Your Destination for Mobility Engineering Resources
Recently Published
Browse AllThis specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
In the context of increasing global energy demand and growing concerns about climate change, the integration of renewable energy sources with advanced modelling technologies has become essential for achieving sustainable and efficient energy systems. Solar energy, despite its considerable potential, continues to face challenges related to performance variability, limited real-time insights, and the need for reactive maintenance. To overcome these barriers, this work presents a Digital Twin framework aimed at optimizing solar-integrated energy systems through real-time monitoring, predictive analytics, and adaptive control. This work presents a Digital Twin framework designed to address the challenges of designing, operating, maintaining, and estimating renewable energy systems, specifically solar power, based on dynamic load demand. The framework enables real-time forecasting and prediction of energy outputs, ensuring systems operate efficiently and maintain peak performance across
As the brain and the core of the electric powertrain, the traction inverter is an essential part of electric vehicles (EVs). It controls the power conversion from DC to AC between the electric motor and the high-voltage battery to enable effective propulsion and regenerative braking. Strong and scalable inverter testing solutions are becoming more essential as EV adoption rises, particularly in developing nations like India. In India, traditional testing techniques that use actual batteries and e-motors present several difficulties, such as significant safety hazards, inadequate infrastructure, expensive battery prices, and a shortage of prototype-grade parts. This paper presents a comprehensive approach for traction inverter validation using the AVL Inverter TS™ system incorporating an advanced Power Hardware-in-the-Loop (PHiL) test system based on e-motor emulation technology. It enables safe, efficient, and reliable testing eradicating the need for actual batteries or mechanical
Traditionally, occupant safety research has centered on passive safety systems such as seatbelts, airbags, and energy-absorbing vehicle structures, all designed under the assumption of a nominal occupant posture at the moment of impact. However, with increasing deployment of active safety technologies such as Forward Collision Warning (FCW) and Autonomous Emergency Braking (AEB), vehicle occupants are exposed to pre-crash decelerations that alter their seated position before the crash. Although AEB mitigates the crash severity, the induced occupant movement leads to out-of-position behavior (OOP), compromising the available survival space phase and effectiveness of passive restraint systems during the crash. Despite these evolving real-world conditions, global regulatory bodies and NCAP programs continue to evaluate pre-crash and crash phases independently, with limited integration. Moreover, traditional Anthropomorphic Test Devices (ATDs) such as Hybrid III dummies, although highly
A passenger vehicle's front-end structure's structural integrity and crashworthiness are crucial to ensure compliance with various frontal impact safety standards (such as those set by Euro NCAP & IIHS). For a new front-end architecture, design targets must be defined at a component level for crush cans, longitudinal, bumper beam, subframe, suspension tower and backup structure. The traditional process of defining these targets involves multiple sensitivity studies in CAE. This paper explores the implementation of Physics-Informed Neural Networks (PINNs) in component-level target setting. PINNs integrate the governing equations into neural network training, enabling data-driven models to adhere to fundamental mechanical principles. The underlying physics in our model is based upon a force scheme of a full-frontal impact. A force scheme is a one-dimensional representation of the front-end structure components that simplifies a crash event's complex physics. It uses the dimensional and
The aim of this study is to develop a validated simulation method that accurately predicts vehicle behavior during a sudden loss of assist while cornering. The method also evaluates the steering effort required to return the vehicle to its intended path during failure scenarios, isolating the impact of uncertainties arising from driver performance. To illustrate the simulation methodology, the study involved testing various vehicles under conditions replicating sudden EPS assist loss during cornering. These tests captured the vehicle’s response, and the steering effort needed to correct its path. Different parameters affecting the vehicle behavior were studied and a validated method of simulation was developed.
Any agricultural operation (such as cultivation, rotavation, ploughing, and harrowing) includes both productive and non-productive activities (like transportation, stops, and idling) in the field. Non-productive work can mislead the actual load profile, fuel consumption, and emissions. In this project, a machine learning-based methodology has been developed to differentiate between effective operations and non-productive activities, utilizing data collected in the field from data loggers installed on the machinery. Measurements were conducted on various machines across the country in all major applications to minimize the influence of any individual sample deviation and to account for variability in customer operating practices. Few critical parameters such as Engine Speed, Exhaust Gas Temperature, Actual Engine Percentage Torque, GPS Speed etc.) were selected after screening and analyzing more than 100 CAN and GPS parameters. The critical parameters were subsequently integrated with














