Your Destination for Mobility Engineering Resources
Recently Published
Browse AllThis specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
The present work demonstrates a transient Fluid-Structure-Interaction (FSI) based numerical methodology for estimation of aerodynamic-induced flutter of the rear bumper of a Sports Utility Vehicle (SUV). Finite Volume Method (FVM) based High-fidelity transient full vehicle aerodynamic simulations were conducted for the estimation of the transient aerodynamic load. Subsequently, by mapping this transient aero load onto the surface of the rear bumper, Finite Element Method (FEM) based dynamic structural simulations were performed to predict its response. The results obtained through simulations were then compared against experimental wind tunnel test data of a prototype car with modified bumper for the specific test-case. The pressure and the time series data of rear bumper deflection were captured at multiple probe locations from wind tunnel experiments at 140 and 200 kmph. The distribution of pressure on the rear surfaces of the car was well captured by the aerodynamic simulation at
The Mahindra XUV 3XO is a compact SUV, the first-generation of which was introduced in 2018. This paper explores some of the challenges entailed in developing the subsequent generation of this successful product, maintaining exterior design cues while at the same time improving its aerodynamic efficiency. A development approach is outlined that made use of both CFD simulation and Coastdown testing at MSPT (Mahindra SUV proving track). Drag coefficient improvement of 40 counts (1 count = 0.001 Cd) can be obtained for the best vehicle exterior configuration by paying particular attention to: AGS development to limit the drag due to cooling airflow into the engine compartment Front wheel deflector optimization Mid underbody cover development (beside the LH & RH side skirting) Wheel Rim optimization In this paper we have analyzed the impact of these design changes on the aerodynamic flow field, Pressure plots and consequently drag development over the vehicle length is highlighted. An
Unlike internal combustion engine (IC Engine) vehicles, the rapidly growing electric vehicle (EV) market demands tyres with superior yet often conflicting performance characteristics. The increased weight of EVs, due to their heavy batteries, necessitates robust tyres with reinforcement and higher inflation pressure. Conversely, increased wear due to higher initial torque and the need for lower rolling resistance to extend range, combined with the requirement for better grip for improved handling, call for advanced compound and tread pattern designs. EV tyres need to be stiffer, lighter, and low hysteresis, making it very hard to reduce low-frequency (20-200 Hz) interior noise that was previously masked by engine noise. This study investigates the low-frequency (20-200 Hz) structural-borne interior noise performance of EV tyres using both experimental and simulation tools. By wisely tuning the tyre's stiffness, mass, and damping properties, the necessary noise targets can be achieved
Nowadays, digital instrument clusters and modern infotainment systems are crucial parts of cars that improve the user experience and offer vital information. It is essential to guarantee the quality and dependability of these systems, particularly in light of safety regulations such as ISO 26262. Nevertheless, current testing approaches frequently depend on manual labor, which is laborious, prone to mistakes, and challenging to scale, particularly in agile development settings. This study presents a two-phase framework that uses machine learning (ML), computer vision (CV), and image processing techniques to automate the testing of infotainment and digital cluster systems. The NVIDIA Jetson Orin Nano Developer Kit and high-resolution cameras are used in Phase 1's open loop testing setup to record visual data from infotainment and instrument cluster displays. Without requiring input from the system being tested, this phase concentrates on both static and dynamic user interface analysis
The objective of this study was to examine the effect of Correlated Colour Temperature (CCT) of automotive LED headlamps on driver’s visibility and comfort during night driving. The experiment was conducted on different headlamps having different correlated colour temperatures ranging from 5000K to 6500K in laboratory. Further study was conducted involving participants of different age group and genders for understanding their perception to identify objects when observed in light of different LED headlamps with different CCTs. Studies have shown that both Correlated Colour Temperature and illumination level affect driver’s alertness and performance. Further study required on headlamps with automatically varying CCT to get better solution on driver’s visibility and safety.
With the increasing connectivity of modern vehicles, cybersecurity threats have become a critical concern. Intrusion Detection Systems (IDS) play a vital role in securing in-vehicle networks and embedded vehicle computers from malicious attacks. This presentation shares about an IDS framework designed specifically for POSIX-based operating systems used in vehicle computers, leveraging system-level monitoring, anomaly detection, and signature-based methods to identify potential security breaches. The proposed IDS integrates lightweight behavioral analysis to ensure minimal computational overhead while effectively detecting unauthorized access, privilege escalation, communication interface monitoring etc. By employing a combination of rule-based and OS datapoints, the system enhances threat detection accuracy without compromising real-time performance. Practical series deployments demonstrate the effectiveness of this approach in mitigating cyber threats in automotive environments
After the implementation of BS-VI emission standards, effective exhaust after-treatment has become critical in minimizing harmful emissions from diesel engines. One significant challenge is the accumulation of hydrocarbons (HC) in the Diesel Oxidation Catalyst (DOC). Certain hydrocarbons may adsorb onto the catalyst surface yet remain unreactive, leading to potential operational inefficiencies. This phenomenon necessitates the desorption of unreactive hydrocarbons to allow space for more reactive species, thereby enhancing oxidation efficiency and overall catalyst performance. The process of desorption (DeSorb) is vital to maintaining the balance of reactive hydrocarbons within the DOC. When a vehicle is idling, unburnt fuel produces hydrocarbons that accumulate in the DOC. Upon acceleration, these hydrocarbons can lead to an uncontrolled rise in temperature, resulting in DOC push-out, catalyst damage, and downstream impacts on the Diesel Particulate Filter (DPF). To mitigate these














