Chassis

Tire and Wheel Safety Issues

One of the most important safety critical components on cars, trucks, and aircraft is the pneumatic tire. Vehicle tires primarily control stopping distances on wet and dry roads or runways and strongly influence over-steer/under-steer behavior in handling maneuvers of cars and trucks. The inflated tire-wheel assembly also acts as a pressure vessel that releases a large amount of energy when catastrophically deflated. The tire can also serve as a fulcrum, both directly and indirectly, in contribu…

Classroom
Applied Brake Controls Test Track Experience: ABS, TCS, and ESC

Take notes. Take a spin. Repeat. Six classroom modules (2 each for ABS, TCS and ESC!) are paired with six driving modules on a real-world ice and snow development test track in the Upper Peninsula of Michigan. There's no better way to reinforce classroom learning than by grabbing the steering wheel. All of the driving exercises have been specifically developed so that anyone can hop in the car and immediately link what you have just learned in the classroom. As an added benefit an SAE Instructor…

Classroom
Accident Reconstruction Microlearning Library - Tires

Take an in-depth look at the critical role of tires in accident reconstruction. Join accident reconstruction expert Tom Vadnais as he explains the components of commercial and passenger vehicle tires, how to read the information on tire sidewalls, and what to look for on truck tires during an inspection.

Online
The Tire as a Vehicle Component

The principal functions of the pneumatic tire are to generate driving, braking, and cornering forces while safely carrying the vehicle load and providing adequate levels of ride comfort. This course explains how tire forces and moments are generated under different operating and service conditions and, in turn, demonstrates how these forces and moments influence various vehicle responses such as braking, handling, ride, and high-speed performance. The content focuses on the fundamentals of tire …

Classroom
Vehicle Dynamics for Passenger Cars and Light Trucks

This course will present an introduction to vehicle dynamics from a vehicle system perspective. The theory and applications are associated with the interaction and performance balance between the powertrain, brakes, steering, suspensions and wheel and tire vehicle subsystems. The role that vehicle dynamics can and should play in effective automotive chassis development and the information and technology flow from vehicle system to subsystem to piece-part is integrated into the presentation. Gove…

Classroom
Fundamentals of Steering Systems

Design and development of a modern steering system influences vehicle response to steering wheel input, driver effort, comfort, safety and fuel economy. In this interactive course participants will analyze the steering system from the road wheel to the steering wheel. Day one will begin with a deep dive into the anatomy and architecture of the lower steering system (wheel end, suspension geometry, linkages and steering gear), its effect on vehicle response and how forces and moments at the conta…

Classroom
High-Performance Brake Systems

While most passenger car brake systems are quite robust and reliable under typical operating conditions, high-performance driving and/or racetrack operation generally require alternative design solutions to optimize consistency and longevity. Whether it is brake fluid fade, cracked rotor discs, chronic knockback, or insufficient brake pad life, the stresses of motorsports can pose unique challenges to even the very best brake system designs. Consequently, ceramic rotors, six-piston calipers, adj…

Classroom
Tire Forensic and Accident Reconstruction

This course introduces basic tire mechanics, including tire construction components based on application type, required sidewall stamping in accordance with DoT/ECE regulations, tread patterns, regulatory and research testing on quality, tire inspections and basic tire failure identification. The course will provide you with information that you can use immediately on-the-job and apply to your own vehicle. This course is practical in nature and supplemented with samples and hands-on activities. …

Classroom
Introduction to Brake Control Systems: ABS, TCS, and ESC

Electronic brake control systems are required standard equipment on cars and trucks. Vehicles benefit from optimized braking, enhanced acceleration, and improved stability that these systems provide. The instructor introduces participants to system-level design considerations, vehicle interface requirements, and inevitable performance compromises that need to be addressed when implementing these technologies.Participants will begin by defining the tire-road interface and analyzing fundamental ve…

Classroom
ADAS Application: Automatic Emergency Braking

Active safety and (ADAS) are now being introduced to the marketplace as they serve as key enablers for anticipated autonomous driving systems. Automatic emergency braking (AEB) is one ADAS application which is either in the marketplace presently or under development as nearly all automakers have pledged to offer this technology by the year 2022. This one-day course is designed to provide an overview of the typical ADAS AEB system from multiple perspectives. A technical overview of the developmen…

Classroom
Applied Vehicle Dynamics

Take notes! Take the wheel! There is no better place to gain an appreciation for vehicle dynamics than from the driver’s seat. Spend three, intense days with a world-renowned vehicle dynamics engineer and SAE Master Instructor, his team of experienced industry engineers, and the BMW-trained professional driving instructors. They will guide you as you work your way through 12 classroom modules learning how and why vehicles go, stop and turn. Each classroom module is immediately followed by an eng…

Classroom
Fundamentals of Vehicle Suspension Design

The design and development of vehicle suspensions significantly influences vehicle handling and ride comfort. Suspension system design excellence follows the basic laws of physics using design synthesis techniques, a methodical process for suspension geometry development. Suspension geometry is the foundation of vehicle performance from which high-confidence suspension components and tunings can be developed. Suspension component design continues to move toward mass and cost efficient designs wi…

Classroom