Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 718

Recently Published

Browse All
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
Original Equipment Manufacturers (OEM’s) are focusing on the fuel economy of passenger cars to meet the next generation emission norms. Few techniques such as downsizing engines, raising lubricant temperature, reducing combustion time and regulating the start-stop system of engines are various efforts being considered by Automobile OEMs to attain fuel efficiency along with next generation emission norms. On the other hand, lubricants used for such engines are also to be modified accordingly to meet more fuel efficiency. Lowering viscosity along with addition of friction modifiers for normalizing frictional losses is widely practiced as the most economical techniques. To achieve this lubricant formulator and additive manufacturers have moved towards modern base oils and advanced additive technologies. This study is done to understand key parameters which reduce friction and increase fuel economy using same viscosity grade oils. In the current study, we have formulated different low
Vabbina, Shiv KumarKatta, LakshmiJoshi, RatnadeepChaudhary, RameshwarSeth, SaritaBhardwaj, AnilArora, Ajay Kumar
The penetration of ADAS in automotive markets is increasing rapidly. However, their effectiveness and acceptance are significantly influenced by regional driving behaviours and infrastructure. This study explores the interaction between naturalistic driver behaviour in India and the operational characteristics of ADAS systems (FCW, ACC, LCF and BSD) with focus on cars. Using real-world driving data collected from Indian roads, the research aims to highlight the divergence between ADAS design assumptions often based on structured Western traffic environments and the complex, dynamic nature of Indian traffic, characterized by frequent human negotiation, informal road practices, and different vehicle types. The study characterizes multiple driver’s driving pattern through naturalistic driving and ADAS systems behaviour in corresponding situations, notably how they adapt to unstructured Indian scenarios such as lane ambiguity, pedestrian unpredictability, traffic flow unpredictability and
Sankpal, Krishnath NamdevMagar, AkshayKhot, AnkushKulkarni, AlokPerez, Marc
The precise validation of radar sensor is necessary due to surging demand for reliable Advanced Driver-Assistance Systems (ADAS) and autonomous driving technologies. Over-the-Air (OTA) Hardware-in-the-Loop approach is the optimal solution for the current challenges facing with traditional on road testing. This approach supports productive, controllable and repetitive environment because of its lab-based setup which will eliminates the drawbacks such as high costs, limited repeatability, safety related issues. Key parameters of radar such as accurate detection of objects, analysis of doppler velocity, range estimation, angle of arrival measurement, can be tested dynamically. And this test setup offers wide range of testing scenarios, including varying distance of target, relative speeds, simulation of objects and environmental effects also supported.OTA provides the flexibility to eliminate the physical test tracks or targets so that developers can simulate the errors, by introducing
Jadhav, TejasKarle, UjjwalaPaul, HarshitSNV, Karthik
This study is conducted to analyse the significance of the Bharat NCAP crash test protocol in real road crashes in India. Accident data from on-the-spot investigation (Road Accident Sampling System India) and Government of India’s, Ministry of Road Transport and Highways official road accident statistics 2023 is used together to understand the real road accidents in India. The current Bharat NCAP crash test protocol is compared against the real road accidents and the frequency of the same in discussed in this paper. A seven-step calculation method is developed to analyse real accidents together with existing crash tests by using similar crash characteristics like impact area, overlap and direction of force. This method makes the real accident comparable with the corresponding crash test by calculating the impact energy during the collision between the real accident and a collision under crash test conditions. Relevant parameters in real accidents that significantly influence the test
Moennich, JoergLich, ThomasKumaresh, Girikumar
In the context of increasing global energy demand and growing concerns about climate change, the integration of renewable energy sources with advanced modelling technologies has become essential for achieving sustainable and efficient energy systems. Solar energy, despite its considerable potential, continues to face challenges related to performance variability, limited real-time insights, and the need for reactive maintenance. To overcome these barriers, this work presents a Digital Twin framework aimed at optimizing solar-integrated energy systems through real-time monitoring, predictive analytics, and adaptive control. This work presents a Digital Twin framework designed to address the challenges of designing, operating, maintaining, and estimating renewable energy systems, specifically solar power, based on dynamic load demand. The framework enables real-time forecasting and prediction of energy outputs, ensuring systems operate efficiently and maintain peak performance across
R, AkashBurud, Priti RajuGumma, Muralidhar
The proposal of GSR 16(E) in India promotes six airbags in passenger vehicles, aiming to enhance occupant safety. In parallel, the new Bharat New Car Assessment Program (BNCAP) outlines performance protocols that demand robust airbag deployment strategies to achieve a five-star safety rating. One of the critical challenges in meeting both regulatory and consumer safety expectations is the optimal packaging of the airbag Electronic Control Unit (ECU) and its associated impact sensors. These must perform reliably across regulatory tests, BNCAP protocols, and real-world accident scenarios. The location of side acceleration ‘g’ side impact sensors—whether mounted on the side sill, B-pillar, C-pillar, or door structures—is pivotal to achieving consistent and timely side airbag deployment. These sensors must also demonstrate immunity to false triggers or missed events in both static and dynamic misuse and abuse conditions. Ensuring robust sensor performance under these varied conditions is
Kudale, ShaileshRao, Guruprakashwayal, VirendraGoswami, Tarun
Seats of modern cars should necessarily meet the regulatory safety norms along with aesthetics and comfort. In the existing passenger cars prevailing across the Indian subcontinent, the measure of safety has been a challenging one. The stringent regulatory norms thereby make the Airbag very promising. In the Automotive industry, safety features are very important, one of the topmost features which falls in this category is airbags. The driver and passenger safety during high impact collisions and sudden crashes is the key objective of airbag. This safety is provided by the airbag with its automatic deployment. The inflatable airbag is engineering in a way to respond very quickly during a collision and furnish necessary cushioning to decrease the impulse and enhance the safety of the passenger. The technology has been practiced widely upon many vehicles' seats. However, the present work highlights a novel approach of packaging the HPTS air bag in second row seat. This Air bag unit is
Buradkar, RajatBose, KarthikJadhav, DeepikaBalakrishnan, Gangadharan
As the brain and the core of the electric powertrain, the traction inverter is an essential part of electric vehicles (EVs). It controls the power conversion from DC to AC between the electric motor and the high-voltage battery to enable effective propulsion and regenerative braking. Strong and scalable inverter testing solutions are becoming more essential as EV adoption rises, particularly in developing nations like India. In India, traditional testing techniques that use actual batteries and e-motors present several difficulties, such as significant safety hazards, inadequate infrastructure, expensive battery prices, and a shortage of prototype-grade parts. This paper presents a comprehensive approach for traction inverter validation using the AVL Inverter TS™ system incorporating an advanced Power Hardware-in-the-Loop (PHiL) test system based on e-motor emulation technology. It enables safe, efficient, and reliable testing eradicating the need for actual batteries or mechanical
Mehrotra, SoumyaChhabra, Rishabh
Traditionally, occupant safety research has centered on passive safety systems such as seatbelts, airbags, and energy-absorbing vehicle structures, all designed under the assumption of a nominal occupant posture at the moment of impact. However, with increasing deployment of active safety technologies such as Forward Collision Warning (FCW) and Autonomous Emergency Braking (AEB), vehicle occupants are exposed to pre-crash decelerations that alter their seated position before the crash. Although AEB mitigates the crash severity, the induced occupant movement leads to out-of-position behavior (OOP), compromising the available survival space phase and effectiveness of passive restraint systems during the crash. Despite these evolving real-world conditions, global regulatory bodies and NCAP programs continue to evaluate pre-crash and crash phases independently, with limited integration. Moreover, traditional Anthropomorphic Test Devices (ATDs) such as Hybrid III dummies, although highly
Pendurthi, Chaitanya SagarTHANIGAIVEL RAJA, TKondala, HareeshSudarshan, B.SudarshanNehe, VaibhavRao, Guruprakash
This paper investigates the current state of road safety for female occupants in India, with a particular focus on road accident statistics and the gaps in safety regulations. According to the Road Accident in India 2022 report by the Ministry of Road Transport and Highways (MoRTH), female occupants constitute 16% of passenger car fatalities. Using a extensive dataset of 596 passenger car accidents involving at least one female occupant from the Road Accident Sampling System – India (RASSI), this study evalu the severity and patterns of injuries sustained by female drivers and passengers. The analysis identifies critical shortcomings in existing safety measures, particularly in addressing anatomical differences and male-centric safety designs. Gender-sorted injury trends reveal heightened vulnerabilities for women in crash scenarios. Current regulatory frameworks bank on crash test dummies developed on average male anthropometry, neglecting female-specific biomechanical needs in
Ayyagari, ChandrashekharG, Santhosh KumarRao, Guruprakash
In current scenario, demand for alternate energy is increasing due to depletion of fossil fuels and countries working to achieve carbon neutrality by 2050. Hydrogen being a cleaner fuel, many OEMs across the world started to work on various strategies like hydrogen combustion engine and fuel cell. Passenger vehicles like buses are at the lookout for fuel cell technology at faster rate than other commercial vehicles. In fuel cell vehicles, cooling system design is critical & complex since it includes fuel cell cooling, Power electronics cooling & battery cooling. In this paper, cooling system design of a Fuel cell electric bus for inter-city application is demonstrated. Radiators and Fans are designed considering overall heat rejection and Coolant inlet temperature requirements of components. Cooling system circuit and pump is decided to meet the coolant flow rate targets. Flow simulation and thermal simulation done with the help of simulation models built using software KULI to predict
M S, VigneshKiran, Nalavadath
A passenger vehicle's front-end structure's structural integrity and crashworthiness are crucial to ensure compliance with various frontal impact safety standards (such as those set by Euro NCAP & IIHS). For a new front-end architecture, design targets must be defined at a component level for crush cans, longitudinal, bumper beam, subframe, suspension tower and backup structure. The traditional process of defining these targets involves multiple sensitivity studies in CAE. This paper explores the implementation of Physics-Informed Neural Networks (PINNs) in component-level target setting. PINNs integrate the governing equations into neural network training, enabling data-driven models to adhere to fundamental mechanical principles. The underlying physics in our model is based upon a force scheme of a full-frontal impact. A force scheme is a one-dimensional representation of the front-end structure components that simplifies a crash event's complex physics. It uses the dimensional and
Gupta, IshanBhatnagar, AbhinavKumar, Ayush
Heavy tipper vehicles are primarily utilized for transporting ores and construction materials. These vehicles often operate in challenging locations, such as mining sites, riverbeds, and stone quarries, where the roads are unpaved and characterized by highly uneven elevations in both the longitudinal and lateral directions of vehicle travel. During the unloading process, the tipper bodies are raised to significant heights, which increases the vehicle's centre of gravity, particularly if the payload material does not discharge quickly. Such conditions can lead to tipper rollover accidents, causing severe damage to life and substantial vehicle breakdowns. To analyse this issue, a study is conducted on the vehicle design parameters affecting the rollover stability of a 35-ton GVW tipper using multi-body simulations in ADAMS software. The tilt table test was simulated to determine the table angle at which wheel lift occurs. Initially, simulations are performed with the rigid body model
Vichare, Chaitanya AshokPatil, SudhirGupta, Amit
The aim of this study is to develop a validated simulation method that accurately predicts vehicle behavior during a sudden loss of assist while cornering. The method also evaluates the steering effort required to return the vehicle to its intended path during failure scenarios, isolating the impact of uncertainties arising from driver performance. To illustrate the simulation methodology, the study involved testing various vehicles under conditions replicating sudden EPS assist loss during cornering. These tests captured the vehicle’s response, and the steering effort needed to correct its path. Different parameters affecting the vehicle behavior were studied and a validated method of simulation was developed.
Vishweshwara, ManasaVijay, VishnuNunes, RonaldoHubert, Robert
In traditional commercial vehicles with leaf spring suspension and Recirculating Ball Joint (RCBT) steering systems often experience undesirable pulling due to unsymmetrical steering mechanism during braking, especially when the suspension and steering hardpoints are not properly tuned. This work analyzes the mechanisms responsible for pulling tendencies, primarily addressing brake steer and bump steer, which occur due to misalignments in the suspension and steering geometries. Brake steer occurs when braking forces create an imbalance in torque, resulting in the vehicle deviating to one side. On the other hand, bump steer refers to the unwanted changes in the wheel alignment when the suspension undergoes travel, leading to instability or unintended steering input. These two phenomena, if not controlled, can result in undesirable vehicle handling, especially under heavy braking conditions. This work focuses on evaluating these mechanisms and suggests strategies for minimizing their
Pandhare, Vinay RamakantM, Anantha PadmnabhanNizampatnam, BalaramakrishnaLondhe, AbhijitDoundkar, Vikas
India’s severe road safety challenges, marked by high accident rates and fatalities, necessitate innovative solutions like Advanced Driver Assistance Systems (ADAS) to align with SIAT 2026’s theme, “Innovative Pathways for Safe and Sustainable Mobility.” This paper synthesizes recent studies to explore ADAS’s role in enhancing safety and sustainability in India’s unique traffic environment. Technologies such as automatic emergency braking, lane departure warnings, and driver monitoring systems show promise in reducing crashes caused by human error, a leading factor in road incidents. However, India’s complex road conditions—unmarked lanes, dense urban traffic, and prevalent two-wheelers—pose significant challenges to ADAS effectiveness. There developed is a strong public support recently for ADAS, with many Indian road users recognizing its safety benefits and advocating for its integration into vehicles especially passenger vehicles. Despite growing adoption by automakers like Tata
Neelakanthu, KarraSreenivasulu, TKumar, OmHaregaonkar, Rushikesh SambhajiKumar, Rajiv
Robust validation of Advanced Driver Assistance Systems (ADAS) considering real-world conditions is a vital for ensuring safety. Mileage accumulation is a one of the validation method for ensuring ADAS system robustness. By subjecting systems to diverse real-world driving environments and edge-case scenarios, engineers can evaluate performance, reliability, and safety under realistic conditions. In accordance with ISO 21448 (SOTIF), known hazardous scenarios are explicitly tested during robustness validation in combination of virtual and physical testing at component, sub system and vehicle level, while unknown hazards may emerge through extended mileage by running vehicles on roads, allowing them to be identified and classified. However, defining a mileage target that ensures comprehensive safety remains a significant engineering challenge. This paper proposes a data-driven approach to define mileage accumulation targets for validating Autonomous Emergency Braking Systems (AEBS
Koralla, SivaprasadRavjani, AminTatikonda, VijayGadekar, Ganesh
Overloading in vehicles, particularly trucks and city buses, poses a critical challenge in India, contributing to increased traffic accidents, economic losses, and infrastructural damage. This issue stems from excessive loads that compromise vehicle stability, reduce braking efficiency, accelerate tire wear, and heighten the risk of catastrophic failures. To address this, we propose an intelligent overloading control and warning system that integrates load-sensing technology with real-time corrective measures. The system employs precision load sensors (e.g., air below deflection monitoring via pressure sensors) to measure vehicle weight dynamically. When the load exceeds predefined thresholds, the system triggers a multi-stage response: 1 Visual/Audio Warning – Alerts the driver to take corrective action. 2 Braking Intervention – If ignored, the braking applied, immobilizing the vehicle until the load is reduced. Experimental validation involved ten iterative tests to map deflection-to
Raj, AmriteshPujari, SachinLondhe, MaheshShirke, SumeetShinde, Akshay
Calibration of measuring instruments is of utmost importance in the field of metrology. It is a mandatory pre-requisite for establishing the fidelity of the measurements as well as to lend confidence. Even more critical is the requirement for the master equipment deployed to calibrate the devices in use. This entails that high accuracy needs to be guaranteed in the calibration process, and that the uncertainty be quantified precisely. The widely used conventional least squares polynomial regression formulation for load cell calibration is based on the non-normalized residual, which is the difference between the measured and master values. The nature of this formulation is such that it imparts more weightage on measured values at higher ranges resulting in good accuracy. However, there is a limitation of this same formulation that results in lesser accurate fit at lower values especially if the instrument is to be used in operation over a wide range including lower ranges of the
S Thipse, Yogesh
Any agricultural operation (such as cultivation, rotavation, ploughing, and harrowing) includes both productive and non-productive activities (like transportation, stops, and idling) in the field. Non-productive work can mislead the actual load profile, fuel consumption, and emissions. In this project, a machine learning-based methodology has been developed to differentiate between effective operations and non-productive activities, utilizing data collected in the field from data loggers installed on the machinery. Measurements were conducted on various machines across the country in all major applications to minimize the influence of any individual sample deviation and to account for variability in customer operating practices. Few critical parameters such as Engine Speed, Exhaust Gas Temperature, Actual Engine Percentage Torque, GPS Speed etc.) were selected after screening and analyzing more than 100 CAN and GPS parameters. The critical parameters were subsequently integrated with
Maharana, Devi prasadGangsar, Purushottamgokhale, VarunPandey, Anand Kumar
In last two decades, Farm customer expectation on cabin comfort has been increased multifold. To provide the best-in-class customer experience in terms of comfort without adding cost and weight is bigger challenge for all NVH Engineers. It is evident from literature survey that cabin tractors with better comfort is well accepted by customers in US and European Market. Apart from engine excitation, customer has become more sensitive to customer-actuated-accessory noises due to overall reduction in cabin noise in last 2 decades. This paper presents the study conducted on HVAC blower noise in 30HP cabin tractor. Tactile vibrations and cabin noise is not acceptable when AC is switched on due to low frequency modulating nature in frequency range of ~65Hz and 130Hz. The investigation is carried out systematically considering each component of Source-Path-Receiver model. HVAC blower unit as source is diagnosed in detail to understand root cause. Strong dominance of first order of blower been
K, SomasundaramChavan, Amit