Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 171

Recent Books

Browse All 698

Recently Published

Browse All
The scope of this SAE performance standard is to provide a simple, practical, and broadly applicable test procedure for appraising luminous Illuminant A reflectance of reflecting safety glazing materials for road vehicles. This SAE performance standard, which provides a simple test procedure widely used in the optics field, may be used to measure the reflectivity which films applied to safety glazing materials for road vehicles may enhance. This test procedure applies to conditions where feasibility, rather than accuracy of measurement, is of prime importance. Measurements can be made outside laboratories in a quality control environment and in similar applications, when glazings, instead of small test specimens, have to be tested.
Glazing Materials Standards Committee
The rapid evolution of electric vehicles (EVs) necessitates advanced electronic control units (ECUs) for enhanced safety, monitoring, and performance. This study introduces an innovative ECU system designed with a modular architecture, incorporating real-time monitoring, cloud connectivity, and crash sensing. The methodology includes cost-effective design strategies, integrating STM32 controllers, CAN bus systems, and widely available sensors for motor RPM and temperature monitoring. Key findings demonstrate that the proposed ECU system improves data reliability, enhances vehicle safety through crash response systems, and enables predictive maintenance via cloud connectivity. This scalable and affordable ECU is adaptable to a broad range of EV models.
Padma Priya, S.R.Santhipkumar, S.Sasipriya, S.Srivisweswara, M.S.
Electrification of city busses is an important factor for decarbonisation of the public transport sector. Due to its strictly scheduled routes and regular idle times, the public transport sector is an ideal use case for battery electric vehicles (BEV). In this context, the thermal management has a high potential to decrease the energy demand or to increase the vehicles range. The thermal management of an electric city bus controls the thermal behaviour of the components of the powertrain, such as motor and inverters, as well as the conditioning of the battery system and the heating, ventilation, and air conditioning (HVAC) of the drivers’ front box and the passenger room. The focus of the research is the modelling of the thermal behaviour of the important components of an electric city bus in MATLAB/Simscape including real-world driving cycles and the thermal management. The heating of the components, geometry and behaviour of the cooling circuits as well as the different mechanisms of
Schäfer, HenrikMeywerk, MartinHellberg, Tobias
The design, development, and optimization of modern suspension systems is a complex process that encompasses several different engineering domains and disciplines such as vehicle dynamics simulation, tire data analysis, 1D lap-time simulation, 3D CAD design and structural analysis including full 3D collision detection. Typically, overall vehicle design and suspension development are carried out in multiple iterative design loops by several human specialists from diverse engineering departments. Fully automating this iterative design process can minimize manual effort, eliminate routine tasks and human errors, and significantly reduce design time. This desired level of automation can be achieved through digital modeling, automated model generation, and simulation using graph-based design languages and an associated language compiler for translation and execution. Graph-based design languages ensure the digital consistency of data, the digital continuity of processes, and the digital
Borowski, JulianRudolph, Stephan
The primary approach to meet the objectives of the EU Heavy Duty CO2 Regulation involves decarbonizing the road transport sector by battery electric vehicles (BEV) or hydrogen-fueled vehicles. Even though the well-to-wheel efficiency of hydrogen-fueled powertrains like fuel cell electric vehicles (FCEV) and H2-internal combustion engines (H2-ICE) is much lower in comparison to BEV, they are better suited for on-road heavy-duty trucks, long haul transport missions and regions with scarce charging infrastructure. Hence, this paper focuses on heavy-duty FCEVs and their overall energetic efficiency enhancement by intelligently managing energy transfer across coolant circuit boundaries through waste heat recovery, while ensuring that all relevant components remain within required temperature boundaries under both cold and hot ambient conditions. Results were obtained using a 1D-model that comprises all thermal fluid circuits (refrigerant, coolant, air) created through GT-Suite software
Uhde, SophiaLanghorst, ThorstenWuest, MarcelNaber, Dirk
In the automotive development process objective criteria are commonly used to evaluate the full vehicle ride comfort of vehicles. Based on these characteristics, vehicle concepts can be evaluated and compared at an early stage without using physical prototypes. Usually, these characteristics are determined in subjective studies using real vehicles. However, limitations in the implementation of vehicle variants, the controllability of external influences and longer intervals between the individual assessments have a negative impact on the quality of results using these approaches. Therefore, this paper presents an improved method to transfer the subjective perception and evaluation of ride comfort phenomena to objective characteristics. The corresponding procedure is shown on the basis of a one-dimensional, periodic phenomenon that is transferred to a frequency-dependent weighting function. In this process, a 6-degree of freedom driving simulator is used to overcome the limitations
Stroesser, SimonAngrick, ChristianZwosta, TobiasNeubeck, JensWagner, Andreas
With the increasing distribution of smart mobility systems, automated & connected vehicles are more and more interacting with each other and with smart infrastructure using V2X-communication. Hereby, the vehicles’ position, driving dynamics data, or driving intention are exchanged. Previous research has explored graph-based cooperation strategies for automated vehicles in mixed traffic environments based on current V2X-communication standards. Thereby, the focus is set on cooperation optimization and maneuver negotiation. These strategies can be implemented through both centralized and decentralized computational approaches and are conflict-free by design. To enhance these previously established cooperation models, real-world traffic data is used to derive vehicle trajectories, providing a more accurate representation of actual traffic scenarios in order to enhance the practical application of the described methodology. Additionally, machine learning algorithms are employed to train
Flormann, MaximilianMeyer, FelixHenze, Roman
Internal combustion engines generate higher exhaust emissions of hazardous gases during the initial minutes after engine start. Experimental data from a state-of-the-art turbo-charged 3-cylinder, 999 cc gasoline engine are used to predict cold start emissions using two Machine Learning (ML) models: a Multilayer Perceptron (MLP) which is a fully connected neural network and an Encoder-Decoder Recurrent Neural Network (ED-RNN). Engine parameters and various temperatures are used as input for the models and NOx (Nitrogen Oxides), CO (Carbon monoxide) and unburned hydrocarbon (UHC) emissions are predicted. The dataset includes time series recordings from the Worldwide harmonized Light-duty vehicles Test Cycle (WLTC) and four Real Diving Emissions (RDE) cycles at ambient and initial engine temperatures ranging from -20 °C to +23 °C. In total, 21 cases are considered, consisting of eight different ambient temperatures and five distinct driving cycles. Each case consists of a sequence of 2500
Mangipudi, ManojDenev, Jordan A.Bockhorn, HenningTrimis, DimosthenisKoch, ThomasDebus, CharlotteGötz, MarkusZirwes, ThorstenHagen, Fabian P.Tofighian, HesamWagner, UweBraun, SamuelLanzer, TheodorKnapp, Sebastian M.
To achieve a significant reduction in net CO₂ emissions in the aviation sector, sustainable aviation fuels (SAFs) are considered a key factor. Current research efforts are therefore focused on SAFs, which exhibit properties that differ from conventional kerosene, particularly in aspects critical to compression-ignition (CI) engines, such as cetane number, evaporation behavior or lubricity. These differences necessitate dedicated investigations to assess their suitability and performance in such engines. However, real operating conditions — such as intake air- and exhaust- pressure levels during flight — cannot be fully replicated on standard engine test benches. For this reason, real flight experiments were conducted to address these limitations. Notably, this work marks the first instance of in-flight testing of SAFs in CI aviation engines, constituting a significant milestone in this research area. In the course of these investigations, ASTM D7566 Annex A2-compliant HEFA
Kleissner, FlorianReitmayr, ChristianHofmann, Peter
The U-Shift IV represents the latest evolution in modular urban mobility solutions, offering significant advancements over its predecessors. This innovative vehicle concept introduces a distinct separation between the drive module, known as the driveboard, and the transport capsules. The driveboard contains all the necessary components for autonomous driving, allowing it to operate independently. This separation not only enables versatile applications - such as easily swapping capsules for passenger or goods transportation - but also significantly improves the utilization of the driveboard. By allowing a single driveboard to be paired with different capsules, operational efficiency is maximized, enabling continuous deployment of driveboards while the individual capsules are in use. The primary focus of U-Shift IV was to obtain a permit for operating at the Federal Garden Show 2023. To achieve this goal, we built the vehicle around the specific requirements for semi-public road
Pohl, EricScheibe, SebastianMünster, MarcoOsebek, ManuelKopp, GerhardSiefkes, Tjark
Fast charging of lithium-ion batteries presents significant thermal management challenges, due to the high demanding conditions of high C-rates, particularly at extreme ambient temperatures. This study explores the thermal behavior of a cylindrical lithium-ion cell during fast-charging scenarios designed to achieve a full charge in 15 minutes or less (SOC: 0%–100%), across a wide range of ambient temperatures. The analysis covers a broad spectrum of ambient temperatures, from 303 K to 333 K, addressing real-world operational challenges faced by electric vehicles and energy storage systems. A validated thermal model, calibrated with experimental data on the open circuit voltage (OCV) and internal resistance of the cell across varying conditions, is employed to accurately predict the temperature distribution of the cell at different states of charge (SOC). The model also includes scenarios involving high initial cell temperatures to assess their effect on thermal performance during fast
Jahanpanah, JalalMahmoudzadeh Andwari, AminBabaie, MeisamKonno, JuhoAkbarzadeh, Mohsen
Vehicles are evolving into Software-Defined Vehicles. The increasing use of automotive High Performance Computers (HPCs) provides more computing power and storage resources in vehicles. This opens possibilities to use more in-vehicle software. However, it also leads to challenges for vehicle diagnostics. Today's diagnostic approaches, based on Diagnostic Trouble Codes (DTCs), are not suitable for software on HPCs. For example, this software is highly variable and updated over time, so predefined DTCs are not dynamic enough. This introduces a degree of ambiguity into the diagnostic processes. Additional diagnostic data are required. In the Cloud, observability approaches are becoming widely used for software. Observability involves examining the availability and performance of an entire software system. To detect failures early, observability data, such as logs, metrics, and traces, are used. This is of interest for vehicle diagnostics as new diagnostic approaches are needed to
Bickelhaupt, SandraHahn, MichaelWeyrich, MichaelMorozov, Andrey
The automotive industry is undergoing a major shift from internal combustion engines to hybrid and battery electric vehicles, which has led to significant advancements and increased complexity in drivetrain design and thermal management systems. This complexity reflects the growing need to optimize energy efficiency, extend vehicle range, and ensure system reliability in modern electric vehicles. At the Institute of Automotive Engineering, a specialized synthesis tool for drivetrain optimization is used to identify the best drivetrain configurations based on specific boundaries and requirements. Building up on this toolchain a modular and adaptable thermal management framework has been developed, addressing another critical aspect of vehicle and drive development: efficient thermal circuit layout and its impact on energy consumption and overall system reliability. The thermal framework emphasizes the dynamic interactions between key components, such as electric machines, power
Notz, FabianSturm, AxelSander, MarcelKässens, ChristophHenze, Roman
Electromobility is gaining importance in the courier, express and parcel (CEP) sector, as parcel service providers increasingly rely on zero-emission vehicles to improve their CO₂ footprint. A common drawback of battery electric vehicles is their reduced range under cold operating conditions, due to the increased energy demand for cabin heating. Another CEP-specific factor influencing both energy consumption and cabin comfort is the frequent opening of doors during parcel delivery. Additionally, during delivery phases, the cabin cools down in the driver’s repeated absence from the cabin, as the heating is inactive. Nonetheless, a sufficient level of thermal comfort must be maintained during the driving phases between delivery stops. This paper presents an optimization-based strategy for the cabin heating of battery electric CEP vehicles. The objective is to maximize cabin comfort during driving phases while maintaining efficient energy consumption. For this purpose, a nonlinear model
Rehm, DominikKrost, JonathanMeywerk, MartinCzarnetzki, Walter
Steer-by-wire actuators represent a transformative advancement in chassis control, opening up new potential for optimizing driving behavior across the entire range of driving dynamics - including driver-dependent automatic counter steering in critical driving situations. However, from a functional safety perspective, the increased potential also introduces new risks with respect to possible system failures. To mitigate these risks, sophisticated monitoring functions are essential to ensure vehicle controllability at all times. Current research approaches for monitoring functions use safe driving envelopes. This set of safe driving states is often found by open-loop simulations, which provide a phase portrait of the nonlinear system under control and from which stability limits can be derived. However, it remains open how these open-loop stability limits correspond to the stabilization capability of a real human driver in the loop. And secondly, how these closed-loop stability limits
Birkemeyer, JanickNaidu P.M, TarunBorkowski, LukasMüller, Steffen
Control-oriented models for vehicle systems are necessary to develop motion planning and path tracking controllers for active safety system development. While being mathematically elegant and simple enough for control design, such models must represent real-world phenomena associated with the vehicle’s kinematic and dynamic behavior. Specifically, articulated vehicles suffer from peculiarities like rearward amplification and offtracking in their kinematic behavior that are not found in single-unit passenger vehicles. In this paper, an iterative kinematic modeling algorithm for articulated truck-trailer vehicles with an arbitrary number of vehicle units having an arbitrary number of axles on each vehicle unit is evaluated using driver input data collected from an experimental passenger vehicle on eight real-world scenarios. The experimental vehicle is considered as the tractor vehicle unit for a simulation study in which multiple trailers of various geometries are considered. The yaw
Singh, YuvrajGiuliani, Pio MicheleJayakumar, AdithyaJaved, Nur UddinTan, ShengzheRizzoni, Giorgio
Problem definition: Battery-electric commercial vehicles in particular have large battery capacities with several hundred kilowatt hours, some of which do not have enough energy for an entire working day, which is why they need to be recharged if necessary. High charging power with correspondingly high charging currents is required to recharge the electrical energy storage in an acceptable time. Due to the electrical losses, waste heat is generated, which places a thermal load on the charging components. In particular, the CCS charging inlet is subject to high thermal loads and, for safety reasons, must not exceed the maximum temperature of 90°C according to DIN EN IEC 62196-1. Depending on the ambient temperature, the charging inlet in the charging path often represents a thermally limiting component, as the charging current must be reduced before the maximum temperature is reached. Solution: Three general solution approaches are used to investigate how the CCS charging inlet can be
Krings, JochenReuss, Hans-ChristianZiegler, PeterSteinmetz, Paul
The brake system is a critical safety component in motor vehicles. Advances in the electrification of the powertrain and the rise of autonomous driving technologies are significantly impacting the brake system, which allows innovative approaches and necessitating the development of new brake concepts and new deceleration strategies. A major technological advance is the decoupling of the driver from the brake system through Brake-by-wire technology. A crucial attribute of Brake-by-wire systems is the attainment of a concept-independent deceleration behavior. To establish a consistent and brand-specific deceleration behavior in the early development phase, objective metrics and perceptual thresholds are required to describe the desired subjective braking behavior. Moreover, objective metrics are indispensable for the virtual phase of the vehicle development process. This article focuses on deceleration from a straight-ahead drive. To identify objective metrics and perceptual thresholds
Biller, RalphUdovicic, MatejKetzmerick, ErikKirch, SebastianMayr, StefanProkop, GüntherWagner, Andreas
Hydrogen produced from renewable sources offers the opportunity to reduce future emissions and enable CO2-neutral mobility by both adapting existing internal combustion engines (ICE) and developing new combustion engine systems. One challenge of hydrogen direct injection (DI) ICE is to optimize the mixture formation to ensure low engine out emissions as well as high efficiencies. In the study presented in this paper, a conventional piezo hollow-cone gasoline injector, commonly used in passenger car series, was adapted for high-pressure hydrogen direct injection applications. Therefore, optical measurements within a low pressure chamber (LPC) were conducted using a high-speed Schlieren imaging measurement technique to visualize the injection behavior and jet pattern at various injection conditions. The visualization of density gradients during the injection process showed a slightly decreased relative gaseous penetration length (GPL) of 4% for hydrogen in comparison to helium while the
Fleischmann, MaximilianMirsch, NiklasGhanoum, MohamadMorcinkowski, BastianAdomeit, PhilippPischinger, Stefan
Vehicular software is a key driver of innovation and revenue in the automotive industry. However, the increasing complexity of vehicular software, driven by shorter development cycles, more frequent updates, and tight coupling of software with hardware, presents significant challenges. Microcontroller-based vehicular software is particularly affected due to resource constraints, which limit flexibility and complicate software updates. To address these challenges, we propose a modular reference architecture that enhances flexibility for microcontroller-based vehicular software, facilitating software modifications in the context of regular updates. The reference architecture is systematically derived from general requirements for microcontroller-based vehicular software and proposes a domain-based structure. It divides embedded vehicular software into five domains: the application domain, responsible for control, regulation, and monitoring functions; the base domain, managing hardware
Griebler, DennisZhai, YiCaggiano, MarioFuchss, Thomas