Your Destination for Mobility Engineering Resources
Recently Published
Browse AllThis specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
The integration of Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning (ML) has transformed various industries, offering substantial benefits. The application of these technologies in engine reliability testing has immense potential as they offer real-time monitoring and analysis of engine performance parameters. Engine reliability testing is vital for ensuring the safety, efficiency, and longevity of engines. Traditional methods are time consuming, expensive, and rely heavily on manual inspection and data analysis. This paper shows how IoT and ML technologies can enhance the efficiency of engine reliability testing. The paper includes the following case studies:
A crash energy absorption technique and method improve the safety and structural integrity of electric vehicle battery packs during collisions, complying with global regulations. This analysis details an assembly featuring a battery housing for mounting battery cells, a crash member connected to the battery housing's periphery, and flexural members linked to the crash member. The flexural members are designed to absorb impact forces by deforming and storing potential energy during sudden impacts. This approach ensures energy is stored within the flexural elements and then transferred to the battery cells through progressive crushing. The design effectively delays intrusion, enhances battery safety, and minimizes cell-level damage. This solution improves occupant safety and prevents thermal runaway incidents while maintaining the battery's overall performance and reliability in EVs.
Pedestrian safety is a critical concern in India, where rapid urbanization, increased vehicular traffic, and inadequate infrastructure pose significant risks to pedestrians. This study aims to analyze pedestrian accidents across various regions in India, drawing insights from comprehensive accident data. By examining accident patterns, risk factors, and contributing variables, we seek to inform policy recommendations and enhance pedestrian safety measures.
The distribution of mobility equipped with electrified power units is advancing towards carbon-neutral society. The electrified power units require an integration of numerous hardware components and large-scale software to optimize high-performance system. Additionally, a value-enhancement cycle of mobility needs to be accelerated more than ever. The challenge is to achieve high-quality performance and high-efficient development using Model-Based Development (MBD). The development process based on V-model has been applied to electrified power units in passenger vehicle. Traditionally, MBD has been primarily utilized in the left bank (performance design phase) of the V-model for power unit development. MBD in performance design phase has been widely implemented in research and development because it refines prototype performance and reduces the number of prototypes. However, applying the MBD to an entire power unit development process from performance design phase to performance
David Martin, CBMM Asia Bernardo Barile, CBMM Europe BV Caio Pisano, CBMM Europe BV Automotive high strength steels have specific microstructure-dependent forming characteristics. Global formability is generally associated with high uniform strain values which imply good drawability and stretch forming properties driven by pronounced work hardening. Local formability on the other hand is often measured by various fracture strain values—generally higher in single phase steels. In this respect, the so-called ‘local/global formability map’ concept has been established not only to provide a comprehensive methodology to characterize existing automotive steels but also to enable improvement strategies toward more balanced forming characteristics. Niobium (Nb) microalloying is a powerful tool to achieve both property improvement in general and property balance in particular. More than two decades of research has demonstrated that Nb-induced microstructural optimization is applicable to HSLA














