Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 718

Recently Published

Browse All
The invention tackles the main drawback of traditional electric vehicle charge ports which use Vehicle Control Unit (VCU) communication intensively and tend to have separate actuators to fulfill the locking function and requirements. These existing systems do not only limit autonomous operation of the charging lid in ignition-off condition but they also add mechanical complexity and packaging space, as well. To overcome these limitations, this research work introduces a Smart Charge Port Housing (CPH), which combines a rotary actuator with an onboard microcontroller and single shaft self-locking device, which allows intelligent and autonomous control of the flaps without relying on vehicle wide control networks. The actuator can remember the last position that the charging lid was in so it can be operated even while the VCU is in the inactive state. The integrated self-locking functionality is achieved by using a specially designed hinge shaft that allows a certain free play for
Mohunta, SanjayKhadake, Sagar
Automotive displays have become an essential part of modern vehicles, not just for aesthetics but also for improving safety and user interaction. As cars get smarter, the industry is leaning heavily into advanced display technologies to provide drivers and passengers with clearer, more responsive visuals. Technologies like Active Matrix LCDs (AMLCDs) and AMOLEDs are now common in dashboards, infotainment systems, digital clusters, and even head-up displays. These display types are popular because they offer great brightness, vibrant color, and wide viewing angles — all of which are important in a car, where lighting conditions can change constantly. But to make these displays work effectively, a solid backplane is critical. That’s where technologies like amorphous silicon (a-Si) and low-temperature polysilicon (LTPS) come in. Among these, LTPS has gained popularity due to its ability to support high-resolution, high-refresh-rate screens, thanks to its higher carrier mobility. Still
Sinha Roy, DebarghyaDuggal, AnanyaSingh, Ujjwal Kumar
A crash pulse is the signature of the deceleration experienced by a vehicle and its occupants during a crash. The deceleration-time plot or crash pulse provides key insights into occupant kinematics, occupant restraints, occupant loading and efficiency of the structure in crash energy dissipation. Analysing crash pulse characteristics like shape, slope, maximum deceleration, and duration helps in understanding the impact of the crash on occupant safety and vehicle crashworthiness. This paper represents the crash pulse characterization study done for the vehicles tested at ARAI as per the ODB64 test protocol. Firstly, the classification and characterization of the crash pulses is done on the basis of the unladen masses of the vehicles. The same are further analysed for suitability of mathematical waveform models such as Equivalent Square Wave (ESW), Equivalent Triangular Wave (ETW), Equivalent Sine Wave (ESW), Equivalent Haversine Wave (EHSW) as well as EDTW (Equivalent dual trapezia
Mishra, SatishKulkarni, DileepBorse, TanmayMahindrakar, Rahula AshokMahajan, RahulJaju, Divyan
Seats of modern cars should necessarily meet the regulatory safety norms along with aesthetics and comfort. In the existing passenger cars prevailing across the Indian subcontinent, the measure of safety has been a challenging one. The stringent regulatory norms thereby make the Airbag very promising. In the Automotive industry, safety features are very important, one of the topmost features which falls in this category is airbags. The driver and passenger safety during high impact collisions and sudden crashes is the key objective of airbag. This safety is provided by the airbag with its automatic deployment. The inflatable airbag is engineering in a way to respond very quickly during a collision and furnish necessary cushioning to decrease the impulse and enhance the safety of the passenger. The technology has been practiced widely upon many vehicles' seats. However, the present work highlights a novel approach of packaging the HPTS air bag in second row seat. This Air bag unit is
Buradkar, RajatBose, KarthikJadhav, DeepikaBalakrishnan, Gangadharan
Tire noise reduction is important for improving ride comfort, especially in electric vehicle due to lack of engine noise and majority of the noise generated in-cabin is from tire-road interaction. Therefore, the tire tread pattern contribution is one of the important criteria for NVH performance apart from other structurally generated noise and vibration. In this work a GUI-based pitch sequence optimization tool is developed to support tire design engineers in generating acoustically optimized tread sequences. The tool operates in two modes: without constraints, where the pitch sequence is optimized freely to reduce tonal noise levels; and with constraints, where specific design rules are applied to preserve pattern consistency and manufacturability. The key point to be considered in this pitch sequence is that it should be reducing the tonal sound and equally spread i.e., the same pitch cannot be concentrated on one side which may lead to non-uniformity. So, the restriction is that
Sampathraghavan, LakshmiRamarathnam, Krishna KumarMantripragada PhD, Krishna TejaRamachandran, Neeraj
The world is moving towards data driven evolution with wide usage tools & techniques like Artificial Intelligence, Machine Learning, Digital Twin, Cloud Computing etc. In automotive sector, the large amount of data being generated through physical and digital test evaluations. Computer-Aided Engineering (CAE) is one of the highest contributors for data generation as physical testing involves high cost due to prototypes & test set-up. The Automotive Noise, Vibration & Harshness (NVH) field is advancing exponentially due to new stringent regulatory norms & customer preferences towards comfort, where digitally advanced techniques are playing a key role in the revolution of NVH. Data generation through CAE tool is a crucial aspect of Engineer’s daily activities and selecting such appropriate CAE software and solvers is critical, as it influences user interface experience, accuracy, solution time, hardware requirements, variability expertise, Design of Experiments ability, and integration
Hipparge, VinodMasurkar, NikitaArabale, VinandBillade, Dayanand
Nowadays, digital instrument clusters and modern infotainment systems are crucial parts of cars that improve the user experience and offer vital information. It is essential to guarantee the quality and dependability of these systems, particularly in light of safety regulations such as ISO 26262. Nevertheless, current testing approaches frequently depend on manual labor, which is laborious, prone to mistakes, and challenging to scale, particularly in agile development settings. This study presents a two-phase framework that uses machine learning (ML), computer vision (CV), and image processing techniques to automate the testing of infotainment and digital cluster systems. The NVIDIA Jetson Orin Nano Developer Kit and high-resolution cameras are used in Phase 1's open loop testing setup to record visual data from infotainment and instrument cluster displays. Without requiring input from the system being tested, this phase concentrates on both static and dynamic user interface analysis
Lad, Rakesh PramodMehrotra, SoumyaMishra, Arvind
With increasing demand for improving the vehicle Ride and Handling (R&H) performance, the synergy between vehicle subsystems such as suspension, chassis, brakes & tyres play a major role towards it. In this regard, the interaction between wheel rim width and tyre performance characteristics is a key focus area in vehicle development process. Detailed research is being conducted worldwide to understand their dynamics of interaction and based on the tested data, vehicle manufacturers make the design selection. In this context, the proposed study aims to provide a in-depth analysis of how variations in wheel rim width affect key tyre performance parameters such as lateral force characteristics, damping property, tyre footprint, and pinch cut resistance. Also, the subsequent influence on vehicle-level performance parameters such as R&H, braking, steering, and durability is captured. Based on these analysis, appropriate wheel rim size selection is done which is most optimal for the project
Singh, Ram KrishnanPaua, KetanSundaramoorthy, RagasruobanLenka, Visweswaraahire, ManojAdiga, Ganesh N
Calibration of measuring instruments is of utmost importance in the field of metrology. It is a mandatory pre-requisite for establishing the fidelity of the measurements as well as to lend confidence. Even more critical is the requirement for the master equipment deployed to calibrate the devices in use. This entails that high accuracy needs to be guaranteed in the calibration process, and that the uncertainty be quantified precisely. The widely used conventional least squares polynomial regression formulation for load cell calibration is based on the non-normalized residual, which is the difference between the measured and master values. The nature of this formulation is such that it imparts more weightage on measured values at higher ranges resulting in good accuracy. However, there is a limitation of this same formulation that results in lesser accurate fit at lower values especially if the instrument is to be used in operation over a wide range including lower ranges of the
S Thipse, Yogesh
The tailgate, as the rearmost vehicle opening, plays a pivotal role in defining the rear aesthetic theme while ensuring structural durability and maximizing luggage space. Contemporary automotive design trends highlight an increasing demand for Full width tailgate-mounted tail lamp configurations, which deliver a bold and dynamic visual appeal. Enhanced by animated lighting features, these designs cater to the preferences of Gen Z customers, becoming a decisive factor in purchasing decisions. However, integrating these complex tail lamp structures introduces significant engineering challenges, including increased X-dimension lamp volume, thereby providing reduced design space, and intricate mounting schemes constrained by panel stamping limitations. These factors necessitate the development of innovative joinery strategies and structural definitions to maintain durability targets, including achieving 25,000–30,000 slam cycles without failure, while preserving luggage space. This paper
Beryl, JoshuaMohanty, AbhinabUnadkat, SiddharthSelvan, Veera
In today’s market, faster product development without compromising durability is essential. Durability assessment ensures a vehicle maintains structural integrity under normal and extreme conditions. Achieving this requires effective Road Load Data Acquisition, integrated with robust design practices and efficient validation processes. However, physical RLDA is time-consuming and costly, as it depends on prototype vehicles that are often available only in the later development stages. Failures identified during these late-stage tests can delay the product launch significantly. This study presents a full digital methodology of fatigue life estimation for suspension aggregates. A study has been demonstrated on Rear Twist Beam component of rear suspension. The approach integrates the digital RLDA methodology presented in literature and finite element analysis simulation process, enabling durability assessments entirely within the virtual domain. This approach demonstrates how digital RLDA
Kokare, SanjayDwivedi, SushilSiddiqui, ArshadIqbal, Shoaib
Ambient light reflecting off internal components of the car, specifically the Head-Up Display (HUD), creates unwanted reflections on the Windshield. These reflections can obscure the driver's field of view, potentially compromising safety and reducing visual comfort. The extent of this obscuration is influenced by geometrical factors such as the angle of the HUD and the curvature of the Windshield, which need to be analyzed and managed. The primary motivation is to improve driver safety and visual comfort. This is driven by the need to address the negative impact of ambient light reflecting off Head-Up Displays (HUDs), which can impair visibility through the Windshield. There is a need for tools and methods to address this issue proactively during the vehicle design phase. This study employs a tool-based modeling method to trace the pathways of ambient light from its source, reflecting off the HUD, and onto the Windshield using a dimensional modeling tool. It focuses on: Geometrical
Muchchandi, VinodAkula, Satya JayanthMahindrakar, PramodG S, Sharath
This paper presents an innovative in-lab accelerated testing approach for chassis-mounted components, with a particular focus on the cooling module of commercial vehicles. The proposed method simulates real-time data acquired from field operations and replicates all critical chassis modes, including torsion. Additionally, real-time coolant circulation at specified pressure and temperature maintenance are feasible during durability testing, enhancing the realism of the test environment. The cooling modules, comprising the radiator, intercooler, and charge air cooler (CAC), often experience failures due to various multi-axial inputs and chassis modes. This paper introduces an innovative methodology for replicating field conditions in the lab, utilizing seven servo-hydraulic actuators to simulate multi-axial inputs. The accuracy of in-lab simulation for the acceleration levels at input and response locations of the cooling module exceeds 90%. This makes it a preferred choice for test
V Dhage, YogeshSatale, Sunil
As the brain and the core of the electric powertrain, the traction inverter is an essential part of electric vehicles (EVs). It controls the power conversion from DC to AC between the electric motor and the high-voltage battery to enable effective propulsion and regenerative braking. Strong and scalable inverter testing solutions are becoming more essential as EV adoption rises, particularly in developing nations like India. In India, traditional testing techniques that use actual batteries and e-motors present several difficulties, such as significant safety hazards, inadequate infrastructure, expensive battery prices, and a shortage of prototype-grade parts. This paper presents a comprehensive approach for traction inverter validation using the AVL Inverter TS™ system incorporating an advanced Power Hardware-in-the-Loop (PHiL) test system based on e-motor emulation technology. It enables safe, efficient, and reliable testing eradicating the need for actual batteries or mechanical
Mehrotra, SoumyaChhabra, Rishabh
Original Equipment Manufacturers (OEM’s) are focusing on the fuel economy of passenger cars to meet the next generation emission norms. Few techniques such as downsizing engines, raising lubricant temperature, reducing combustion time and regulating the start-stop system of engines are various efforts being considered by Automobile OEMs to attain fuel efficiency along with next generation emission norms. On the other hand, lubricants used for such engines are also to be modified accordingly to meet more fuel efficiency. Lowering viscosity along with addition of friction modifiers for normalizing frictional losses is widely practiced as the most economical techniques. To achieve this lubricant formulator and additive manufacturers have moved towards modern base oils and advanced additive technologies. This study is done to understand key parameters which reduce friction and increase fuel economy using same viscosity grade oils. In the current study, we have formulated different low
Vabbina, Shiv KumarKatta, LakshmiJoshi, RatnadeepChaudhary, RameshwarSeth, SaritaBhardwaj, AnilArora, Ajay Kumar
Determination of part tolerances for reduced variation in suspension level performance by using Multi-objective Robust Design Optimization (MORDO) The car industry is very competitive, and companies need to satisfy their customers to keep or grow their market share. It’s important for car makers to build affordable cars that provide a good driving experience, comfort for passengers, and safety for everyone. Suspension systems are very important for how a vehicle rides, handles, and stays stable, and they directly affect how driving feels. If parts are not positioned correctly, it can really impact how well a vehicle works. As a result, suggested limits for where suspension parts are placed are given to prevent issues with Kinematics and Compliance (K&C) properties. So, designing parts with the right tolerances is very important in making vehicles. It helps lower production costs and keeps the vehicle's performance consistent. This paper shows a step-by-step method to find the strongest
Pathak, JugalGanesh, Lingadalu
The automotive industry is rapidly advancing towards autonomous vehicles, making sensors such as Cameras, LiDAR, and RADAR critical components for ensuring constant information exchange between the vehicle and its surrounding environment. However, these sensors are vulnerable to harsh environmental conditions like rain, dirt, snow, and bird droppings, which can impair their functionality and disrupt accurate vehicle maneuvers. To ensure all sensors operate effectively, dedicated cleaning is implemented, particularly for Level 3 and higher autonomous vehicles. It is important to test sensor cleaning mechanisms across different weather conditions and vehicle operating scenarios to ensure reliability and performance. One crucial aspect of testing is tracking the trajectory of the cleaning fluid to ensure it does not cause self-soiling of vehicles and affects the field of view or visibility zones of other components like the windshield. While wind tunnel tests are valuable, digitalizing
Mane, SuvidyaMakam, Sri Lalith MadhavVarghese, RixsonDesu, Harsha
The impact configuration has a strong influence on the rear seat survival space intrusion pattern during severe rear-impact collisions. The relative contributions of rear seat pan forward intrusion versus rear seatback intrusion vary depending on the nature of the crash. In underride impacts, the rear wheels are pushed forward into the occupant survival space from below, causing the rear seat-pan to move forward and upward relative to the vehicle interior. Conversely, override impacts tend to produce direct seatback intrusion into the rear compartment. This study used a validated computer model from the NHTSA website to simulate various types of rear compartment intrusions under different impact configurations. The analysis also assessed structural countermeasures designed to minimize occupant survival space intrusion. The results demonstrate that underride impacts primarily drive the forward motion of the rear wheels into the structure, establishing load paths that lead to structural
Thorbole, ChandrashekharVhanaje, Manoj GEknath Chopade, Santosh
The Ro-dip Cathodic Electrodeposition (CED) process is new technology used by automotive manufacturers for higher quality corrosion protection in new generation automobiles. This process involves multiple 360-degree rotation of automotive body-in-white (BIW) which exert higher hydrostatic pressure and drag forces on large surface panels of BIW like hood. For maintaining consistent gaps and flushness control at vehicle level, it is important to safeguard the dimensional stability of light weight (crash performance sensitive) steel hood panel while undergoing through this CED process. This study investigates the enhancement of hood structure supports through strategic optimization of support rod placement and quantity within the Ro-dip CED paint shop system. This Paper underscore the importance of tailored fixture design in the Ro-dip CED process, offering a scalable solution for automotive manufacturers aiming to improve quality while reducing costs associated with dimensional
Tile, VikrantUnadkat, SiddharthAskari, HasanJadhav, Devidas
Automobile frames, particularly trellis frame structures, are engineered for superior dynamic performance, with stiffness being a paramount consideration1. These frames frequently utilize welded tubes, a manufacturing process made more complex by the necessity of bending tubes to precise angles to meet packaging and assembly requirements2. This bending, however, induces residual stresses that can substantially compromise the frame's durability3. This investigation employs a detailed finite element simulation to analyse the structural deformation and residual stresses that arise during the bending of Cold Electric Welded (CEW) annealed round pipes4. A comprehensive 3D mechanical model, incorporating realistic tooling and contact interactions, was developed to accurately simulate shape change, ovality, and wall thickness redistribution during the bending process5. CEW pipes, unlike their Electric Resistance Welded (ERW) counterparts, possess minimal initial forming stresses, and the
Rajwani, IshwarKhare, Saharash
Higher road noise is perceived in the cabin when the test vehicle encounters road irregularities like bump or pothole in the public roads. The transfer of transient road inputs inside the body caused objectionable cabin noise. Measurements are conducted at different road surfaces to identify the patch where the objective data well correlated with the noise measured at the public road. Wavelet analysis is carried out to identify the frequency zones since the events are transient in nature. TPA is carried out in time domain to identify the nature of the noise and the dominant path through which the transient road forces are transferring inside the body. Based on the outcome of TPA, various countermeasures like reduction of dynamic stiffness of suspension bushes, TMDs on the path are proposed to reduce the structure borne noise. Criteria which need to be considered for reduction of cabin noise due to transient road inputs is also discussed.
S, Nataraja MoorthyRao, ManchiSelvam, EbinezerRaghavendran, Prasath
Unlike internal combustion engine (IC Engine) vehicles, the rapidly growing electric vehicle (EV) market demands tyres with superior yet often conflicting performance characteristics. The increased weight of EVs, due to their heavy batteries, necessitates robust tyres with reinforcement and higher inflation pressure. Conversely, increased wear due to higher initial torque and the need for lower rolling resistance to extend range, combined with the requirement for better grip for improved handling, call for advanced compound and tread pattern designs. EV tyres need to be stiffer, lighter, and low hysteresis, making it very hard to reduce low-frequency (20-200 Hz) interior noise that was previously masked by engine noise. This study investigates the low-frequency (20-200 Hz) structural-borne interior noise performance of EV tyres using both experimental and simulation tools. By wisely tuning the tyre's stiffness, mass, and damping properties, the necessary noise targets can be achieved
Subbian, JaiganeshM, Saravanan
Air pollution from vehicle exhaust emissions is a growing issue in major cities around the world. Hydrogen is a clean and carbon-free fuel that presents a promising alternative to the fossil fuels. However, despite its environmental advantages, hydrogen internal combustion engines still produce some nitrogen oxides as a by-product due to high combustion temperatures. This study investigates the effectiveness of current exhaust after-treatment technologies designed to reduce NOx emissions in hydrogen-powered engines. A comparative analysis is conducted between the conventional urea-based selective catalytic reduction used in diesel engines and emerging hydrogen-based selective catalytic reduction technologies for hydrogen engines. The analysis is performed using CFD simulation in ANSYS Fluent, focusing on NOx reduction efficiency and other operational parameters. The results provide valuable insights into the feasibility and effectiveness of hydrogen SCR in achieving reduced NOx
Kashyap, KeshavKhandagale, AnupPetale, Mahendra