Browse Topic: Off-highway vehicles and equipment
As I'm wont to do come December, with work well underway on the first issue of the new year, I like to take stock of upcoming venues for innovative product reveals and thought-provoking presentations on emerging trends and technologies. Come the first week of January, that means CES in Las Vegas. Traditional equipment manufacturers have increasingly used the event to demonstrate to the broader public that they not only deal in metal but also the digital realm. For example, earlier this year at CES, John Deere revealed its second-generation tech stack featuring camera pods, Nvidia Orin purpose-built processors and Deere's VPUs (vision processing units), along with four new autonomous machines including the 9RX 640 tractor for open-field ag operations. The company is exhibiting again this coming year.
Stoneridge displayed its vision for the future of commercial vehicle technology on the SAE COMVEC 2025 exhibit floor. The Innovation Truck showcases the Tier 1 supplier's next-generation vision and driver-assistance technologies designed to enhance driver safety and fleet optimization. Mario Gafencu, product design and evaluation specialist at Stoneridge, gave Truck & Off-Highway Engineering a tech truck walkaround at the event. The first technology Gafencu detailed was the second-generation MirrorEye camera monitor system that's designed to replace the glass mirrors on the sides of a truck.
FEV has a solution to downsize and reduce the complexity of off-highway machines via its electrified planetary gearset architecture. IVT Expo 2025 in Chicago featured a summit where industry professionals presented and discussed the nuts and bolts of the technology that powers the off-highway vehicle industry. Electrification continues to be a centerpiece of these discussions, but OEMs and suppliers are beginning to supply answers to many of the questions that this challenge presents. During the expo, several presentations covered the integration of electric powertrains at the component and architecture level. One presented by Thomas Wellman, chief engineer, drivetrain systems, FEV North America, detailed an EPGS (electrified planetary gear-set) off-highway drivetrain architecture that is modular and scalable for a variety of powertrain configurations.
A futuristic vehicle chassis rendered in precise detail using state-of-the-art CAD software like Blender, Autodesk Alias. The chassis itself is sleek, low-slung, and aerodynamic, constructed from advanced materials such as high-strength alloys or carbon-fibre composites. Its polished, brushed-metal finish not only exudes performance but also emphasizes the refined form and engineered details. Underneath this visually captivating structure, a sophisticated system of self-hydraulic jacks is seamlessly integrated. These jacks are situated adjacent to the four shock absorber mounts. These jacks are designed to lift the chassis specifically at the tyre areas, and the total vehicle, ensuring that underbody maintenance is efficient and that, in critical situations, vital adjustments or emergency lifts can be performed quickly and safely. The design also incorporates an intuitive control system where the necessary buttons are strategically placed to optimize driver convenience. Whether
The evolution of Autonomous off-highway vehicles (OHVs) has transformed mining, construction, and agriculture industries by significantly improving efficiency and safety. These vehicles operate in high dust, uneven terrain, and potential communication failures, where safety is challenged. To guarantee vehicle safety in such situations, a robust architecture that combines AI-driven perception, fail-safe mechanisms, and conformance to many ISO standards is required. In unstructured environments, AI-driven perception, decision-making, and fail-safe mechanisms are not fully addressed by traditional safety standards like ISO26262 (road vehicles), ISO19014 (earth-moving machinery and it is replacing withdrawn ISO 15998), ISO12100 (Safety of machinery) and ISO25119 (agriculture), ISO 18497 (safety of highly automated agricultural machinery), and ISO/CD 24882 (cybersecurity for machinery).These standards mainly concentrate on the reliability of mechanical and electric/electronic systems
The first step in designing or analyzing any structure is to understand “right” set of loads. Typically, off-road vehicles have many access doors for service or getting into cab etc. Design of these doors and their latches involve a knowledge of the loads arising when the door is shut which usually involves an impact of varying magnitudes. In scenarios of these impact events, where there is sudden change of velocity within few milliseconds, produces high magnitude of loads on structures. One common way of estimating these loads using hand calculations involves evaluating the rate-of-change-of-momentum. However, this calculation needs “duration of impact”, and it is seldom known/difficult to estimate. Failing to capture duration of impact event will change load magnitudes drastically, e.g. load gets doubled if time-of-impact gets reduced from 0.2 to 0.1 seconds and subsequently fatigue life of the components in “Door-closing-event” gets reduce by ~7 times. For these problems, structures
This paper studies an important industrial controls engineering problem statement on mitigating vibrations in a mechanical boom structure for an off-highway agricultural vehicle. The work discusses the implementation of an active force control concept to efficiently dampen out vibrations in a boom. Through rigorous simulation comparison with respect to an existing PID mechanism, the efficacy of the AFC is demonstrated. A notable reduction of 60 % to 70 % in the boom vibrations was observed.
The operator station or “cab” in off Highway equipment plays a critical role to provide a comfortable workspace for the operator. The cab interfaces with several elements of the off-highway equipment which can create gaps and openings. These openings have the potential for acoustic energy leakage, ultimately increasing sound within the cab. During machine operation, noise generated around the cab conducts inside through these leakages resulting in increased sound levels. Acoustic leakages are among the key noise transfer paths responsible for noise inside the cab. Therefore, before considering noise control treatments it is best to first identify and minimize any leakages from joints, corners, and pass-throughs to achieve the required cab noise reduction. In this effort the sound intensity technique is used to detect the acoustic leakages in cab. The commercial test system is used for measuring the sound intensity field over objects. For the cab, an acoustic source is used inside the
A road simulator reproduction method was developed to reproduce the off-road conditions of utility vehicles in a laboratory setting. Off-road running behavior can be reproduced by considering the effects of inertial forces from jump landings owing to uneven terrain and slow-speed navigation. However, extremely low-frequency components and behaviors, including inertial forces from jumps, vehicle acceleration and deceleration, are difficult to reproduce with a normal road simulator in the limited test space of a laboratory. Therefore, it is common practice to intentionally remove input components below 1 Hz. Alternatively, inertial forces can be reproduced by adding a restraining device to the sprung mass of the vehicle along the wheel-axle inputs. Therefore, the former method excludes extremely low-frequency components, whereas the effects between actuators, which increase the test complexity and time required, should be canceled in the latter method. Furthermore, the restraining device
Noise generated by a vehicle’s HVAC (Heating, Ventilation, and Air Conditioning) system can significantly affect passenger comfort and the overall driving experience. One of the main causes of this noise is resonance, which happens when the operating speed of rotating parts, such as fans or compressors, matches the natural frequency of the ducts or housing. This leads to unwanted noise inside the cabin. A Campbell diagram provides a systematic approach to identifying and analyzing resonance issues. By plotting natural frequencies of system components against their operating speeds, Test engineers can determine the specific points where resonance occurs. Once these points are known, design changes can be made to avoid them—for example, adjusting the blower speed, modifying duct stiffness, or adding damping materials such as foam. In our study, resonance was observed in the HVAC duct at a specific blower speed on the Campbell diagram. To address this, we opted to optimize the duct design
In the commercial and off-highway vehicle industry, the transition from internal combustion engines to hybrid and electric alternatives is underway. In 2024, sales of electrified trucks reached more than 97,000, while buses notched 72,000 sales, according to the International Energy Agency (IEA). Estimates for 2025 suggest these numbers will be even greater.
Items per page:
50
1 – 50 of 723