Your Destination for Mobility Engineering Resources
Announcements for SAE Mobilus
Browse AllRecent SAE Edge™ Research Reports
Browse All 171Recently Published
Browse AllThis SAE Recommended Practice establishes a uniform fluid specification for reference usage in specific documents, such as fluid power component test procedures, where a fluid designation is required.
This document specifies a universal method of measuring the thickness change of friction materials to determine the effects of temperature. The test applies to both disc and drum-type linings commonly used in hydraulic and air brake systems for automotive or commercial vehicle applications. This document describes several methods for thermal swell and growth. Method A is where the friction material is in contact with a heated surface to simulate the heat input to the pad that occurs during actual usage. Method B uses an oven to heat the freestanding material and is an approximate procedure requiring less instrumentation. Method A is recommended for disc brake pad assemblies, noise insulators, or flat coupons, while Method B is recommended for curved drum brake linings. This document also describes how to test the warmed-up disc brake pads and noise insulators for hot compressibility using Method A.
This SAE Aerospace Standard (AS) establishes the minimum requirements for ground-based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models. The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush, or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 (Type I fluid) and AMS1428 (Type II, III, and IV fluids). All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturer’s recommendations.
This SAE Recommended Practice describes the dynamic and static testing procedures required to evaluate the integrity of an equipment mount device or system when exposed to a frontal or side impact (i.e., a crash impact). Its purpose is to provide equipment manufacturers, ambulance builders, and end users with testing procedures and, where appropriate, acceptance criteria that, to a great extent, ensure equipment mount devices or systems meet the same performance criteria across the industry. Prospective equipment mount manufacturers or vendors have the option of performing either dynamic testing or static testing. Descriptions of the test setup, test instrumentation, photographic/video coverage, test fixture, and performance metrics are included.
This ARP provides two methods for measuring the aircraft noise level reduction of building façades. Airports and their consultants can use either of the methods presented in this ARP to determine the eligibility of structures exposed to aircraft noise to participate in an FAA-funded Airport Noise Mitigation Project, to determine the treatments required to meet project objectives, and to verify that such objectives are satisfied.
This SAE Aerospace Information Report (AIR) discusses the sources of copper in aviation jet fuels, the impact of copper on thermal stability of jet fuels and the resultant impact on aircraft turbine engine performance, and potential methods for measurement of copper contamination and reduction of the catalytic activity of copper contamination in jet fuels. This document is an information report and does not provide recommendations or stipulate limits for copper concentrations in jet fuels.
This SAE Aerospace Standard (AS) defines the requirements for saddle-type clamps. Tests and criteria noted do not indicate any specific areas of application or usage. Supplemental testing may be necessary to determine suitability for specific environments and applications.
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
This document establishes standard gland design criteria and dimensions for static axial O-ring seal applications without anti-c operating at a maximum pressure of 1500 psi (10345 kPa).
This specification covers an aircraft-quality, low-alloy steel in the form of welded tubing.
This specification covers the requirements for a process to assure removal of free iron or other less noble contaminants from the surfaces of corrosion-resistant steel parts.
This SAE Recommended Practice covers power transfer units (PTUs) used in passenger car and sport utility vehicles to support all wheel drive (AWD) operation. PTUs are typically full-time use geared devices (see 3.1). Some PTUs have additional features such as part-time on-demand capability via electronically actuated disconnect features, and other configurations are possible.