Your Destination for Mobility Engineering Resources
Announcements for SAE Mobilus
Browse AllRecent SAE Edge™ Research Reports
Browse All 166Recent Books
Browse All 684Recently Published
Browse AllSpray washing is commonly used in car manufacturing to clean and prepare surfaces for subsequent processes like coating and painting. It uses high-pressure spray to deliver cleaning solutions or water onto vehicle surfaces to remove dirt, oils, metal shavings, and contaminants. For optimal washing quality, it is important to have proper nozzle arrangements, spray configuration, and vehicle positioning. Numerical simulations can be used to minimize the trial-and-error process and improve the quality. Spray washing involves strong discontinuities, fragmentation, violent free-surface changes, and complex multiphase flow, which are difficult to simulate using conventional grid-based methods. Lagrangian differencing dynamics (LDD) is a novel numerical method which has the features of being Lagrangian, meshless, and second-order accurate. It employs a meshless finite difference approximation scheme over scattered points and solves the incompressible Navier-Stokes equations in an implicit way
Due to the high-power density, high torque rating, low torque ripples and fault-tolerant capability, the Dual Three-Phase Permanent Magnet Synchronous Motor (DTP-PMSM) has recently emerged as a feasible alternative for automotive applications. However, it comes with its own challenge of increased losses at low torque due to the use of 6-phase inverter or two three-phase inverters. The DTP-PMSM drive model can be designed to function in two operating modes, double-channel (dual three-phase) mode with both the inverters operating, and single-channel (three-phase) with one of the two inverters shut down. This paper proposed an efficiency analysis between single channel and double channel modes in a DTP-PMSM drive. A simulation model is prepared to calculate efficiency, and the losses associated with different parts of battery fed DTP-PMSM drive system operated in both modes. Detailed loss model is simulated to represent efficiency of a battery-fed DTP-PMSM drive system. Both single
As the high-quality development of the new energy vehicle (NEV) and traction battery industries, the safety of traction batteries has become a global focus. Typically mounted at the bottom of NEVs, traction battery systems are particularly vulnerable to mechanical damage caused by bottom impacts, posing serious safety risks. This study investigates the damage sustained by NEV traction battery systems during bottom impact collisions, using computer tomography analysis to detail the damage mechanisms. The findings provide valuable data to enhance the safety and protective performance of traction batteries under such scenarios.