Your Destination for Mobility Engineering Resources

Announcements for SAE Mobilus

Browse All

Recent SAE Edge™ Research Reports

Browse All 177

Recent Books

Browse All 718

Recently Published

Browse All
This specification covers a corrosion-resistant steel in the form of investment castings homogenized and solution and precipitation heat treated to 180 ksi (1241 MPa) tensile strength.
AMS F Corrosion and Heat Resistant Alloys Committee
Real-world crashes involve diverse occupants, but traditional restraint systems are designed for a limited range of body types considering the applicable regulations and protocols. While conventional restraints are effective for homogeneous occupant profiles, these systems often underperform in real-world scenarios with diverse demographics, including variations in age, gender, and body morphology. This study addresses this critical gap by evaluating adaptive restraint systems aligned with the forthcoming EURO NCAP 2026 protocols, which emphasize real-world crash diversity and occupant type. Through digital studies of frontal impact scenarios, we analyze biomechanical responses using adaptive restraints across varied occupant demographics, focusing on head and chest injury (e.g., Chest Compression Criterion [CC]). This study used a Design of Experiments (DOE) approach to optimize occupant protection by timing the actuating of these adaptive systems. The results indicate that activating
satija, AnshulSuryawanshi, YuvrajChavan, AvinashRao, Guruprakash
In emerging markets, especially in India and other similar countries, the growing traffic density on the roads leads to different types of accidents, including frontal head-on collisions, rear-end collisions, side-impact collisions, collisions with fixed objects such as electric poles, trees, road guard rails, road dividers, and accidents involving pedestrians, cyclists, and two-wheelers. These accidents could be due to over speeding, distracted driving, violation of traffic rules, and inadequate road infrastructure etc. Providing the necessary safety restraint systems (Airbags and Seat belts) in vehicles and ensuring their robust functionality in different real-world accident scenarios will be challenging for vehicle manufacturers. It is high time to redefine the traditional collision-sensing architecture strategies with a logical approach based on a thorough study of available accident data statistics, types of objects, and scenarios leading to severe accidents. Among these, rear-end
KOVALAM, SUNIL KUMAR
The safety of vulnerable road users, particularly pedestrians, cyclists, and motorcyclists, is a paramount concern in automotive design and regulation. In India, the situation is particularly alarming, with pedestrians being the second highest victims of road accidents, as evidenced by over 32,825 reported pedestrian accidents and 4,836 cyclist fatalities in 2022, excluding two-wheeler motorcyclists. On a global scale, the prevalence of such incidents has prompted European countries to introduce new regulatory requirements, such as ECE R127.03. This regulation encompasses the evaluation of pedestrian head form impacts on windshields, assessing the typical behavior of glass through jerk criteria following initial contact, in conjunction with the existing Head Injury Criterion (HIC) evaluation for pedestrian head forms. These criteria’s are meticulously designed to ensure that both acceleration and jerk remain within safe limits to reduce the severe risk of severe injury to head of
Kumar, RitikA, Rajesh
This study introduces a novel in-cabin health monitoring system leveraging Ultra-Wideband (UWB) radar technology for real-time, contactless detection of occupants' vital signs within automotive environments. By capturing micro-movements associated with cardiac and respiratory activities, the system enables continuous monitoring without physical contact, addressing the need for unobtrusive vehicle health assessment. The system architecture integrates edge computing capabilities within the vehicle's head unit, facilitating immediate data processing and reducing latency. Processed data is securely transmitted via HTTPS to a cloud-based backend through an API Gateway, which orchestrates data validation and routing to a machine learning pipeline. This pipeline employs supervised classifiers, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF) to analyze features such as temporal heartbeat variability, respiration rate stability, and heart rate. Empirical
Singh, SamagraPandya, KavitaJituri, Keerti
Durability validation of full vehicle structures is crucial to ensure long-term performance and structural integrity under real-world loading conditions. Physical test strain and finite element (FE) strain correlation is vital for accurate fatigue damage predictions. During torture track testing of the prototype vehicle, wheel center loads were measured using wheel force transducers (WFTs). In same prototype strain time histories were recorded at critical structural locations using strain gauges. Preliminary FE analysis was carried out to find out critical stress locations, which provided the basis for placement of strain gauges. Measured loads at wheel centers were then used in Multi Body Dynamics (MBD) simulations to calculate the loads at all suspension mount points on BIW. Using the loads at hard points transient analyses were performed to find out structural stress response. Strain outputs from the FE model were compared with physical measurements. Insights gained from these
Jaju, MayurDokhale, SandeepGadre, NileshPatil, Sanjay
With the rise of EVs, researchers are focusing on optimizing busbar design to meet the demands of high energy density, fast charging, and compact battery packs. The busbar design starts by selecting the material and the cross-sectional area required based on the rated current requirement. The width matches or may exceed the battery cell terminal size, whereas the length is optimized such that it is packaged within the given space constraints. The research also highlights the risk of busbars to oxidation and corrosion, which increases resistance and decreases conductivity for which plating/coating techniques are applied to improve the surface finish, overall durability, conductivity and in some cases the surface hardness, while minimizing the heat loss. Using simulations and experimental validation, the study examines three key design parameters: the weld diameter for busbar welded joints, electrical resistance, and contact resistance. A detailed analysis investigates how the weld
Nogdhe, YogeshSingh, Shobit KumarPaul, JibinMishra, MukeshMenon, Praveen
Thermo-mechanical fatigue (TMF) is a critical durability concern for cylinder heads in internal combustion engines, particularly under severe cyclic thermal and mechanical loads. TMF-induced damage often initiates in geometrically constrained regions with high thermal gradients and can significantly reduce component life. As performance demands increase, understanding and mitigating TMF becomes essential to ensure the structural integrity and long-term reliability of engine components. This study presents a simulation methodology for evaluating thermo-mechanical fatigue (TMF), a temperature-dependent low-cycle fatigue (LCF) mechanism that arises from repeated thermal expansion and contraction under mechanical constraints, leading to cyclic plastic deformation and damage. The methodology consists of two key phases. Phase I involves global finite element (FE) simulations both thermal and structural to obtain temperature and displacement fields under rated and idle engine conditions
Ghotekar, SunilKumbhar, Dipak MadhukarPendse, Ameya
Internal Combustion Engine (ICE) is the heart of an Automobile. The failure of any critical component of the ICE engine will directly affect the performance of the vehicle. The gaskets are among the many vital parts of an IC engine that are essential in ensuring appropriate sealing to prevent gas and liquid leakage and maintain optimal engine efficiency. Engines use a variety of gasket types to accommodate various sealing requirements. Among them the exhaust manifold gaskets are one of the critical gasket elements in ICE engines. Exhaust Gasket acts as a seal between cylinder head and extremely hot exhaust manifold, which prevents the leakage of hot exhaust gases produced during typical engine operating condition. The gaskets are crucial components because they endure extremely high mechanical loads from the exhaust manifold sliding and banana-shaped bending brought on by thermal expansion, as well as extremely high thermal loads from the high exhaust gas temperatures, which are more
Reddy, RajavardhanR B, GovindKulkarni, SanjeevPalve, ChandrakantMueller, Frank Oliver
India has emerged as the world’s largest market for motorized two-wheelers (M2Ws) in 2024, reflecting their deep integration into the country’s transportation fabric. However, M2Ws are also a highly vulnerable road user category as according to the Ministry of Road Transport and Highways (MoRTH), the fatality share of M2W riders rose alarmingly from 27% in 2011 to 44% in 2022, underlining the urgency of understanding the circumstances that lead to such crashes. This study aims to investigate the pre-crash behavior and crash-phase characteristics of M2Ws using data from the Road Accident Sampling System – India (RASSI), the country’s only in-depth crash investigation database. The analysis covers 3,632 M2Ws involved in 3,307 crash samples from 2011 to 2022, representing approximately 5 million M2Ws nationally. Key variables examined include crash configuration, collision partner, road type, pre-event movement, travel speed, and human contributing factors. The study finds that straight
Govardhan, RohanPadmanaban, JeyaJethwa, Vaishnav
Electric vehicles (EVs) are becoming more popular than Internal Combustion Engine (ICE) powered vehicles, but their battery and motor components elevate their Gross Vehicle Weight (GVW), posing unique collision risks. Manufacturers strategically mount the high voltage (HV) battery packs under the passenger compartment to lower the Centre of Gravity and shield them from the front impacts. However, side impacts remain a concern, as the battery deformation in such instances could trigger fires or explosions, endangering occupants. To address this, crashworthiness designs adhere to New Car Assessment Program (NCAP) standards, particularly against side pole impact and side mobile barrier impact. Unlike the frontal section of BIW, which typically has larger crush space to absorb the crash energy, extensive design attention is required to the vehicle's side structure to absorb pole impacts without transmitting excessive force to the battery pack. Utilizing aluminium extrusions and sheet
Nivesh, DharunNamani, PrasadRamaraj, Rajasekar
Curtain airbags are the most effective protective systems to prevent severe/fatal head injuries in side collisions with narrow objects such as poles or trees. One of the important parameters of curtain airbags is the inflated zone i.e. the coverage area of the airbag, which decides the extent of head protection for occupants with different anthropometries in different seating rows. EuroNCAP first introduced the concept of Head Protection Device Assessment (HPDA) in 2015., In addition to the performance requirements in the dynamic test, EuroNCAP started assessing the deployed curtain airbag/s for its area coverage and verification of inflated zones for various anthropometries over occupant rows. In India, there is now a near total adoption of curtain airbags as standard fitment by the OEMs. Further, introduction of Bharat NCAP (BNCAP), a Perpendicular Pole Side Impact test is conducted for assessing the effectiveness of curtain airbags in a dynamic test, but currently, does not perform
Jaju, DivyanKulkarni, DileepMahajan, Rahul
The objective of the present study is to examine trends in occupant kinematics and injuries during side impact tests carried out on vehicle models over the period of time. Head, shoulder, torso, spine, and pelvis kinematic responses are analysed for driver dummy in high speed side impacts for vehicle model years, MY2016-2024. Side impact test data from the tests conducted at The Automotive Research Association of India (ARAI) is examined for MY2016-2024. The test procedure is as specified in AIS099 or UNECE R95, wherein a 950kg moving deformable barrier (MDB) impacts the side of stationary vehicle at 50km/hr. An Instrumented 50th percentile male EUROSID-2 Anthropomorphic Test Device is positioned in the driver seat on the impacting side. Occupant kinematic data, including head accelerations, Head Injury Criterion (HIC15), Torso deflections at thorax and abdominal ribs, spine accelerations at T12 vertebra, and pelvis accelerations are evaluated and compared. The “peak” and “time to
Mishra, SatishBorse, TanmayKulkarni, DileepMahajan, Rahul
Vehicle door-related accidents, especially in urban environments, pose a significant safety risk to pedestrians, infrastructure and vehicle occupants. Conventional rear view systems fails to detect obstacles in blind spots directly below the Outside Rear View Mirror (ORVM), leading to unintended collisions during door opening. This paper presents a novel vision-based obstacle detection system integrated into the ORVM assembly. It utilizes the monocular camera and a projection-based reference image technique. The system captures real-time images of the ground surface near the door and compares them with calibrated reference projections to detect deviations caused by obstacles such as pavements, potholes or curbs. Once such an obstacle is detected the vehicle user is alerted in the form of a chime.
Bhuyan, AnuragKhandekar, DhirajJahagirdar, Shweta
The present disclosure is about combating Thermal runaway in Electric, Plug-in Hybrids and mild hybrid vehicles. This paper comprises of high-Voltage Battery pack containing Battery cells electrically coupled with Shape Memory Alloy along with Busbars. These connectors (Shape Memory Alloy) are programmed to operate in two states: First to electrically connect the cells with the busbars, second to disconnect the individual cells from electric connection beyond the threshold temperature. This mechanism enables the Battery cells to rapidly prevent the Battery from the Thermal runaway event which is caused from the cell level ensuring the Battery safety mechanically. Additionally, the Battery pack includes the cell monitoring system and Battery Monitoring System to enhance the above invention with regards to the safety of the vehicle. This configuration is implementable and retrofittable into existing battery systems, offering a robust solution to the challenges posed by prolonged vehicle
Reginald, RiniRout, SaswatVENKATESH, MuthukrishnanChauhan, Ashish JitendraSelvaraj, Elayanila
As urban population continues to grow, the safety of Vulnerable Road Users (VRUs) particularly in the presence of Heavy Good Vehicles (HGVs) has emerged as a critical concern. Research indicates that VRUs are at a 50% higher risk of fatal injury in collisions involving HGVs compared to passenger cars. To address this issue, this study proposes a novel pedestrian protection system that integrates LiDAR (Light Detection and Ranging) technology with a reusable airbag system to mitigate the severity of collisions. The proposed solution adopts a twofold approach for enhancing VRU protection in scenarios involving HGVs. In both approaches, LiDAR sensors are used to generate a real-time 3D model of the vehicle’s surroundings, enabling accurate VRU detection and predictive collision analysis. Scenario 1: When vehicle speed exceeds the first threshold and a collision is unavoidable, the onboard ECU activates front lid actuators, extending the vehicle's front lid which can be retracted back to
Patil, UdaySriharsha, ViswanathPillai, Rajiv
Occupant Safety systems are usually developed using anthropomorphic test devices (ATDs), such as the Hybrid III, THOR-50M, ES-2, and WorldSID. However, in compliance with NCAP and regulatory guidelines, these ATDs are designed for specific crash scenarios, typically frontal and side impacts involving upright occupants. As vehicles evolve (e.g., autonomous layouts, diverse occupant populations), ATDs are proving increasingly inadequate for capturing real-world injury mechanisms. This has led to the adoption of computational Human Body Models (HBMs), such as the Global Human Body Models Consortium (GHBMC) and Total Human Model for Safety (THUMS), which offer superior anatomical fidelity, variable anthropometry, active muscle behaviour modelling, and improved postural flexibility. HBMs can predict internal injuries that ATDs cannot, making them valuable tools for future vehicle safety development. This study uses a sled CAE simulation environment to analyze the kinematics of the HBMs
Raj, PavanRao, GuruprakashPendurthi, Chaitanya SagarNehe, VaibhavChavan, Avinash
As vehicles are becoming more complex, maintaining the effectiveness of safety critical systems like adaptive cruise control, lane keep assist, electronic breaking and airbag deployment extends far beyond the initial design and manufacturing. In the automotive industry these safety systems must perform reliably over the years under varying environmental conditions. This paper examines the critical role of periodic maintenance in sustaining the long-term safety and functional integrity of these systems throughout the lifecycle. As per the latest data from the Ministry of Road Transport and Highways (MoRTH), in 2022, India reported a total of 4.61 lakh road accidents, resulting in 1.68 lakh fatalities and 4.43 lakh injuries. The number of fatalities could have been reduced by the intervention of periodic services and monitoring the health of safety critical systems. While periodic maintenance has contributed to long term safety of the vehicles, there are a lot of vehicles on the road
HN, Sufiyan AhmedKhan, FurqanSrinivas, Dheeraj
Functional Mock-up Units (FMUs) have become a standard for enabling co-simulation and model exchange in vehicle development. However, traditional FMUs derived from physics-based models can be computationally intensive, especially in scenarios requiring real-time performance. This paper presents a Python-based approach for developing a Neural Network (NN) based FMU using deep learning techniques, aimed at accelerating vehicle simulation while ensuring high fidelity. The neural network was trained on vehicle simulation data and trained using Python frameworks such as TensorFlow. The trained model was then exported into FMU, enabling seamless integration with FMI-compliant platforms. The NN FMU replicates the thermal behavior of a vehicle with high accuracy while offering a significant reduction in computational load. Benchmark comparisons with a physical thermal model demonstrate that the proposed solution provides both efficiency and reliability across various driving conditions. The
Srinivasan, RangarajanAshok Bharde, PoojaMhetras, MayurChehire, Marc
Water leakage is a common issue in vehicles, especially during water testing. It often occurs due to a gap between the seal bulb and the closure panel. This gap can result from variations in flange angle, flange curvature, closure surface, or seal bulb height. This study focused on how flange curvature affects seal bulb height and sealing performance. A Computer-Aided Engineering (CAE) method was used, supported by tests on physical samples. Multiple simulations were done using different flange curvatures. Results showed that with a constant Side View Flange Angle (SVFA) of 150°, increasing the Flange Curvature Radius (RZX) reduced seal bulb deformation. The optimal flange curvature radius was found to be 250 mm, where the bulb compression was 1.2 mm. Sharp or tight flanges caused the bulb to deform more, reducing contact and sealing force. To reduce this deformation, a hollow tube was inserted inside the seal bulb. The hollow tube used had an internal diameter of 10 mm and an external
Kumar, SauravNeelam, RajatChowdhury, AshokPanchal, GirishLathwal, Sandeep
Perceived quality (PQ) is one of the most important factors in engineering signoff as well as customer delight and product improvement (feel, look & touch). The PQ is something related to feel of product in terms of gap, flushness, fitment and appearance as per the costumer perceptions and expectations. Validation of design and engineering quality with respect to perceived quality is required for overall product appearance in the eyes of prospective customers. This is equally applicable in today’s automotive bus industry along with the other customer oriented industry. In this paper we have explored the dimensional management scope in improving the PQ requirements and expectations by utilizing the dimensional variation analysis (DVA) approach. We have tried to explain the fundamentals of vehicle aggregates fitment process and impact of fitment tolerances as used in DVA model to resolve vehicle packaging issues (critical gaps & clearance variation as per expected no. of vehicles to be
Singh, Vinay KumarDewangan, Ved PrakashKumar, RahulDeep, Amar
Side crashes are generally hazardous because there is no room for large deformation to protect an occupant from the crash forces. A crucial point in side impacts is the rapid intrusion of the side structure into the passenger compartment which need sufficient space between occupants and door trim to enable a proper unfolding of the side airbag. This problem can be alleviated by using the rising air pressure inside the door as an additional input for crash sensing. With improvements in the crash sensor technology, pressure sensors that detect pressure changes in door cavities have been developed recently for vehicle crash safety applications. The crash pulses recorded by the acceleration based crash sensors usually exhibit high frequency and noisy responses. The data obtained from the pressure sensors exhibit lower frequency and less noisy responses. Due to its ability to discriminate crash severities and allow the restraint devices to deploy earlier, the pressure sensor technology has
Bhagat, MilindNarale, NaganathMahajan, AshutoshWayal, VirendraJadhav, Swapnil
This project introduced a brand-new tire size 245/90R16 for the first time globally in the 16-inch tube-type category, designed specifically for commercial vehicles with Vehicles 8.5T -12T gross vehicle weight (GVW). The main goal was to create a compact vehicle that can carry more payload, reduce overall weight, and improve fuel efficiency with use of rear single tyre instead of twin tyre in 8.5T. This helps customers lower their operating costs and improve vehicle performance, especially on narrow roads. The new tire supports high load capacities: up to 2300 kg for single tire use and 2180 kg for dual tire fitment. It enables a new type of vehicle to be developed an 8.5-ton GVW vehicle with rear single tires offering better payload capacity without increasing the size of the vehicle. By using this new tire, the kerb weight of the vehicle is reduced, which increases the payload and helps improve fuel economy. This helps lower the cost of the vehicle by optimizing surrounding
Pawar, Dhondiram DnyandeoShaikh, MatinAmbekar, Prasad
This technology solves a long-standing ergonomic and aesthetic problem in automotive and consumer interface design, as the use of mechanical switches disrupts the clean look of modern interiors and tends to attract dust and wear. Currently available technologies, such as capacitive touch buttons and mechanical push switches, do not provide the corresponding tactile feedback or clear indication of touch, and usually contain visible openings that interrupt the design flow. Moreover, traditional switches are made up of multiple built-in components, which results in complicated construction and difficult maintenance. To address these drawbacks, we propose a Seamlessly Integrated, Selectively Elevated Fabric Switch that remains flush with the surface when not in use and automatically rises to form a tactile interface when required. The system is a multi-layer construction consisting of an outer fabric upholstery layer, a tactile actuation membrane, and a smart electromagnetic actuator layer
Mohunta, SanjayPanchal, GirishPuthran, Shaunak
Automobile emissions refer to the gases and particles released into the atmosphere by vehicles during their operation. These emissions contribute to environmental pollution and have an impact on human physiology and environment. This paper assimilates findings from a comprehensive research study examining tyre wear and its Indian perspective. Tyre wear understood as a factor affecting road safety, environmental health, and economic sustainability. The study identifies factors affecting tyre wear and provides overview regarding tyre wear generation in India, encompassing road infrastructure, vehicle characteristics, driving patterns, and environmental factors. Moreover, it examines the adverse effects of these particles on human health, such as respiratory ailments and cardiovascular diseases, as well as their impact on ecosystems. This paper delves measures to measure tyre wear and safeguard both environmental and public health. It also covers the tyre wear measurement methodologies to
Joshi, AmolKhairatkar, VyankateshBelavadi Venkataramaiah, Shamsundara