Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 718

Recently Published

Browse All
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
With rapid advancements in Autonomous Driving (AD) & Advanced Driver Assistance Systems (ADAS), numerous sensors are integrated in vehicles to achieve higher and reliable level of autonomy. Due to the growing number of sensors and its fusion creates complex architecture which causes challenges in calibration, cost, and system reliability. Considering the need for further ADAS advancements and addressing the challenges, this paper evaluates a novel solution called One Radar - a single radar system with a wide field of view enabled by advanced antenna design. Placing the single radar at the rear of the vehicle eliminates the need for corner radars and ultrasonic sensors used for parking assistance. With rigorous real-world testing in different urban and low-speed scenarios, the single radar solution showed comparable accuracy in object detection with warning and parking assistance to the conventional combination of corner radars and ultrasonic sensors. The simple single sensor-based
Anandan, RamSharma, Akash
The increasing adoption of electric vehicles (EVs), efficient and accurate battery modeling has become crucial for reliable performance evaluation and control system design. However, maintaining high accuracy in simulations generally requires complex computations, which can limit real-time applicability and scalability. High-fidelity battery models often require significant computational time, making them unsuitable for real-time simulations and large-scale system integration. This paper presents the application of Simulink Reduced Order Models (ROM) to simplify the simulation of EV batteries while maintaining acceptable levels of accuracy. The EV simulation environment has been developed in MATLAB/Simulink to analyze Battery Management System (BMS) control system design and assess EV system level performance. This simulation platform consists of BMS and other important EV controller models and high-fidelity plant models for battery and powertrain systems. While these high-fidelity
Vernekar, Kiran
The penetration of ADAS in automotive markets is increasing rapidly. However, their effectiveness and acceptance are significantly influenced by regional driving behaviours and infrastructure. This study explores the interaction between naturalistic driver behaviour in India and the operational characteristics of ADAS systems (FCW, ACC, LCF and BSD) with focus on cars. Using real-world driving data collected from Indian roads, the research aims to highlight the divergence between ADAS design assumptions often based on structured Western traffic environments and the complex, dynamic nature of Indian traffic, characterized by frequent human negotiation, informal road practices, and different vehicle types. The study characterizes multiple driver’s driving pattern through naturalistic driving and ADAS systems behaviour in corresponding situations, notably how they adapt to unstructured Indian scenarios such as lane ambiguity, pedestrian unpredictability, traffic flow unpredictability and
Sankpal, Krishnath NamdevMagar, AkshayKhot, AnkushKulkarni, AlokPerez, Marc
The HVAC (Heating, Ventilation, and Air conditioning) system is designed to fulfil the thermal comfort requirement inside a vehicle cabin. Human thermal comfort primarily depends upon an occupant’s physiological and environmental condition. Vehicle AC performance is evaluated by mapping air velocity and local air temperature at various places inside the cabin. There is a need to have simulation methodology for cabin heating applications for cold climate to assess ventilation system effectiveness considering thermal comfort. Thermal comfort modelling involves human manikin modeling, cabin thermal model considering material details and environmental conditions using transient CAE simulation. Present study employed with LBM (Lattice-Boltzmann Method) based PowerFLOW solver coupled with finite element based PowerTHERM solver to simulate the cabin heat up. Human thermal comfort needs physiological modelling; thus, the in-built Berkeley human comfort library is used in simulation. Human
Baghel, Devesh KumarKandekar, AmbadasKumar, RaviDimble, Nilesh
Automobile frames, particularly trellis frame structures, are engineered for superior dynamic performance, with stiffness being a paramount consideration1. These frames frequently utilize welded tubes, a manufacturing process made more complex by the necessity of bending tubes to precise angles to meet packaging and assembly requirements2. This bending, however, induces residual stresses that can substantially compromise the frame's durability3. This investigation employs a detailed finite element simulation to analyse the structural deformation and residual stresses that arise during the bending of Cold Electric Welded (CEW) annealed round pipes4. A comprehensive 3D mechanical model, incorporating realistic tooling and contact interactions, was developed to accurately simulate shape change, ovality, and wall thickness redistribution during the bending process5. CEW pipes, unlike their Electric Resistance Welded (ERW) counterparts, possess minimal initial forming stresses, and the
Rajwani, IshwarKhare, Saharash
The electrification of transportation is revolutionizing the automotive and logistics sectors, with electric vehicles (EVs) assuming an increasingly pivotal role in both passenger mobility and commercial activities. As the adoption of EVs rises, the necessity for precise range estimation becomes essential, especially under diverse operational circumstances, including vehicle and battery characteristics, driving conditions, environmental influences, vehicle configurations, and user-specific behaviors. Among the varying factors, a key fluctuating one is user behavior—most notably, increased payload, which significantly affects EV range. A key business challenge lies in the significant variability of EV range due to changes in vehicle load, which can affect performance, operational efficiency, and cost-effectiveness—especially for fleet-based services. This research aims to tackle the technical deficiency in forecasting electric vehicle (EV) range under various payload conditions
Khatal, SwarajGupta, AnjaliKrishna, Thallapaka
Improving transaxle efficiency is vital for enhancing the overall performance and energy economy of electric vehicles. This study presents a systematic approach to minimizing power losses in a single-speed, two-stage reduction e-transaxle (standalone) by implementing a series of component-level design optimizations. The investigation begins with the replacement of conventional transmission oil with a next-generation low-viscosity transmission fluid. By adopting a lower-viscosity lubricant, the internal fluid resistance is reduced, leading to lower churning losses and improved efficiency across a wide range of operating conditions. Following this, attention is directed toward refining the gear macro-geometry to create a gear set with reduced power losses. This involves adjustments to parameters such as module, helix angle, pressure angle, and tooth count, along with the introduction of a positive profile shift. These modifications improve the contact pattern, lower sliding friction, and
Agrawal, DeveshBhardwaj, AbhishekBhandari, Kiran Kamlakar
The precise validation of radar sensor is necessary due to surging demand for reliable Advanced Driver-Assistance Systems (ADAS) and autonomous driving technologies. Over-the-Air (OTA) Hardware-in-the-Loop approach is the optimal solution for the current challenges facing with traditional on road testing. This approach supports productive, controllable and repetitive environment because of its lab-based setup which will eliminates the drawbacks such as high costs, limited repeatability, safety related issues. Key parameters of radar such as accurate detection of objects, analysis of doppler velocity, range estimation, angle of arrival measurement, can be tested dynamically. And this test setup offers wide range of testing scenarios, including varying distance of target, relative speeds, simulation of objects and environmental effects also supported.OTA provides the flexibility to eliminate the physical test tracks or targets so that developers can simulate the errors, by introducing
Jadhav, TejasKarle, UjjwalaPaul, HarshitSNV, Karthik
The rapid evolution of electric vehicles (EVs) has amplified the demand for highly integrated, efficient, and intelligent powertrain architectures. In the current automotive landscape, EV powertrain systems are often composed of discrete ECUs such as the OBC, MCU, DC-DC Converter, PDU, and VCU, each operating in isolation. This fragmented approach adds wiring harness complexity, control latency, system inefficiency, and inflates costs making it harder for OEMs to scale operations, lower expenses, and accelerate time-to-market. The technical gap lies in the absence of a centralized intelligence capable of seamlessly managing and synchronizing the five key powertrain aggregates: OBC, MCU, DC-DC, PDU, and VCU under a unified software and hardware platform. This fragmentation leads to redundancy in computation, increased BOM cost, and challenges in system diagnostics, leading to sub-optimal vehicle performance. This paper addresses the core issue of fragmented control architectures in EV
Kumar, MayankDeosarkar, PankajInamdar, SumerTayade, Nikhil
Rainwater accumulation in the cowl region, located at the base of the windshield, can lead to serious HVAC performance degradation, corrosion, and passenger discomfort if not effectively drained. Traditional physical validation methods are often time-consuming, costly, and limited in diagnostic insight. This study presents a simulation-driven methodology for evaluating and optimizing HVAC cowl box drainage performance during the early design phase. Using STAR-CCM+, a multiphase Volume of Fluid (VOF) approach was implemented to visualize water flow behavior under static and dynamic conditions. Design variants were assessed by modifying drain tube geometry (shape, size, and placement) and cowl surface features, such as baffle positioning. Results showed that inadequate drainages were primarily due to stagnation zones, shallow slopes, and drain locations prone to clogging. Water film accumulation near the HVAC inlet was accurately predicted, highlighting potential ingress paths under high
Mathew, RonnieIbrahim, SayyafNikumbh, Nayan
The increasing adoption of electric vehicles (EVs) has intensified the demand for advanced elastomeric materials capable of meeting stringent noise, vibration and harshness (NVH) requirements. Unlike internal combustion engine (ICE) vehicles, EVs lack traditional masking noise generated by the powertrain. In the automotive industry, the dynamic stiffness of elastomers in internal combustion engines has traditionally been determined using hydraulic test rigs, with test frequencies limited to a maximum of 1,000 Hz. Measurements above this frequency range have not been possible and are conducted only through computerized FE or CAE calculation models. Electric drive systems, however, generate distinct tonal noise components in the high-frequency range up to 10,000 Hz, which are clearly perceptible even at low sound pressure levels. Consequently, the dynamic stiffness characteristics of elastomers up to 3,000 Hz are critical for optimizing NVH performance in EVs. This study focuses on high
Bohne, ChristianGröne, Michael
In the automotive industry, during the early phase of development, numerical prediction of strength and durability of chassis parts become crucial as these predictions help in design optimization, selecting the appropriate material and identifying potential issues before physical prototypes are built. One of the crucial simulation requirements is the prediction of accurate load carrying capacity or bucking load of axle links. When it comes to the sheet metal axle links there is a deviation in the hardware test and CAE results for load carrying capacity due to the non-integration of forming effects in the numerical simulation, resulting in overdesign of parts, increased costs and development time. This study aims to address these challenges by integrating forming effects experienced by the part during forming process into static strength simulations. These effects include plastic straining, which contributes to material strain hardening and local thickness changes that lead to thinning
R B, GovindSelvaraj, Nirmal Velgin
India's electric 2-wheeler (E2W) market has witnessed fast growth, driven by lucrative government policies. The two-wheeler segment dominates the Indian automotive market, accounting for the largest share of total sales. Consequently, the manufacturers of 2-wheelers are developing new electric vehicles (EV) tailored for the Indian market. However, the Indian EV market has witnessed multiple fire accidents in recent years, raising safety concerns among consumers and industry stakeholders. These incidents highlight key weakness in battery thermal management systems (BTMS), particularly during charging. Most existing E2W BTMS relies on passive (natural) air cooling, which has been associated with fire incidents due to its inefficiency in heat dissipation, particularly during charging in India's high-temperature environment. Therefore, it is imperative to build thermally viable and economical BTMS for the growing E2W vehicles with fast charging capability. FEV is actively developing the
Raut PhD, AnkitHiremath, Vinodkumar SEmran, AshrafGarg, ShivamBerry, Sushil
In the realm of automotive safety engineering, the demand for efficient and accurate crash simulations is ever-increasing. As finite element (FE) modeling of components becomes increasingly detailed and the availability of advanced material models improves, crash simulations for full vehicles can become time-consuming. Evaluating the crash performance of any vehicle subsystem requires structural simulations at different levels. While the design and configuration phase deals with a local simulation in representative load cases, full vehicle simulations are required later for a final digital proof of achieved requirements and development targets. This paper introduces a novel methodology for replacing full vehicle crash simulations, as required for a local view on the structural load path development, through segment-models. By adapting segment-model simulations, a significant reduction in computational time and resource usage is achieved, thereby optimizing CPU cluster performance and
Moncayo, DavidMalipatil, AnandPrasad, RakeshKunnath, Allwin
Determination of part tolerances for reduced variation in suspension level performance by using Multi-objective Robust Design Optimization (MORDO) The car industry is very competitive, and companies need to satisfy their customers to keep or grow their market share. It’s important for car makers to build affordable cars that provide a good driving experience, comfort for passengers, and safety for everyone. Suspension systems are very important for how a vehicle rides, handles, and stays stable, and they directly affect how driving feels. If parts are not positioned correctly, it can really impact how well a vehicle works. As a result, suggested limits for where suspension parts are placed are given to prevent issues with Kinematics and Compliance (K&C) properties. So, designing parts with the right tolerances is very important in making vehicles. It helps lower production costs and keeps the vehicle's performance consistent. This paper shows a step-by-step method to find the strongest
Pathak, JugalGanesh, Lingadalu
The invention tackles the main drawback of traditional electric vehicle charge ports which use Vehicle Control Unit (VCU) communication intensively and tend to have separate actuators to fulfill the locking function and requirements. These existing systems do not only limit autonomous operation of the charging lid in ignition-off condition but they also add mechanical complexity and packaging space, as well. To overcome these limitations, this research work introduces a Smart Charge Port Housing (CPH), which combines a rotary actuator with an onboard microcontroller and single shaft self-locking device, which allows intelligent and autonomous control of the flaps without relying on vehicle wide control networks. The actuator can remember the last position that the charging lid was in so it can be operated even while the VCU is in the inactive state. The integrated self-locking functionality is achieved by using a specially designed hinge shaft that allows a certain free play for
Mohunta, SanjayKhadake, Sagar
Transportation industry is facing a growing challenge to reduce its carbon footprint and utilize the carbon neutral, more environmentally sustainable fuels to comply with the goal of carbon neutrality. Implementation of carbon free fuels such as Hydrogen, Ammonia and low carbon fuels such as Methanol, Ethanol can significantly reduce the greenhouse gas emissions, but these fuels are suitable for SI engine architecture due to their high-octane ratings. Hydrotreated Vegetable Oil (HVO) is one of the few fuel solutions available today with a high Cetane rating (70-80), that can be used as a drop-in fuel in the existing CI engines, with minimal modifications. The main constituent of HVO is pure alkane and it can be produced from feedstocks such as vegetable oils, animal fats, various wastes and by-products. A closed cycle 3-D CFD combustion simulation using a detailed chemistry-based solver has been conducted with the HVO, on a three cylinder, naturally aspirated water-cooled CI engine at
Tripathi, AyushMukherjee, NaliniNene, Devendra
In India, fuel economy is one of the most critical factors influencing a customer's decision to own a passenger car. Beyond consumer preference, fuel consumption also plays a significant role in the nation's energy security. In line with this, the government promotes fuel-efficient vehicles and technologies through various regulations, policies, and mandates. Vehicle manufacturers, in response, focus on designing vehicles that align with both customer expectations and regulatory requirements. Fuel economy certification is typically based on standardized laboratory tests that simulate controlled environmental conditions, driving cycle (MIDC), vehicle load, and operation of electrical and electronic systems. However, actual on-road driving conditions by end user vary significantly due to factors such as traffic conditions, ambient temperature, air conditioning use, driving behavior and variable loading of the vehicle. With implementation of Bharat Stage VI, Real Driving Emission (RDE
Singh, Abhay PratapBathina, Revanth KumarTijare, Shantanu
Affordable, efficient and durable catalytic converters for the two and three-wheeler industry in developing countries are required to reduce vehicle emissions and to maintain them at a low level; and therefore, to participate in a cleaner and healthier environment. Especially, metallic catalyst substrates developed by Emitec Technologies GmbH with structured foils like the Longitudinal Structure (LS), or LS-Design® are fully compatible to this effort with more than 70% share of produced 2/3 Wheelers metallic catalyst substrates for the Indian market in 2024. One decade after the market introduction of this LS structure, Emitec Technologies GmbH will introduce now a new generation of foil structure: the Crossversal Structure (CS) or CS-Design®, that improves further the affordability, the efficiency of metallic catalytic converters, keeping the durability at same level as previous substrate generation. The paper will briefly review the development of metallic substrates for 2/3 wheelers
Jayat, FrancoisSeifert, SvenBhalla, AshishGanapathy, Narayana Prakash
In current scenario, demand for alternate energy is increasing due to depletion of fossil fuels and countries working to achieve carbon neutrality by 2050. Hydrogen being a cleaner fuel, many OEMs across the world started to work on various strategies like hydrogen combustion engine and fuel cell. Passenger vehicles like buses are at the lookout for fuel cell technology at faster rate than other commercial vehicles. In fuel cell vehicles, cooling system design is critical & complex since it includes fuel cell cooling, Power electronics cooling & battery cooling. In this paper, cooling system design of a Fuel cell electric bus for inter-city application is demonstrated. Radiators and Fans are designed considering overall heat rejection and Coolant inlet temperature requirements of components. Cooling system circuit and pump is decided to meet the coolant flow rate targets. Flow simulation and thermal simulation done with the help of simulation models built using software KULI to predict
M S, VigneshKiran, Nalavadath
This invention solves a significant safety issue where drivers have low visibility of the Outside Rear View Mirror (ORVM) in the case of rain, fog, dust or ice formation on the Side Door Window Glass (SDWG). Currently developed methods, such as hydrophobic finishing or films and heated window glass on the doors, provide temporary or weak results, and thus, a more successful and dependable method is demanded. In order to address this problem, we have modified the Outer Waist Seal, which includes a Glass Wiping Mechanism in it. Outer Waist Seal is a type of weather strip fixed on the bottom of the side window of a vehicle on the panel of the door. It does not allow the flow of heavy water, dust and debris into the door cavity, besides supporting the glass on the window when it is in a movement process. The stationary fixed arm of this system is coupled with a rotating arm and an attached wiper blade powered by a low-speed-high-torque motor and interfaced with the Body Control Module (BCM
Neelam, RajatChowdhury, AshokPanchal, GirishKumar, Saurav
India’s severe road safety challenges, marked by high accident rates and fatalities, necessitate innovative solutions like Advanced Driver Assistance Systems (ADAS) to align with SIAT 2026’s theme, “Innovative Pathways for Safe and Sustainable Mobility.” This paper synthesizes recent studies to explore ADAS’s role in enhancing safety and sustainability in India’s unique traffic environment. Technologies such as automatic emergency braking, lane departure warnings, and driver monitoring systems show promise in reducing crashes caused by human error, a leading factor in road incidents. However, India’s complex road conditions—unmarked lanes, dense urban traffic, and prevalent two-wheelers—pose significant challenges to ADAS effectiveness. There developed is a strong public support recently for ADAS, with many Indian road users recognizing its safety benefits and advocating for its integration into vehicles especially passenger vehicles. Despite growing adoption by automakers like Tata
Neelakanthu, KarraSreenivasulu, TKumar, OmHaregaonkar, Rushikesh SambhajiKumar, Rajiv
As the brain and the core of the electric powertrain, the traction inverter is an essential part of electric vehicles (EVs). It controls the power conversion from DC to AC between the electric motor and the high-voltage battery to enable effective propulsion and regenerative braking. Strong and scalable inverter testing solutions are becoming more essential as EV adoption rises, particularly in developing nations like India. In India, traditional testing techniques that use actual batteries and e-motors present several difficulties, such as significant safety hazards, inadequate infrastructure, expensive battery prices, and a shortage of prototype-grade parts. This paper presents a comprehensive approach for traction inverter validation using the AVL Inverter TS™ system incorporating an advanced Power Hardware-in-the-Loop (PHiL) test system based on e-motor emulation technology. It enables safe, efficient, and reliable testing eradicating the need for actual batteries or mechanical
Mehrotra, SoumyaChhabra, Rishabh