Browse Topic: Augmented / virtual reality

Items (617)
Virtual reality (VR), Augmented Reality (AR) and Mixed reality (MR) are advanced engineering techniques that coalesces physical and digital world to showcase better perceiving. There are various complex physics which may not be feasible to visualize using conventional post processing methods. Various industrial experts are already exploring implementation of VR for product development. Traditional computational power is improving day-by-day with new additional features to reduce the discrepancy between test and CFD. There has been an increase in demand to replace actual tests with accurate simulation approaches. Post processing and data analysis are key to understand complex physics and resolving critical failure modes. Analysts spend a considerable amount of time analyzing results and provide directions, design changes and recommendations. There is a scope to utilize advanced features of VR, AR and MR in CFD post process to find out the root cause of any failures occurred with
Savitha, BhuduriSharma, Sachin
Warranty claims function as primary source of characterizing field failures across industries, wherein appropriate classification of these claims is critical for further analysis. The classification of warranty claims is a highly laborious effort, involving significant man-hours of warranty analysts. This can be highly optimized and made efficient using direct interpretation of the claim data on 3D model using unity game engine. Additionally, the color perception technique using immersive technology (AR/VR) can help to identify the vital few & drive prioritization of the field failures leading to faster problem resolution. The capabilities of UI/UX & advanced visualization are integrated to develop novel methods to classify the warranty claims & interpret it on a 3D model using immersive technology which is novel and one of its kind in industry. Unique characteristics of this tool is it focuses on the warranty claim classification by claim cost & count of claims and presents the heat
Nankery, Viveksavadatti, SandeepShete, AtulApkare, SanketGanapathi, Poongundran
Off-highway vehicles (OHVs) are vital for India’s construction, mining, agriculture, and infrastructure sectors. With growing demand for productivity and sustainability, the need for efficient customer support and precise diagnostic techniques has become paramount. This paper presents a comprehensive study of challenges faced in India, current and emerging diagnostic technologies, troubleshooting techniques, and strategies for effective customer support. Case studies, tables, and diagrams illustrate practical solutions.
Mulla, TosifThakur, AnilTripathi, Ashish
Navigation in off-road terrains is a well-studied problem for self-driving and autonomous vehicles. Frequently cited concerns include features like soft soil, rough terrain, and steep slopes. In this paper, we present the important but less studied aspect of negotiating vegetation in off-road terrain. Using recent field measurements, we develop a fast running model for the resistance on a ground vehicle overriding both small vegetation like grass and larger vegetation like bamboo and trees. We implement of our override model into a 3D simulation environment, the MSU Autonomous Vehicle Simulator (MAVS), and demonstrate how this model can be incorporated into real-time simulation of autonomous ground vehicles (AGV) operating in off-road terrain. Finally, we show how this model can be used to simulate autonomous navigation through a variety of vegetation with a PID speed controller and measuring the effect of navigation through vegetation on the vehicle speed.
Goodin, ChristopherMoore, Marc N.Hudson, Christopher R.Carruth, Daniel W.Salmon, EthanCole, Michael P.Jayakumar, ParamsothyEnglish, Brittney
Virtual Reality (VR) systems are increasingly integrating haptic feedback to increase the level of immersion in virtual environments. This study is designed to investigate the impact of varying fidelity levels on the user experience when interacting with a tablet touchscreen User Interface (UI) in a virtual environment. Participants take part in touchscreen gesture-based tasks in different haptic fidelity levels, including no gloves, low haptic fidelity vibrotactile gloves, high haptic fidelity pneumatic gloves, and a real-world control condition. This study was designed to measure the user experience, which includes presence, embodiment, and system usability using qualitative surveys along with quantitative performance metrics. This study aims to understand how haptic feedback impacts the user experience to facilitate more informed employment of VR technology in training, simulation, and rapid prototyping.
Al-Shubeilat, FaresAthamnah, SolafAlJundi, Abdel RahmanBrudnak, MarkWood, RyanLouie, Wing Yue GeoffreyRawashdeh, Osamah
Navigation in off-road terrains is a well-studied problem for self-driving and autonomous vehicles. Frequently cited concerns include features like soft soil, rough terrain, and steep slopes. In this paper, we present the important but less studied aspect of negotiating vegetation in off-road terrain. Using recent field measurements, we develop a fast running model for the resistance on a ground vehicle overriding both small vegetation like grass and larger vegetation like bamboo and trees. We implement of our override model into a 3D simulation environment, the MSU Autonomous Vehicle Simulator (MAVS), and demonstrate how this model can be incorporated into real-time simulation of autonomous ground vehicles (AGV) operating in off-road terrain. Finally, we show how this model can be used to simulate autonomous navigation through a variety of vegetation with a PID speed controller and measuring the effect of navigation through vegetation on the vehicle speed.
Goodin, ChristopherMoore, Marc N.Hudson, Christopher R.Carruth, Daniel W.Salmon, EthanCole, Michael P.Jayakumar, ParamsothyEnglish, Brittney
EPFL researchers have developed a customizable soft robotic system that uses compressed air to produce shape changes, vibrations, and other haptic, or tactile, feedback in a variety of configurations. The device holds significant promise for applications in virtual reality, physical therapy, and rehabilitation.
Virtual reality (VR) video games that combine screen time with exercise are a great way to get fit, but game designers face a major challenge — adherence to ‘exergames’ is low, with most users dropping out once they start to feel uncomfortable or bored.
This paper presents a coupled electromagnetic and thermal simulation of Permanently Excited Synchronous Machines (PMSM) in the context of virtual prototyping in a real-time Hardware-in-the-Loop (HiL) environment. Particularly in real-time simulations, thermal influences are often neglected due to the increased complexity of a coupled simulation. This results in inaccurate simulations and incomplete design optimizations. The objective of this contribution is to enable a precise and realistic real-time simulation that represents the electromagnetic as well as the thermal behavior. The electromagnetic simulation is executed used a Field-Programmable Gate Array (FPGA) and parameterized by Finite Element Analysis (FEA) results. The thermal model is based on a Lumped-Parameter-Thermal-Network (LPTN), which is based on physical laws, geometry parameters and material specifications. The simulation results are validated with testbench measurements to ensure the accuracy of the overall model. By
Jonczyk, FabianKara, OnurBergheim, YannickLee, Sung-YongStrop, MalteProchotta, FabianAndert, Jakob
While semi-autonomous driving (SAE level 3 & 4) is already partially a reality, the driver still needs to take over driving upon notice. Hence, the cockpit cannot be designed freely to accommodate spaces for non-driving related activities. In the following use case, a mobile workplace is created by integrating a translucent acrylic glass pane into the cockpit and introducing joystick steering of the car. By using the technology Virtual Desktop 1, which is a software layer, any desktop application can be represented freely transformable on arbitrary physical and virtual surfaces. Thus, a complete Windows environment can be distributed across all curved and flat surfaces of an interior. The concept is further enhanced by a voice-driven generative AI which helps to summarize documents. A physical and a virtual demonstrator are created to experience and assess the mobile workspace, the well-being of the driver, external influences, and psychological aspects. The physical demonstrator is a
Beutenmüller, FrankReining, NineRosenstiel, RetoSchmidt, MaximilianLayer, SelinaBues, MatthiasMendonca, Daisy
Industrial bearings are critical components in aerospace, industrial, and automotive manufacturing, where their failures can result in costly downtime. Traditional fault diagnosis typically depends on time-consuming on-site inspections conducted by specialized field engineers. This study introduces an automated Artificial Intelligence virtual agent system that functions as a maintenance technician, empowering on-site personnel to perform preliminary diagnoses. By reducing the dependence on specialized engineers, this technology aims to minimize downtime. The Agentic Artificial Intelligence system leverages agents with the backbone of intelligence from Computer Vision and Large Language Models to guide the inspection process, answer queries from a comprehensive knowledge base, analyze defect images, and generate detailed reports with actionable recommendations. Multiple deep learning algorithms are provisioned as backend API tools to support the agentic workflow. This study details the
Chandrasekaran, Balaji
Augmented reality (AR) has become a hot topic in the entertainment, fashion, and makeup industries. Though a few different technologies exist in these fields, dynamic facial projection mapping (DFPM) is among the most sophisticated and visually stunning ones. Briefly put, DFPM consists of projecting dynamic visuals onto a person’s face in real-time, using advanced facial tracking to ensure projections adapt seamlessly to movements and expressions.
A vital aspect of Ultra-Fast Charging (UFC) Li-Ion battery pack is its thermal management system, which impacts safety, performance, and cell longevity. Immersion cooling technology is more effective compared to indirect cold plate as heat can dissipate much quicker and has a potential to mitigate the thermal runaway propagation, improve pack overall performance, and cell life significantly. For design optimization and getting better insight, high fidelity Multiphysics-Multiscale simulations are required. Equivalent Circuit Model (ECM) based electro-thermally coupled multi-physics CFD simulations are performed to optimize the innovative busbar design, of a recently developed immersion cooled battery pack, which enables the capability to remove individual cell. Further, high fidelity 3D transient flow-thermal simulations have helped in optimizing the coolant flow direction, inlet positions, cell spacing and separator design for efficient flow distribution in the module. While high
Tyagi, RamavtarNegro, SergioBaranowski, AlexAtluri, Prasad
State-of-the-art fighter aircraft have a large number of support systems that operate in multiple areas. These systems are continuously optimized to achieve maximum efficiency and performance. Countless sensors monitor the environment and generate important data that helps to understand the areas overflown. But even in life-threatening combat situations, target acquisition systems support pilots and provide additional information that can be decisive with the help of augmented reality (AR) and artificial intelligence (AI). Military aviation is an arena with great potential for the use of technical aids that have transformed the original fighter aircraft into a technological masterpiece. In addition to the high level of complexity, the upcoming generation change from fifth- to sixth-generation fighter jets poses major challenges for component suppliers and accelerates the pace of technological competition. A military fighter jet is already an extremely demanding environment for
State-of-the-art fighter aircraft have a large number of support systems that operate in multiple areas. These systems are continuously optimized to achieve maximum efficiency and performance. Countless sensors monitor the environment and generate important data that helps to understand the areas overflown. But even in life-threatening combat situations, target acquisition systems support pilots and provide additional information that can be decisive with the help of augmented reality (AR) and artificial intelligence (AI). Military aviation is an arena with great potential for the use of technical aids that have transformed the original fighter aircraft into a technological masterpiece.
As the demands for air travel and air cargo continue to grow, airport surface operations are becoming increasingly congested, elevating the operational risks for all entities. Conventional measurement methods in airport traffic scenarios are limited by high temporal and spatial costs, uncontrollable variables, and their inabilities to account for low-probability events. Moreover, current simulation software for airport operations exhibits weak simulation capabilities and poor interactivity. To address these issues, this study developed a virtual reality traffic simulation platform for airport surface operations. The platform integrated 3D modeling technologies, including Blender and Unity, with the Photon Fusion multiplayer platform and Simulation of Urban Mobility (SUMO) traffic simulation software. By incorporating Logitech external devices, the platform enabled real-time human-driven simulations, multiplayer online interactions, and validation of airport traffic flow models. To
Zhang, YuhengHan, ZhongyiZhang, YuhanYe, Zhirui
The effectiveness of the negative suspension structure (NSS) in isolating the driver’s seat vibrations has been demonstrated based on the seat’s model or vehicle’s one-dimensional dynamic model. To fully assess the effectiveness and stability of the seat’s NSS (S-NSS) on different models of vehicles, the three-dimensional models of the vibratory rollers (VR), heavy trucks (HT), and passenger cars (PC) have been built to assess the effectiveness of S-NSS compared to the seat’s passive suspension (S-PC) and seat’s control suspension (S-CS). The effectiveness of S-NSS is then investigated under all operating conditions of vehicles. The investigation results indicate that under a same simulation condition, S-NSS improves the ride comfort and health of the driver better than both S-PS and S-CS on all VR, HT, and PC. However, the effectiveness of S-NSS on PC is lower than on both VR and HT while the effectiveness of S-CS on PC is better than on both VR and HT. Besides, the effectiveness of S
Su, BeibeiWang, QiangSong, Fengxiang
Researchers in the emerging field of spatial computing have developed a prototype augmented reality headset that uses holographic imaging to overlay full-color, 3D moving images on the lenses of what would appear to be an ordinary pair of glasses. Unlike the bulky headsets of present-day augmented reality systems, the new approach delivers a visually satisfying 3D viewing experience in a compact, comfortable, and attractive form factor suitable for all-day wear.
This research aimed to explore the integration of Virtual reality technology in ergonomically testing automotive interior designs. This objective was aimed at ensuring that such technology could be used to ameliorate user comfort through controlled simulations. Existing ergonomic testing methods are often limited when it comes to recreating actual driving situations and quickly repeating design improvements. VR could be used as a solution because its ergonomically tested simulation can be used to provide users with the real experience of driving. The users can be observed while they experience it and asked for their feedback. For this research, an interactive VR environment imitating a 10-minute-long trip through traffic and changing road conditions was created. It was populated by ten users, concatenated equally in men and women, both aged 20-35, representing approximate demographics of workers in the automotive production industry. Participants of the research were asked to use
Natrayan, L.Kaliappan, SeeniappanSwamy Nadh, V.Maranan, RamyaBalaji, V.
Seoul National University College of Engineering announced that researchers from the Department of Electrical and Computer Engineering’s Optical Engineering and Quantum Electronics Laboratory have developed an optical design technology that dramatically reduces the volume of cameras with a folded lens system utilizing “metasurfaces,” a next-generation nano-optical device. By arranging metasurfaces on the glass substrate so that light can be reflected and moved around in the glass substrate in a folded manner, the researchers have realized a lens system with a thickness of 0.7 mm, which is much thinner than existing refractive lens systems. The research, which was supported by the Samsung Future Technology Development Program and the Institute of Information & Communications Technology Planning & Evaluation (IITP), was published on October 30 in the journal Science Advances. Traditional cameras are designed to stack multiple glass lenses to refract light when capturing images. While
A digital twin is a digital representation of a real physical system, product, or process that functions as its practically identical digital counterpart for tasks such as testing, integration, monitoring, and maintenance. Creating digital twins allows the ‘digital system’ or ‘digital product’ to be tested at faster-than-real-time which improves overall program efficiency and shortens the programme duration. The HORIBA Intelligent Lab virtual engineering toolset was used to generate an Empirical Digital Twin (EDT) of a contemporary off-highway diesel Internal Combustion Engine (ICE) from physical testing, accounting for the effects of altitude and combustion air temperature. The EDT was subsequently used to predict engine performance and emissions for several synthetic off-highway machine cycles at sea-level and 3000m altitude. The synthetic agricultural cycles which included ploughing, seeding, spraying, fertilising, and roading were generated using a machine simulation programme
Roberts, PhilBates, LukeWhelan, SteveMaroni, ClaudioLeo, ElisabettaPezzola, Marco EzioChild, Steven
Researchers worldwide are currently working on the next evolution of communication networks, called “beyond 5G” or 6G networks. To enable the near-instantaneous communication needed for applications like augmented reality or the remote control of surgical robots, ultra-high data speeds will be needed on wireless channels. In a study published recently in IEICE Electronics Express, researchers from Osaka University and IMRA AMERICA have found a way to increase these data speeds by reducing the noise in the system through lasers.
Researchers have developed SPINDLE, a pioneering robotic rehabilitation system. Combining virtual reality (VR) with customized resistance training, SPINDLE offers personalized therapy to enhance strength and dexterity for activities of daily living (ADLs). Its adaptability and potential for home use represent a major advancement in tremor rehabilitation, with broader healthcare implications.
A research team at The University of Texas at Austin created a noninvasive electroencephalogram (EEG) sensor that was installed in a Meta VR headset that can be worn comfortably for long periods. The EEG measures the brain’s electrical activity during the immersive VR interactions.
The modern automotive industry is facing challenges of ever-increasing complexity in the electrified powertrain era. On-board diagnostic (OBD) systems must be thoroughly calibrated and validated through many iterations to function effectively and meet the regulation standards. Their development and design process are more complex when prototype hardware is not available and therefore virtual testing is a prominent solution, including Model-in-the-loop (MIL), Software-in-the-loop (SIL) and Hardware-in-the-loop (HIL) simulations. Virtual prototype testing relying on real-time simulation models is necessary to design and test new era’s OBD systems quickly and in scale. The new fuel cell powertrain involves new and previously unexplored fail modes. To make the system robust, simulations are required to be carried out to identify different fails. Thus, it is imminent to build simulation models which can reliably reproduce failures of components like the compressor, recirculation pump
Pandit, Harshad RajendraDimitrakopoulos, PantelisShenoy, ManishAltenhofen, Christian
In the increasingly connected and digital world, businesses are sprinting to integrate technological advancements into their corporate fabric. This is evident with the emerging concept of “digital twinning.” Digital twins are virtual representations of real-world objects or systems used to digitally model performance, identify inefficiencies, and design solutions. This helps improve the “real world” product, reduces costs, and increases efficiency. However, this replication of a physical entity in the digital space is not without its challenges. One of the challenges that will become increasingly prevalent is the processing, storing, and transmitting of Controlled Unclassified Information (CUI). If CUI is not protected properly, an idea to save time, money, and effort could result in the loss of critical data. The Department of Defense's (DoD) CUI Program website defines CUI as “government-created or owned unclassified information that allows for, or requires, safeguarding and
This paper describes an approach to integrating high-fidelity vehicle dynamics with a high-fidelity gaming engine, specifically with respect to terrain. The work is motivated by the experimental need to have both high-fidelity visual content with high-fidelity vehicle dynamics to drive a motion base simulator. To utilize a single source of terrain information, the problem requires the just-in-time sharing of terrain content between the gaming engine and the dynamics model. The solution is implemented as a client-server with the gaming engine acting as a stateless server and the dynamics acting as the client. The client is designed to actively maintain a locally cashed terrain grid around the vehicle and actively refresh it by polling the server in an on-demand mode of operation. The paper discusses the overall architecture, the protocol, the server, and the client designs. A practical implementation is described and shown to effectively function in real-time. The benefit of the server
Brudnak, Mark
Roundabouts are intersections at which automated cars seem currently not performing sufficiently well. Actually, sometimes, they get stuck and the traffic flow is seriously reduced. To overcome this problem a V2N-N2V (vehicle-to-network-network-to-vehicle) communication scheme is proposed. Cars communicate via 5G with an edge computer. A cooperative machine-learning algorithm orchestrates the traffic. Automated cars are instructed to accelerate or decelerate with the triple aim of improving the traffic flow into the roundabout, keeping safety constraints, and providing comfort for passengers on board of automated vehicles. In the roundabout, both automated cars and human-driven cars run. The roundabout scenario has been simulated by SUMO. Additionally, the scenario has been reconstructed into a dynamic driving simulator, with a real human driver in a virtual reality environment. The aim was to check the human perception of traffic flow, driving safety and driving comfort. The hardware
Previati, GiorgioUccello, LorenzoMastinu, GianpieroGobbi, MassimilianoAlbanese, AntoninoRoccasalva, AlessandroSantin, GabrieleLuca, MassimilianoLepri, BrunoFerrarotti, Lauradi Pietro, Nicola
Digital mapping tools have become indispensable for road navigation. Applications like Waze and Google Maps harness the power of satellite imagery to provide precise visualization of GPS coordinates. The field advanced significantly in May 2023 with the introduction of dynamic 3D representations of the Earth. Companies such as Cesium now offer Unity3D and Unreal Engine Application Programming Interface that can be applied to geospatial applications. These images are no longer static and offer the opportunity to provide seamless continuous navigation. Driving simulation has been widely used for training and research. We investigate with this project the potential of this new geospatial database as a tool for scenario development to study manual and autonomous driving. We present an in-vehicle driving simulation integration that employs a real steering wheel and pedals from a stationary vehicle as controls. The visual experience is delivered through the Meta Quest Headset through an
Loeb, Helen S.Hernandez, JaimeLeibowitz, ChaseLoeb, BenjaminGuerra, ErickMangharam, Rahul
Designing an automotive seat, it is required to perform a detailed study of anthropometry, which deals with measurement of human individuals and understanding human physical variations. It also requires application-based movement study of driver’s hands, feet’s & overall body movement. It is very difficult to design seat curvatures based on any static manikin-based software. We at VECV, have developed a new concept using mixed reality VR technology to capture all body movements for designing best in class seat curvature to accommodate variety of drivers with different body types. We have designed a specialized static bunk, which has a wide range of seat, steering and ABC paddle adjustments, which are integrated with virtual data. We use to study and capture the data of driving position and other ergonomic postures of wide range of people with different body types on this static bunk according to their comfortable driving posture. In this comfortable driving posture, user is immersed in
Bhatnagar, ManasJain, NishantBiswal, JyotiranjanSharma, Ajay
A new washable wireless smart textile technology has potential uses in virtual reality and American Sign Language.
Engineers at the University of California San Diego have developed electronic “stickers” that measure the force exerted by one object upon another. The force stickers are wireless, run without batteries and fit in tight spaces. That makes them versatile for a wide range of applications, from arming robots with a sense of touch to elevating the immersive experience of VR and AR, making biomedical devices smarter, monitoring the safety of industrial equipment, and improving the accuracy and efficiency of inventory management in warehouses.
From the past few years, there is a pressing need for implementation of automatic in-vehicle safety systems to avoid vehicle crashes and fatalities. Development of autonomous emergency braking systems (AEBS) to detect and avoid collisions in such critical moments is of paramount importance. In this paper, AEBS is developed for a four-wheeler system that aims to detect vehicles and controls the ego vehicle based on the expected stooping distance (ESD). This control system aims to react based on the real-time relative distance & speed of the ego vehicle to actuate appropriate braking force. Control systems developed in Altair Activate are co-simulated with CARLA, a virtual reality simulator for autonomous driving research. Various scenarios including low and high-speed car to car motion, urban high and low traffic density environments are simulated to study the robustness of the control system. Further, studies are conducted to evaluate the effectiveness of the systems by varying the
K V, ManojKamikkiya, PUrs, Hriday V.
The automotive industry is continually evolving, with advanced technologies in a dynamic and competitive market increased consumer expectations driving the need for faster and more efficient product development process. It`s required vehicle manufacturers to launch new models with a short time to market and a larger number of electronic functionalities. Virtual reality is being widely adopted by the automotive industry to enhance the efficiency of product development processes and streamline project stages, leading to a reduction in the use of physical prototypes. Nevertheless, there is still a need for improvement in the analysis and verification of virtual reality through the monitoring of eye tracking and brain signals, which can enhance its robustness. A promising approach to increasing the efficiency of developing new products during the conceptual phase is the integration of models of Electronic Control Units with virtual prototypes. Testing on virtual prototypes reduces the
Bedulli, Fernando H.Leite, RodrigoFreitas, FabioMurari, ThiagoWinkler, Ingrid
Direct debugging of a vertical takeoff and landing (VTOL) fixed-wing aircraft’s control system can easily result in risk and personnel damage. It is effectively to employ simulation and numerical methods to validate control performance. In this paper, the attitude stabilization controller for VTOL fixed-wing aircraft is designed, and the controller performance is verified by MATLAB and visual simulation software, which significantly increases designed efficiency and safety of the controller. In detail, we first develop the VTOL fixed-wing aircraft’s six degrees of freedom kinematics and dynamics models using Simulink module, and the cascade PID control technique is applied to the VTOL aircraft’s attitude stabilization control. Then the visual simulation program records the flight data and displays the flight course and condition, which can validate the designed controller performance effectively. It can be concluded that the designed VTOL fixed-wing aircraft control visual simulation
Li, WeiShi, JiekaiWang, FangBai, Jie
The role of Virtual Reality (VR) platform for experimental studies to mitigate severe injuries is known. A Virtual Reality (VR) module was developed to provide an Indian auto-rickshaw driver experience using commercially available Oculus Quest 2 VR headset. A Driver Behaviour Questionnaire (DBQ) was developed and a study carried out among 20 auto-rickshaw drivers in Thanjavur, India. The DBQ questions provided data to shortlist the most likely near crash experiences among the surveyed drivers. A virtual reality environment was created using UNITY HUB software for one selected scenario from the DBQ survey analysis. A group of 10 volunteers to experience the event using VR gear in the biomechanical laboratory with reflective markers fixed on the body joints of the volunteers to obtain corresponding joint angles in the Neck, Lumbar, Shoulder, Hip, and Knee regions. This study identified various pre-crash reactions from drivers and compared them to the normal driving posture to determine
S, RagulG, SundhareswaranSankarasubramanian, HariharanPrasanna, SelvaVijayaraghavan, Sriram
Scientists have developed a flexible battery as thin as a human cornea, which stores electricity when it is immersed in saline solution, and which could one day power smart contact lenses. Smart contact lenses are high-tech contact lenses capable of displaying visible information on our corneas and can be used to access augmented reality.
For almost as long as it’s been a concept, NASA has been on the cutting edge of virtual reality (VR) technology. However, the space has seen a renaissance since the bulky headsets of the 1990s. Several high-profile companies now use VR for immersive video games and virtual chat rooms, but, to some, this technology has a use beyond entertainment.
A research team from the National University of Singapore (NUS) Faculty of Science, led by Professor Liu Xiaogang from the Department of Chemistry, has developed a 3D imaging sensor that has an extremely high angular resolution — it can distinguish points of an object separated by an angular distance, of as little as 0.0018°. The sensor operates on a unique angle-to-color conversion principle, allowing it to detect 3D light fields across the X-ray to visible light spectrum.
More pixels! This is a major trend in the display industry. The benefits of 8K or higher resolution TVs may be debatable. For eye catching applications such as AR/VR glasses, more and therefore smaller pixels are required for technical feasibility. Screen door effects and pixel inhomogeneities are easily visible and disturbing for the user on displays that sit closely to the viewer’s eye. μ-LEDs are considered an innovative technology for very high resolutions with pixel sizes of less than 10 μm and equally small pixel pitches. In general, they have the potential to be a groundbreaking display technology – provided production challenges can be solved. Just like OLED displays, μ-LEDs are an emissive display technology, i.e., each single subpixel is in itself a light source. Luminance and color variations between the individual pixels are likely. As this strongly influences the visual quality of the displays, a quality control and calibration of the displays is necessary not only in the
Battery electric vehicle (BEV) adoption and complex powertrains pose new challenges to automotive industries, requiring comprehensive testing and validation strategies for reliability and safety. Hardware-in-the-loop (HIL) based real-time simulation is important, with cooperative simulation (co-simulation) being an effective way to verify system functionality across domains. Fault injection testing (FIT) is crucial for standards like ISO 26262. This study proposes a HIL-based real-time co-simulation environment that enables fault injection tests in BEVs to allow evaluation of their effects on the safety of the vehicle. A Typhoon HIL system is used in combination with the IPG CarMaker environment. A four-wheel drive BEV model is built, considering high-fidelity electrical models of the powertrain components (inverter, electric machine, traction battery) and the battery management system (BMS). Additionally, it enables validation of driving dynamics, routes and environmental influences
Konzept, AnjaReick, BenediktPintaric, IgorOsório, Caio
Items per page:
1 – 50 of 617