Your Destination for Mobility Engineering Resources
Recently Published
Browse AllThis specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
Nowadays, customers expect excellent cabin insulation and superior ride comfort in electric vehicles. OEMs focus on fine tuning the suspension system in electric vehicle to isolate the road induced shocks which finally offers superior ride quality. This paper focuses on enhancing the ride comfort by reducing the road excitation which originates mainly due to road inputs. Higher steering wheel vibration is perceived on the test vehicle on rough road surfaces. To determine the predominant force transfer path, Multi reference Transfer Path Analysis (MTPA) is performed on the front and rear suspension. Based on the finding from MTPA, various recommendations are explored and the effect of each modification is discussed. Apart from this, Operational Deflection Shape (ODS) analysis is used to determine the deflection shape on the entire steering system . Based on ODS findings, recommendations like dynamic stiffness improvements on the steering column and steering wheel are explored and the
One of agricultural tractors most important aspects is operator comfort. In addition to working long hours, tractor operators may be at risk for health problems due to vibrations and mechanical shocks. The tactile vibrations of a tractor are a major consideration when choosing one for agricultural use. This project's mandate includes a study of tractor vibration control problems. It is essential to investigate the governing system in order to determine the cause of the problem. Evaluating the vibrations transmitted via the tractor and using the design of experiments (DOE) approach to lessen vibrations on particular tactile regions were the study's goals. There are several measures currently under investigation which can be used to reduce the vibrations caused by resonance in this paper, these include reducing the natural frequency so as to be able to avoid resonance with the second order engine frequency and the damping coefficient; this will ensure the amplitude of vibration at
In the absence of engine noise, road-induced noise has become a major concern specifically for Battery Electric Vehicles (BEVs), impacting Sound Pressure Level (SPL) for both drivers and passengers. Under the influence of random road load inputs, structural vibrations which transfer from road and tire to suspension to vehicle body, the cabin interior noise, particularly at lower frequencies, is significantly affected. To improve the road-induced low-frequency structure-borne noise behaviour, which frequently perceptible as ‘booming noises’, a study was carried out to assess predominant noise sources present in vehicle and to suggest refinements in reducing the noise levels. By considering random excitations of road profile through tire patch using CD-Tire model, vehicle interior noise was computed. Subsequently, to get insight of dynamic behaviour of vehicle, various diagnostic assessments to understand the influence from structure and paths were deployed. Major contributors from body
In-vehicle communication among different vehicle electronic controller units (ECU) to run several applications (I.e. to propel the vehicle or In-vehicle Infotainment), CAN (Controller Area Network) is most frequently used. Given the proprietary nature and lack of standardization in CAN configurations, which are often not disclosed by manufacturers, the process of CAN reverse engineering becomes highly complex and cumbersome. Additionally, the scarcity of publicly accessible data on electric vehicles, coupled with the rapid technological advancements in this domain, has resulted in the absence of a standardized and automated methodology for reverse engineering the CAN. This process is further complicated by the diverse CAN configurations implemented by various Original Equipment Manufacturers (OEMs). This paper presents a manual approach to reverse engineer the series CAN configuration of an electric vehicle, considering no vehicle information is available to testing engineers. To














