wheel bearing, and the time-dependent contact angles and ball loads were analyzed under axial and radial loading conditions
Lee, Seungpyo
Friction material properties critically impact brake squeal simulation outcomes due to their nonlinear and transversely isotropic behaviors, which vary with load type and direction. To improve the reliability of brake squeal predictions, this study introduces the Transversely-isotropic Elastic Constants Optimization (TECO) method, a novel multi-dimensional constrained optimization framework for refining the elastic constants and damping ratio of friction materials. By integrating experimental testing, finite element analysis (FEA), and an advanced optimization technique - Gradient Response Surface Algorithm (GRA), the TECO method minimizes discrepancies between simulated and experimental data, ensuring accurate characterization of elastic properties. The TECO method offers significant advantages, including flexibility and robustness, making it an effective alternative to ultrasonic measurements and traditional optimization techniques, especially for anisotropic friction lining
Philip, RonyMuralidharan, SudharsanMohanam, Gopalakrishnan
The emergence of Software Defined Vehicles (SDVs) has introduced significant complexity in automotive system design, particularly for safety-critical domains such as braking. A key principle of SDV architecture is the centralization of control software, decoupled from sensing and actuation. When applied to Brake-by-Wire (BbW) systems, this leads to decentralized brake actuation that demands precise coordination across numerous distributed electronic components. The absence of mechanical backup in BbW systems further necessitates fail-operational redundancy, increasing system complexity and placing greater emphasis on rigorous system-level design validation. A comprehensive understanding of component interdependencies, failure propagation, and redundancy effectiveness is essential for optimizing such systems. This paper presents a custom-built System Analysis Tool (SAT), along with a specialized methodology tailored for modeling and analyzing BbW architectures in the context of SDVs
Heil, EdwardZuzga, SeanBabul, Caitlin
Brake caliper rattle noise is difficult to simulate due to its non-stationary, random, and broadband frequency characteristics. Many CAE engineers have adopted rattle vibration as an alternative metric to quantitative noise levels. Previous rattle noise simulations primarily presented relative displacement results derived from normal mode analysis or vibration dB levels rather than actual noise dB levels. However, rattle noise consists of continuous impact noise, which must account for reflections, diffractions, and refractions caused by transient nonlinear contacts and localized vibrations—especially during extremely short contact events. To accurately simulate impact noise, vibration and acoustic characteristics should be analyzed using a simplified structure, given the numerous mechanisms influencing impact noise generation. The rattle noise can be effectively modeled using LS-Dyna, which incorporates both explicit and BEM solvers. The correlation between test results and CAE
Park, Joosang
In recent years, the powertrains of agricultural tractors have been transitioning toward hybrid electric configurations, paving the way for a greener future agricultural machinery. However, stability challenges arise in hybrid electric tractors due to the relative small capacity to perform power-intensive tasks, such as plowing and harvesting. These operations demand significant power, which are supplied by the electric power take-off system. The substantial disturbances introduced by the electric power take-off system during these tasks render conventional small-signal analysis methods inadequate for ensuring system stability. In this article, we first develop a large-signal model of the onboard power electronic systems, which includes components such as the diesel engine–generator set, batteries, in-wheel motors, and electric power take-off system. By employing mixed potential theory, we conduct a thorough analysis of this model and derive a stability criterion for the onboard power
Li, FangyuanLi, ChenhuiGao, LefeiMa, QichaoLiu, Yanhong
Items per page:
1 – 50 of 9326