Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 720

Recently Published

Browse All
This specification establishes the requirements for an expanded polytetrafluoroethylene (ePTFE) in the form of sealing tape, gaskets, or sheets requiring no mixing or curing.
AMS G9 Aerospace Sealing Committee
Autonomous vehicles regardless of the drivetrain configuration are highly sensitive to disturbances, uncertain dynamic parameters, and modeling errors. Neglecting these factors during trajectory-tracking or lane-keeping can cause the autonomous vehicle (AV) to deviate from its reference path, compromising safety and performance. In this work, a fixed-time prescribed performance backstepping controller integrated with a super-twisting-like algorithm is proposed to ensure fixed-time convergence of trajectory-tracking errors and robust stability under bounded uncertainty factors and external disturbances. A fixed-time prescribed performance approach is utilized to constrain the evolution of lateral and angular tracking errors, thereby limiting the risk of divergence and ensuring control stability. This framework is demonstrated by the Lyapunov-based stability analysis to demonstrate fixed-time stability in an arbitrarily small neighborhood around the origin. The framework is also
Bancel, BaptisteKali, YassineNerguizian, VahéSaad, Maarouf
This specification covers the requirements for electrodeposited cadmium on metal parts.
AMS B Finishes Processes and Fluids Committee
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 130 ksi (895 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a magnesium alloy in the form of investment castings (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers the requirements for silver deposited on metal parts with a copper strike between the basis metal and the silver deposit.
AMS B Finishes Processes and Fluids Committee
This document establishes a standardized test method designed to provide stakeholders—including runway deicing/anti-icing product manufacturers, users, regulators, and airport authorities—with a means of evaluating the relative ice penetration capacity of runway deicing and anti-icing products over time. The method measures ice penetration as a function of time, thereby enabling comparative assessments under controlled conditions. While commonly applied to runway treatments, these products may also be used on taxiways and other paved surfaces. The test is not intended to provide a direct measurement of the theoretical or extended ice penetration time of liquid or solid deicing/anti-icing products. Instead, it offers a practical and reproducible basis for performance evaluation, supporting operational decision-making and regulatory compliance.
G-12RDP Runway Deicing Product Committee
This specification covers a copper-beryllium alloy in the form of bars and rods (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of pre-alloyed powder.
AMS AM Additive Manufacturing Metals
This SAE Aerospace Recommended Practice (ARP) provides general guidelines for defining a specification for an electromechanical actuator (EMA) motor. This document is for permanent magnet brushed and brushless motors.
A-6B3 Electro-Mechanical Actuation Committee
This specification covers a low-alloy steel in the form of bare welding wire. Type 2 - copper coated wire was removed from this document (see 8.4).
AMS E Carbon and Low Alloy Steels Committee
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered. The integration of NBC
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Recommended Practice (ARP) defines recommended analysis and test procedures for qualification of pneumatically, electrically, manually, and hydraulically actuated air valves. They may be further defined as valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff). Qualification testing performed on the airplane to verify compatibility of the valve function and stability as part of a complete system is outside the scope of this document. Refer to ARP1270 for design and certification requirements for cabin pressurization control system components. As this document is only a guide, it does not supersede or relieve any requirements contained in detailed Customer specifications.
AC-9 Aircraft Environmental Systems Committee
The intent of this report is to encourage that the thermal management system architecture be designed from a global platform perspective. Separate procurements for air vehicle, propulsion system, and avionics have contributed to the development of aircraft that are sub-optimized from a thermal management viewpoint. In order to maximize the capabilities of the aircraft for mission performance and desired growth capability, overall system efficiency and effectiveness should be considered. This document provides general information about aircraft Thermal Management System Engineering (TMSE). The document also discusses approaches to processes and methodologies for validation and verification of thermal management system engineering. Thermal integration between the air vehicle, propulsion system, and avionics can be particularly important from a thermal management standpoint. Due to these factors, this report is written to encourage the development of a more comprehensive system
AC-9 Aircraft Environmental Systems Committee
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
The durability of wheel bearings is assessed in terms of raceway life and flange life. Raceway life focuses on the performance and damage tolerance of rolling elements, while flange life evaluates the structural integrity of wheel flanges under operational stresses. Traditionally, durability predictions relied on conventional design methods and analytic formulas for raceway spalling, as well as static load assumptions for flange fatigue analysis. Recently, integrating design of experiments (DOE) with traditional approaches has enhanced these methods, enabling systematic evaluation of design variables and loading conditions. This paper introduces a methodology for analyzing raceway life and damage in automotive wheel bearings using RLDA (Road Load Data Acquisition) data. The process involves acquiring raw deterministic load data, filtering it to preserve high-peaked signals, and transforming the filtered data into block cycles derived from load time histories. Each block cycle contains
Narendra, VishwanathMane, YogirajPaua, KetanSingh, Ram KrishnanVellandi, Vikraman
Software-Defined Vehicles (SDVs) are changing the automotive landscape by separating hardware from software and enabling features like over-the-air updates, advanced control strategies, and real-time decision-making. To support this transformation, EV powertrain systems require high-performance computing (HPC) platforms capable of real-time control, data processing, and cross-domain communication. This paper introduces a fully SDV-compatible EV powertrain architecture designed with NXP S32G3 domain controller. This processor supports multiple core having lockstep. It is designed for zonal control and automotive functional safety. The proposed designed uses the automotive Ethernet as an alternate option for CAN based communication to fulfill the bandwidth and timing requirement of today’s SDV applications. Hence it allows gigabit data transfer, Time Sensitive Networking (TSN) and also provides low latency across SDV control domain. Through secure real time interface with the vehicle’s
Pawar, GaneshInamdar, Sumer DeepakKumar, MayankDeosarkar, PankajTayade, NikhilKanse, DattatrayChopade, Vipul
Threat Analysis and Risk Assessment (TARA) is a continuous activity, acting as a foundation of cybersecurity analysis for electrical and electronics automotive products. Existing TARA methodologies in the automotive domain exhibits challenges due to redundant and manual processes, particularly in handling recurring common assets across Electronic Control Units (ECUs) and functional domains. Two primary approaches observed for performing TARA are Manual-Asset-Centric TARA and Catalogue-Driven TARA. Manual-Asset Centric TARA is constructed from scratch by manually identifying the assets, calculating risks by likelihood, and impact determination. Catalogue-Driven TARA utilizes the precompiled likelihood and impact against identified assets. Both approaches lack standardized and modular mechanisms for abstraction and reuse. This results in poor scalability, increased efforts, and difficulty in maintaining consistency across vehicle platforms. The proposed method in this research overcomes
Goyal, YogendraSinha, SwatiSutar, SwapnilJaisingh, Sanjay
In today’s world, automotive interior lighting systems not only need to meet rigorous internal test standards but also need to adapt with the changing customer’s expectation across different vehicle segments. As per technological advancements and consumer demands, these systems have become increasingly advanced and software driven. Traditionally, validation relied on physical integration with vehicle hardware, particularly infotainment system. However, this conventional approach presents several limitations, including dependency on mature hardware and software, challenges in testing and synchronization across multiple lighting modules, and constraints in design validation accuracy. To address these limitations, this paper introduces an innovative approach that employs real-time hardware-in-the-loop (HIL) simulation for virtual lamp testing. This method facilitates autonomous testing, enabling independent validation of interior lighting systems within a controlled virtual environment
Shah, KunalJoshi, Vivek S.Mandloi, Prince
Mechatronic systems, which are integral to various automotive applications, enhance both functional criticality and user experience. As the complexity and number of features in automotive systems increase, the volume of test cases for system-level features and their interactions grows exponentially. This necessitates rigorous regression testing with each software update to ensure system reliability and performance. The systems engineering V-model is a crucial framework for the design and development of complex systems, emphasizing the importance of testing at every level, including system, subsystem, and software. Effective validation at the system level involves numerous subsystems and their software interacting, making the testing process resource-intensive and time-consuming. During system-level testing, issues often arise that require fixes within various subsystems. After addressing these issues, retesting is necessary to ensure that the changes do not negatively impact overall
Sureka, SumitRawat, GautamGhosh, SoumikVidhu, Nandagopal