Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 718

Recently Published

Browse All
The purpose of this document is to present test methods that can be utilized to evaluate the filtration and operating characteristics of filters that will be utilized in a cryogenic system. The methods presented herein are intended to supplement standard filter testing specifications to allow evaluation of filter performance characteristics in areas that could be affected by extreme low temperatures.
A-6C1 Fluids and Contamination Control Committee
This article provides an overview of how the determination of absence of unreasonable risk can be operationalized. It complements previous theoretical work published by existing developers of automated driving systems (ADS) on the overall engineering practices and methodologies for readiness determination. Readiness determination is, at its core, a risk assessment process. It is aimed at evaluating the residual risk associated with a new ADS deployment. The article proposes methodological criteria to ground the readiness review process for an ADS release. Specifically, it lists 12 readiness criteria connected with system safety, cybersecurity, verification and validation, collision avoidance testing, predicted collision risks, impeded progress, rules of the road compliance, vulnerable road users interactions, high-severity assessment, conservative estimate of severity, risk management, and field safety. The criteria presented are agnostic of any specific ADS technological solution and
Favaro, Francesca MargheritaSchnelle, ScottFraade-Blanar, LauraVictor, TrentPeña, MauricioWebb, NickBroce, HollandPaterson, CraigSmith, Daniel
Friction stir welding (FSW) of Al 6063 alloy plates of 6 mm thickness was investigated in the present study for exploring the mechanical attributes of the welded joints. The tool profile significantly influences the quality of joints produced by FSW. In the current study, the influence of tool profile and FSW process parameters on the FSW weld characteristics of similar joining of Al 6063 plates has been investigated. The effect of FSW tool rotational speed (TRS) and tool travel speed on the FSW weld properties, mainly microstructure characteristics, microhardness, and ultimate tensile strength (UTS), have been studied. Comparison of two different tool profiles, namely taper and cylindrical tool, has also been examined. The effect of transient temperature distribution has also been studied for varying FSW process parameters. When increasing the tool’s rotational speed from 800 to 1200 rpm at a fixed traverse speed of 80 mm/min, a rise in peak temperature is observed. Conversely
Kumar, PramodKumar, VikashKumar, GulshanArif, AbdulPrasad, Chitturi RamZubairuddin, M.
This SAE Aerospace Information Report (AIR) supplies information on trimmable horizontal stabilizer actuator structural load path integrity. It describes the different methods for detecting rupture or disconnection of load paths. It also describes the monitoring principle to compare existing solutions as a reference for its implementation in new aircraft programs.
A-6B3 Electro-Mechanical Actuation Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for automotive units with the primary drive hypoid gears, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. The information contained within is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI). A complete listing of qualification submission requirements and
Fuels and Lubricants TC 3 Driveline and Chassis Lubrication
The purpose of this SAE Standard is to establish the specific minimum equipment requirements for recovery/recycling/recharge equipment intended for use with both R-1234yf and R-134a in a common refrigerant circuit that has been directly removed from, and is intended for reuse in, mobile air-conditioning (A/C) systems. This document does not apply to equipment used for R-1234yf and R-134a having a common enclosure with separate circuits for each refrigerant, although some amount of separate circuitry for each refrigerant could be used.
Interior Climate Control Service Committee
The following schematic diagrams reflect various methods of illustrating automotive transmission arrangements. These have been developed to facilitate a clear understanding of the functional interrelations of the gearing, clutches, hydrodynamic drive unit, and other transmission components. Two variations of transmission diagrams are used: in neutral (clutches not applied) and in gear. For illustrative purposes, some typical transmissions are shown.
Automatic Transmission and Transaxle Committee
In this work, the complex wake flow from a double-slanted Ahmed body with an upper slant of α = 25° and a standard single-slanted Ahmed body with a slant angle of 40° were used to evaluate vortex identification methods for automotive wake flows. Multiple three-dimensional (3D) vortex identification methods including Q−, λ 2−, Ω− criteria, and Liutex method and the two-dimensional (2D) Γ1− criterion were evaluated against the streamline topology as a pseudo-truth model. Of the 3D methods analyzed, none were found to produce wholly satisfactory results. The Q− and λ 2−criteria were plagued by high threshold sensitivity and a failure to separate shear from rotation which led to inconsistent identification of the weak, lower-rotation vortices. While the Ω−criterion was able to mitigate the issues related to threshold sensitivity and separation of shear and rotation by consistently identifying the weak vortices, the identified structure did not align well with the streamline topology
Aultman, MatthewDuan, Lian
This article presents a system to incorporate crash risk into navigation routing algorithms, enabling safety-aware path optimization for autonomous and human-driven vehicles alike. Current navigation systems optimize travel time or distance, while our approach adds crash probability as a routing criterion, allowing users to balance efficiency with safety. We transform disparate data sources, including traffic counts, crash reports, and road network data, into standardized risk metrics. Because traffic volume data only exist for a small subset of road segments, we develop a solution to project average daily traffic estimates to an entire road inventory using machine learning, achieving sufficient coverage for practical implementation. The framework computes exposure-normalized crash rates weighted by severity and integrates these metrics into routing cost functions compatible with existing navigation algorithms. The key strength of our solution is its scalability. In addition to the
Skaug, LarsNojoumian, Mehrdad
The fuel management system for a fixed-wing aircraft has been developed and explored with the model-based systems engineering (MBSE) methodology for maintaining the center of gravity (CoG) and analyzing flight safety. The system incorporates high-level modeling abstractions that exploit a mix of behaviors and physical detail resembling real-world components. This approach enables analysis for a multitude of system requirements, verification, and failure scenarios at high simulation speed, which is necessary during system definition. Initially, the CoG is maintained by directly accessing the flight deck valves and pumps in both wings and controlling them through the bang-bang control law. In the refinement phase of the fuel system controller, the manual and individual controls of the valves and pumps are replaced with an autonomous fuel transfer scheme. The autonomous scheme achieves no more than a 20 kg difference in fuel between the wings during normal conditions. In the event of
Zaidi, YaseenMichalek, Ota
This study investigated the combustion processes in hydrogen dual-fuel operation using hydrotreated vegetable oil (HVO) and diesel fuel as pilot fuels. The visualizations of hydrogen dual-fuel combustion processes were conducted using hydroxyl radical (OH*) chemiluminescence imaging in an optically accessible rapid compression and expansion machine (RCEM), which can simulate a compression and expansion stroke of a diesel engine. Pilot injection pressures of 40 and 80 MPa and injection quantities of 3, 6 mm3 for diesel fuel and to match the injected energy, 3.14, 6.27 mm3 of HVO were tested. The total excess air ratio was kept constant at 3.0. The RCEM was operated at a constant speed of 900 rpm, with in-cylinder pressure at top dead center (TDC) set to approximately 5.0 MPa. Results demonstrated that using HVO as pilot fuel, compared to diesel fuel, led to shorter ignition delay and combustion duration. OH* chemiluminescence imaging revealed that longer ignition delays observed with
Mukhtar, Ghazian AminUne, NaotoHoribe, NaotoHayashi, JunKawanabe, HiroshiHiraoka, KenjiKoda, Kazuyuki
One of the biggest goals for companies in the field of artificial intelligence (AI) is developing “agentic” systems. These metaphorical agents can perform tasks without a guiding human hand. This parallels the goals of the emerging urban air mobility industry, which hopes to bring autonomous flying vehicles to cities around the world. One company wants to do both and got a head start with some help from NASA.
This specification covers a coating consisting of finely powdered graphite in a heat-resistant inorganic binder applied to parts.
AMS B Finishes Processes and Fluids Committee
A low-cost, portable biosensor can quickly identify a protein whose altered levels are associated with psychiatric disorders, such as depression, schizophrenia, and bipolar disorder. When it becomes commercially available in the future, it may contribute to early detection, which is essential for treating and monitoring patients’ clinical conditions.
Researchers from Harbin Institute of Technology and their collaborators have developed a multifunctional polyelectrolyte hydrogel reinforced with aramid nanofibers (ANFs) and MXene nanosheets, achieving outstanding performance in absorption-dominated electromagnetic interference (EMI) shielding and wearable sensing. This innovative hydrogel addresses the long-standing challenge of balancing electrical conductivity and effective EMI absorption in flexible electronic materials. The research was published in the journal Nano-Micro Letters. 1
Environmental perception is the base of autonomous driving systems, and it directly affects both operational safety and intelligent decision-making capability. Among the emerging technologies, vision-based 3D occupancy prediction is gaining more attention because of its high cost-effectiveness and high-resolution scene understanding capability. However, existing methods often have too much model complexity and limited inference efficiency, which makes deployment on resource-constrained embedded platforms difficult. To address the limitations, we propose LWMOcc, a lightweight monocular 3D occupancy prediction framework. The main component of LWMOcc is the lightweight Encoder-Decoder module, which is a lightweight fine-grained scene perception module that combines a simplified backbone with an efficient decoding strategy. By performing structural simplification and parameter compression, LWMOcc effectively reduces computational overhead, while retaining high predictive accuracy
Chen, FeiyangLi, JihaoFu, PengyuHu, JinchengLiu, MingLiu, ChengjunHong, YinuoCazorla, MiguelGonzález Serrano, GermánZhang, YuanjianCadini, Francesco
As intelligent cockpit technology continues to evolve, the ways in which information is presented and interacted with within vehicle systems are becoming increasingly diverse, driving the development of driver-machine interaction toward multi-modal integration, proactive sensing, and personalized responses. As the core perception object of the intelligent cockpit, the accuracy of driver state recognition directly impacts the intelligence level of cockpit interaction and driving safety. In response to the increasing trend of task diversity and behavioral response complexity in natural driving scenarios, there is an urgent need to develop a driver multimodal data collection and processing tool with high timeliness, non-intrusiveness, and multi-source synchronization capabilities, serving as the key foundation for driver state modeling and intelligent interaction support. Based on multiple resource theory (MRT) and driver status perception mechanisms, this study designs and develops a
Chen, KeLi, XinyiCheng, JiahaoGuo, GangLi, Wenbo