Your Destination for Mobility Engineering Resources
Recently Published
Browse AllThis specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
The HVAC (Heating, Ventilation, and Air conditioning) system is designed to fulfil the thermal comfort requirement inside a vehicle cabin. Human thermal comfort primarily depends upon an occupant’s physiological and environmental condition. Vehicle AC performance is evaluated by mapping air velocity and local air temperature at various places inside the cabin. There is a need to have simulation methodology for cabin heating applications for cold climate to assess ventilation system effectiveness considering thermal comfort. Thermal comfort modelling involves human manikin modeling, cabin thermal model considering material details and environmental conditions using transient CAE simulation. Present study employed with LBM (Lattice-Boltzmann Method) based PowerFLOW solver coupled with finite element based PowerTHERM solver to simulate the cabin heat up. Human thermal comfort needs physiological modelling; thus, the in-built Berkeley human comfort library is used in simulation. Human
The increasing adoption of electric vehicles (EVs) has intensified the demand for advanced elastomeric materials capable of meeting stringent noise, vibration and harshness (NVH) requirements. Unlike internal combustion engine (ICE) vehicles, EVs lack traditional masking noise generated by the powertrain. In the automotive industry, the dynamic stiffness of elastomers in internal combustion engines has traditionally been determined using hydraulic test rigs, with test frequencies limited to a maximum of 1,000 Hz. Measurements above this frequency range have not been possible and are conducted only through computerized FE or CAE calculation models. Electric drive systems, however, generate distinct tonal noise components in the high-frequency range up to 10,000 Hz, which are clearly perceptible even at low sound pressure levels. Consequently, the dynamic stiffness characteristics of elastomers up to 3,000 Hz are critical for optimizing NVH performance in EVs. This study focuses on high
India's electric 2-wheeler (E2W) market has witnessed fast growth, driven by lucrative government policies. The two-wheeler segment dominates the Indian automotive market, accounting for the largest share of total sales. Consequently, the manufacturers of 2-wheelers are developing new electric vehicles (EV) tailored for the Indian market. However, the Indian EV market has witnessed multiple fire accidents in recent years, raising safety concerns among consumers and industry stakeholders. These incidents highlight key weakness in battery thermal management systems (BTMS), particularly during charging. Most existing E2W BTMS relies on passive (natural) air cooling, which has been associated with fire incidents due to its inefficiency in heat dissipation, particularly during charging in India's high-temperature environment. Therefore, it is imperative to build thermally viable and economical BTMS for the growing E2W vehicles with fast charging capability. FEV is actively developing the
As the brain and the core of the electric powertrain, the traction inverter is an essential part of electric vehicles (EVs). It controls the power conversion from DC to AC between the electric motor and the high-voltage battery to enable effective propulsion and regenerative braking. Strong and scalable inverter testing solutions are becoming more essential as EV adoption rises, particularly in developing nations like India. In India, traditional testing techniques that use actual batteries and e-motors present several difficulties, such as significant safety hazards, inadequate infrastructure, expensive battery prices, and a shortage of prototype-grade parts. This paper presents a comprehensive approach for traction inverter validation using the AVL Inverter TS™ system incorporating an advanced Power Hardware-in-the-Loop (PHiL) test system based on e-motor emulation technology. It enables safe, efficient, and reliable testing eradicating the need for actual batteries or mechanical














