Browse Topic: Optimization
The automotive industry faces ongoing challenges in reducing vehicle mass and carbon emissions while ensuring structural integrity. Traditional design approaches often fail to address these issues comprehensively. This paper explores the application of generative design (GD) to optimize critical automotive components, specifically focusing on reducing mass and in turn carbon emissions. GD builds upon traditional topology optimization by employing iterative method using MELS approach to refine designs providing multiple alternative designs to choose from. MELS (Modified Extensible Lattice Sequence) specifically is used to equally spread-out points (designs) in a space by minimizing clumps and empty spaces. This property of MELS makes lattice sequences an excellent space filling DOE scheme. GD leverages the design of experiments (DOE) to vary key design variables systematically to generate and consider many potential design concepts for a given problem. It also uses artificial
The integrated bracket is a plastic part that packages functional components such as the ADAS (Advanced Driver Assistance System) camera, rain light sensor, and the mounting provisions of the auto-dimming IRVM (Inner Rear View Mirror). This part is fixed on the windshield of an automobile using double-sided adhesive tapes and glue. ADAS, rain light sensors, and auto-dimming IRVM play an important part in the safety of the driver and everyone present in the automobile. This makes proper functioning of the integrated bracket very integral to occupant safety. Prior to this work, the following literature; Integrated Bracket for Rain Light Sensor/ADAS/Auto-Dimming IRVM with provision of mounting for Aesthetic Cover [1] outlines the design considerations and advantages of mounting several components on the same bracket. It follows the theme where the authors first define the components packaged on the integrated bracket and then the advantages of packaging multiple components on a single
In addition to electric vehicles (EVs), hydrogen fuel cell systems are gaining attention as energy-efficient propulsion options. However, designing fuel cell vehicles presents unique challenges, particularly in terms of storage systems for heavy hydrogen tanks. These challenges impact factors such as NVH (noise, vibration, and harshness) and safety performance. This study presents a topology optimization study for Hydrogen Energy Storage System (HESS) tank structure in Class 5 trucks, with a focus on enhancing the modal frequencies. The study considers a specific truck configuration with a HESS structure located behind the crew cab, consisting of two horizontally stacked hydrogen tanks and two tanks attached on both sides of the frame. The optimization process aimed to meet the modal targets of this hydrogen tank structure in the fore-aft (X) and lateral (Y) directions, while considering other load cases such as a simplified representation of GST (global static torsion), simplified
The electric motor is a significant source of noise in electric vehicles (EVs). Traditional hardware-based NVH optimization techniques can prove insufficient, often resulting in trade-offs between motor torque or efficiency performance. The implementation of motor control-based torque ripple cancellation (TRC) technology provides an effective and flexible solution to reduce the targeted orders. This paper presents an explanation of the mathematical theory underlying the TRC method, with a particular focus on the various current injection methods, including those that allow up to 4DOFs (degrees-of-freedom). In the case study, the injection of controlled fifth or seventh order current harmonics into a three-phase AC motor is shown to be an effective method for cancelling the most dominant sixth order torque ripple. A dedicated feedforward harmonic current generation module is developed the allows the application of harmonic current commands to a motor control system with adjustable
A glow plug is generally used to assist the starting of diesel engines in cold weather condition. Low ambient temperature makes the starting of diesel engine difficult because the engine block acts as a heat sink by absorbing the heat of compression. Hence, the air-fuel mixture at the combustion chamber is not capable of self-ignition based on air compression only. Diesel engines do not need any starting aid in general but in such scenarios, glow plug ensures reliable starting in all weather conditions. Glow plug is actually a heating device with high electrical resistance, which heats up rapidly when electrified. The high surface temperature of glow plug generates a heat flux and helps in igniting the fuel even when the engine is insufficiently hot for normal operation. Durability concerns have been observed in ceramic glow plugs during testing phases because of crack formation. Root cause analysis is performed in this study to understand the probable reasons behind cracking of the
In the automotive industry, the durability and thermal analysis of components significantly impact vehicle component robustness and customer satisfaction. Traditional computer-aided engineering (CAE) methods, while effective, often involve extensive design iterations and troubleshooting, leading to prolonged development times and increased costs. The integration of artificial intelligence (AI) and machine learning (ML) into the CAE process presents a transformative solution to these challenges. By leveraging AI and ML, the durability simulation time of automobile components is significantly enhanced. Altair’s Physics AI tool utilizes historical CAE data to train ML models, enabling accurate predictions of model performance in terms of durability and stiffness. This reduces the necessity for multiple simulations, thereby decreasing CAE model design and solution completion times by 30%. By predicting potential issues early in the design phase, AI and ML allow engineers to make informed
Items per page:
50
1 – 50 of 6984