Browse Topic: Optimization
This project presents the development of an advanced Autonomous Mobile Robot (AMR) designed to autonomously lift and maneuver four-wheel drive vehicles into parking spaces without human intervention. By leveraging cutting-edge camera and sensor technologies, the AMR integrates LIDAR for precise distance measurements and obstacle detection, high-resolution cameras for capturing detailed images of the parking environment, and object recognition algorithms for accurately identifying and selecting available parking spaces. These integrated technologies enable the AMR to navigate complex parking lots, optimize space utilization, and provide seamless automated parking. The AMR autonomously detects free parking spaces, lifts the vehicle, and parks it with high precision, making the entire parking process autonomous and highly efficient. This project pushes the boundaries of autonomous vehicle technology, aiming to contribute significantly to smarter and more efficient urban mobility systems
The parametrized twist beam suspension is a pivotal component in the automotive industry, profoundly influencing the ride comfort and handling characteristics of vehicles. This study presents a novel approach to optimizing twist beam suspension systems by leveraging parametric design principles. By introducing a parameter-driven framework, this research empowers engineers to systematically iterate and fine-tune twist beam designs, ultimately enhancing both ride quality and handling performance. The paper outlines the theoretical foundation of parametrized suspension design, emphasizing its significance in addressing the intricate balance between ride comfort and dynamic stability. Through a comprehensive examination of key suspension parameters, such as twist beam profile, material properties, and attachment points, the study demonstrates the versatility of the parametric approach in tailoring suspension characteristics to meet specific performance objectives. To validate the
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has become a revolutionary technology for creating intricate shapes using different materials. Polylactic Acid (PLA) is a biodegradable thermoplastic that is commonly used in additive manufacturing (AM) because of its environmentally friendly properties, affordability, and ease of use. The objective of this study is to optimize the FDM parameters for PLA material and create predictive models using the Adaptive Neuro-Fuzzy Inference System (ANFIS) to forecast printing performance. An investigation was carried out through experimental trials to examine the impact of important FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical outcomes such as dimensional accuracy, surface finish, and mechanical properties. The utilization of design of experiments (DOE) methodology enabled a methodical exploration of parameters. A predictive model using ANFIS was created to
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has transformed the manufacturing industry by allowing the creation of intricate shapes using different materials. Polylactic Acid (PLA) is a biodegradable thermoplastic that is commonly used in additive manufacturing (AM) because of its environmentally friendly nature, affordability, and ease of processing. This study aims to optimize the parameters of Fused Deposition Modeling (FDM) for PLA material using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) approach. The researchers performed experimental trials to examine the impact of important FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical outcomes, including dimensional accuracy, surface finish, and mechanical properties. The methodology of design of experiments (DOE) enabled a systematic exploration of parameters. The TOPSIS approach, a technique for making decisions
Brake disc temperature is a critical factor influencing the performance and wear characteristics of braking systems in automobiles. Hence it is very important to optimize the correlation of brake disc temperature prediction with test. In this study critical parameters of Brake Disc temperature evaluation are identified, and algorithm is used to optimize the critical parameters to achieve the correlation of prediction with experiment data. Through a series of controlled experiments and simulations, disc temperatures are monitored under different braking conditions and simultaneously input parameters for prediction are optimized to achieve the correlation. Statistical methods were applied to evaluate the observed correlations and to model the predictive behavior of brake disc temperatures. Finally, A front-loading tool is developed to optimize the brake disc keeping target thermal capacity via algorithm. The findings of this study are expected to contribute to the enhancement of brake
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has become a highly promising method for creating intricate shapes using different materials. Polyethylene Terephthalate Glycol (PETG) is a highly utilized thermoplastic that is recognized for its exceptional strength, resistance to chemicals, and effortless processing. This study aims to optimize the process parameters of the FDM technique for PETG material using Taguchi Grey Relational Analysis (GRA). An empirical study was carried out to examine the impact of various FDM process parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on important outcome variables like dimensional accuracy, surface quality, and mechanical properties. The Taguchi method was used to systematically design a series of experiments, while GRA was used to optimize the process parameters and performance characteristics. The results unveiled the most effective parameter combinations for attaining
Head injuries from interior impacts during vehicle accidents are a significant cause of fatalities in India. Data from the National Crime Records Bureau (NCRB) for 2023 reveals that approximately 15% of the total 150,000 road fatalities were due to head impacts on vehicle interiors, resulting in about 22,500 deaths. Thus, head impact protection in a car crash is key during the design of vehicle interiors. IS 15223 and ECE-R21 provide specific guidelines for head impact testing of instrument panels and consoles in vehicles to ensure compliance with safety standards and minimize the risk of head injury during collisions. By systematically addressing each aspect of IS 15223 and ECE- R21 in the design, testing, and documentation phases, manufacturers can ensure that console armrests are optimized for safety. This approach not only helps meet regulatory standards but also enhances overall occupant protection in vehicles during collisions. The objective of this paper is to design a console
Items per page:
50
1 – 50 of 6857