Your Destination for Mobility Engineering Resources
Recently Published
Browse AllThis specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
This study presents an integrated vehicle dynamics framework combining a 12-degree-of-freedom full vehicle model with advanced control strategies to enhance both ride comfort and handling stability. Unlike simplified models, it incorporates linear and nonlinear tire characteristics to simulate real-world dynamic behavior with higher accuracy. An active roll control system using rear suspension actuators is developed to mitigate excessive body roll and yaw instability during cornering and maneuvers. A co-simulation environment is established by coupling MATLAB/Simulink-based control algorithms with high-fidelity multibody dynamics modeled in ADAMS Car, enabling precise, real-time interaction between control logic and vehicle response. The model is calibrated and validated against data from an instrumented test vehicle, ensuring practical relevance. Simulation results show significant reductions in roll angle, yaw rate deviation, and lateral acceleration, highlighting the effectiveness
In recent days, cabin variants in the tractor are preferred by the farmers for the Coziness and longer field hour operation with less fatigue. Noise perceived by customer is the most important factor taken into account during the design stage, as it’s directly linked with operator’s comfort. Observed noise levels has to be within the defined limits as per national/international standards Overall cabin noise levels is contributed by the structure borne noise below 630 Hz. Structure borne noise is the noise typically radiated by the door, roof, windshield, floor, fender and structure assembly due to the engine excitation through the transmission housings and backstories. This paper depicts the process of tractor cabin structure borne noise prediction in the virtual environment. Firstly, Engine bearing loads and axle bearings has been extracted in the virtual stage from the vehicle level driveline model using commercially available MBD software. The finite element (FE) model of the cabin
India’s commitment to carbon neutrality is significantly shaping the future architecture of commercial vehicle powertrains. While the use of CO₂-free technologies such as battery-electric drivetrains has already been successfully demonstrated across various applications, challenges related to limited range and the lack of high-power charging infrastructure continue to hinder widespread adoption, particularly for productivity-critical commercial vehicles. This has shifted the spotlight toward sustainable fuels, which offer the advantage of fast refueling times. Among these, hydrogen internal combustion engines (H₂ ICE) have gained increasing attention in recent years. In regions such as the European Union, the primary motivation for hydrogen is CO₂ reduction. In contrast, for markets like India, hydrogen also presents a strategic opportunity for reducing dependency on fossil fuel imports. Over the past four years, multiple performance and emission development projects across various H














