Browse Topic: Off-highway vehicles and equipment

Items (645)
Off-highway vehicles, with their unique requirements of durability, high power, and torque density, are typically powered by diesel ignition internal combustion engines (ICEs). This reliance on ICEs significantly contributes to greenhouse gases (GHGs) emissions. For this reason, there is an urge to develop an energy-efficient powertrain architecture that produces fewer GHGs emissions while meeting the variable torque levels and variable speeds and performing various duty cycles with high efficiency. In order to select the energy-efficient powertrain architecture for the off-highway vehicle, different existing powertrain architectures (i.e., series hybrid, parallel hybrid, series-parallel hybrid, conventional) for off-highway applications have been studied to highlight their pros and cons. This is done considering the different duty cycles and applications along with Life Cycle Analysis (LCA). Off-highway vehicles operate under different road/surface conditions than on-road vehicles
Abououf, HendHanif, AtharDickson, JonChandramouli, NitishAhmed, Qadeer
This paper presents the development of a new vehicle simulation software, the Power- and Usage-Based Simulator Tool (referred to as the Power-Based Model), designed to predict fuel consumption and evaluate advanced powertrain technologies for off-road mobile machinery. The Power-Based Model integrates current research on fuel consumption simulation in the off-road vehicle sector and serves as a platform for development of advanced powertrain technologies such as battery-electric and fuel cell powertrains. The tool predicts the battery capacity and hydrogen storage required for the transition to these advanced powertrains, allowing users to accurately calculate component sizes and reductions in fuel consumption. The Power-Based Model was developed with a strong focus on the unique operational characteristics of off-road machinery, ensuring that it realistically reflects real-world energy consumption and the competitive advantages of various fuel-saving technologies. This paper describes
Kim, NamdooSeo, JiguVijayagopal, RamBurnham, Andrewmakarczyk, DavidFreyermuth, Vincent
Recreational Off-Highway Vehicles (ROVs) also referred to as “side-by-side” vehicles are involved in accidents / crashes due to driver error. This can often be attributed to an operator’s inexperience and failure to differentiate vehicle handling characteristics from that of a traditional automobile. Decelerating testing of ROVs on various surfaces has not been published for these types of vehicles. This work presents test data for use in accident reconstruction and examines the dynamic performance of two exemplar ROVs on various driving surfaces including asphalt, packed dirt, loose gravel and loose, deep sand. Exemplar vehicles, specifically a 4-person “pure-sport” ROV and a single bench utility ROV, are used to gather practical deceleration performance data. Deceleration data comparing tests with fully-locked brakes to tests where the operator manually modulates the brakes to achieve maximum deceleration without brake lockup are also included. The data presented herein is
Swensen, GrantWarner, WyattWarner, Mark
Marine ports are an important source of emissions in many urban areas, and many ports are implementing plans to reduce emissions and greenhouse gases using zero-emission cargo handling equipment. This paper evaluates the performance and activity profiles for various zero-emission (ZE) cargo transport equipment being demonstrated at different ports in California. This included 23 battery-electric (BE) 8,000 lb. (8K) and 36,000 lb. (36K) forklifts, a BE railcar mover, and an electrified rubber-tired gantry crane (eRTG). The study focused on evaluating the performance of the ZE equipment in terms of activity patterns and the potential emissions reductions. Data loggers were used to collect activity data, including hours of use, energy consumption, and charging information over periods from 6 to 21 months. The results showed that the BE forklifts, BE railcar mover, and the eRTG averaged 2-3 hours, 5 hours, and 14 hours of use per day of operation, respectively. The average energy use for
Frederickson, ChasVu, AlexanderMakki, MaedehJohnson, KentDurbin, ThomasBurnette, AndrewHuang, EddyAlvarado, EricaRao, Leela
The shift towards hybrid and electric powertrains in off-road vehicles aims to enhance mobility, extend range, and improve energy efficiency. However, heat pump-based battery thermal management systems in these vehicles continue to consume significant energy, impacting overall range and efficiency. Effective thermal management is essential for maintaining battery performance and safety, particularly in extreme conditions. Although high-fidelity models can capture the complex dynamics of heat pumps, real-time control within model-based optimization frameworks often depends on simplified models, which can degrade system performance. To address this, we propose a novel data-driven grey box control-oriented model (COM) that accurately represents the thermal dynamics of a vapor-compression refrigeration-based heat pump system. This COM is integrated into a model-predictive control (MPC) framework, optimizing thermal management during transient and burst-power operations of the battery pack
Sundar, AnirudhGhate, AtharvaZhu, QilunPrucka, RobertRuan, YeefengFigueroa-Santos, MiriamBarron, Morgan
Off-road vehicles are required to traverse a variety of pavement environments, including asphalt roads, dirt roads, sandy terrains, snowy landscapes, rocky paths, brick roads, and gravel roads, over extended periods while maintaining stable motion. Consequently, the precise identification of pavement types, road unevenness, and other environmental information is crucial for intelligent decision-making and planning, as well as for assessing traversability risks in the autonomous driving functions of off-road vehicles. Compared to traditional perception solutions such as LiDAR and monocular cameras, stereo vision offers advantages like a simple structure, wide field of view, and robust spatial perception. However, its accuracy and computational cost in estimating complex off-road terrain environments still require further optimization. To address this challenge, this paper proposes a terrain environment estimating method for off-road vehicle anticipated driving area based on stereo
Zhao, JianZhang, XutongHou, JieChen, ZhigangZheng, WenboGao, ShangZhu, BingChen, Zhicheng
This SAE Recommended Practice describes the classification of off-road tires and rims for use on earthmoving machines (refer to SAE J1116), defines related terminology in common use, and shows representative construction details of component parts.
MTC8, Tire and Rim
Instructions on this chart are intended to be used as a ready reference by personnel responsible for servicing off-road self-propelled work machines described in SAE J1116, categories 1, 2, 3, and 4. Detailed maintenance and service guidelines are reserved for maintenance, operator, and lubrication manuals as defined in SAE J920.
Machine Technical Steering Committee
This SAE Standard applies to off-road self-propelled work machines as categorized in SAE J1116. Fast fill fueling typically applies to self-propelled machines with a fuel capacity over 380 L, although fast fill fueling can be used on machines with smaller fuel capacity.
Machine Technical Steering Committee
This SAE Recommended Practice applies to off-road, self-propelled work machine categories of earthmoving, forestry, road building and maintenance, and specialized mining machinery as defined in SAE J1116.,
Machine Technical Steering Committee
Terramechanics is a pivotal field for understanding the interaction between a vehicle’s tires and the terrain. Over time, numerous models have been developed to predict the performance of wheeled vehicles across different terrains. This study aims to employ Bekker’s model, which considers the deformable ground and the rigid tire, to simulate the motion of a 4x4 off road vehicle using the Matlab Vehicle Dynamics Blockset. The methodology of this study involves the use of a MatLab Simulink blockset diagram in conjunction with Bekker’s theory to describe the tire’s interaction with the soil. This approach will enable us to obtain the vehicle’s longitudinal dynamics, including position and velocity. The primary goal of this study is to juxtapose the simulated motion with the model provided by Matlab. This comparison will serve to validate Bekker’s theory. By achieving this, we aim to contribute to the body of knowledge in the field of terramechanics and enhance the predictive accuracy of
Duque, Gabriel LeonardoUchôa, Lucas Etchells RileyLopes, Elias Dias RossiRodrigues, Gustavo Simão
As regulations become more stringent, engine manufacturers are adopting innovative technologies to reduce emissions while maintaining durability and reliability. One approach involves optimizing air handling systems. Eaton developed a 48 V electric exhaust gas recirculation pump (EGRP) to reduce NOx and CO2 emissions while improving fuel efficiency when paired with a high-efficiency turbocharger. This study integrates an electric EGRP and a high-efficiency turbocharger onto a 13.6L John Deere off-road diesel engine to evaluate the impact on fuel efficiency and NOx emissions across various drive cycles including the nonroad transient cycle (NRTC), the low load application cycle (LLAC), the constant speed–load acceptance (CSLA) test, and the ramped modal cycle (RMC). The study highlights the benefits and limitations of the prototype EGRP on an off-road engine. Since the setup did not include aftertreatment systems, engine-out emissions were analyzed. Experiments were conducted at
Willoughby, AudreyAdekanbi, MichaelKakani, RaghavAhmad, Zar NigarShaver, GregHolloway, EricHaaland, EricEvers, MatthewLoesch, AdamMcClurg, JosiahBagal, NileshMcCarthy, JamesCoates, Michael
This SAE Standard describes guarding to help prevent hazardous machine movement caused by activation of the starter motor by bypassing the starter control system. This document is applicable to off-road, self-propelled work machines, as identified in SAE J1116, and agricultural tractors, as defined in ANSI/ASAE S390, which have the potential for hazardous machine movement as a result of bypassing the starter control system and powering of the starter motor.
OPTC1, Personnel Protection (General)
This SAE Recommended Practice applies to technical publications which present instructions for the proper unloading, set-up, installations, pre-delivery inspection, operation, and servicing of off-road self-propelled work machines as categorized in SAE J1116. Advertising/marketing and other pre-purchase publications are not included.
Machine Technical Steering Committee
Electrification in off-highway vehicles faces several challenges due to the unique requirements and operational features of heavy-duty applications. Key challenges include power demand, limited range, weight, size, and the costs associated with electrification. Lithium-based batteries have limited capacity and range, and heavy-duty operations can rapidly drain the battery's power. Managing battery power for these operations requires careful planning and optimization of the vehicle's energy consumption to ensure efficient utilization of the battery's capacity. In electric off-highway vehicles, the remaining battery discharge run-time is closely related to the management of operational applications in the field. The utilization of battery power for heavy operations can be enhanced by estimating battery run-time and run distance during operation, which can then be displayed on the vehicle’s display unit. This facilitates the operator's understanding of how much longer the battery can
Narwade, SupriyaSarda, Tejal
Over the past few years, drastic steps have been taken to regularize emission norms for various segments in India. One of the major reforms done was separating construction equipment and agricultural vehicles to differentiate and define regulations effectively. Transition Emission Measure TREM IV emission norms have been implemented in India, and TREM V will also be launched soon. These changes to emission norms have increased the need for the implementation of after-treatment systems (ATS) in off-highway vehicle applications. Earlier, these systems were widely used for on highway vehicles. These emission norms target hydrocarbons, particulate matter, nitrogen oxide and carbon monoxide. Due to which, the demand for diesel oxidation catalysts (DOC) and diesel particulate filters (DPF) has increased in construction equipment and agricultural vehicles. Although ATS has been in use for a long time, there are certain challenges associated with its integration into vehicles. As the space
Sharma, SachinJoshi, Kailash
The off-highway industry witnesses a vast growth in integrating new technologies such as advance driver assistance systems (ADAS/ADS) and connectivity to the vehicles. This is primarily due to the need for providing a safe operational domain for the operators and other people. Having a full perception of the vehicle’s surrounding can be challenging due to the unstructured nature of the field of operation. This research proposes a novel collective perception system that utilizes a C-V2X Roadside Unit (RSU)-based object detection system as well as an onboard perception system. The vehicle uses the input from both systems to maneuver the operational field safely. This article also explored implementing a software-defined vehicle (SDV) architecture on an off-highway vehicle aiming to consolidate the ADAS system hardware and enable over-the-air (OTA) software update capability. Test results showed that FEV’s collective perception system was able to provide the necessary nearby and non-line
Feiguel, MatthieuObando, DavidAlzubi, HamzehAlRousan, QusayTasky, Thomas
Automotive electrical and electronics manufacturer MTA attended IAA Transportation for the first time, demonstrating its new range of wireless communication technologies for the truck industry. Earlier this year, the company acquired Calearo Antenne S.p.A, a company with a long history of producing antennas, amplifiers and cables. MTA global sales director Davide Bonelli explained to Truck & Off-Highway Engineering how that acquisition complements its business. “From a more strategic point of view, we see the world of antennas as complementary to what MTA does,” he said. “Often MTA products have an antenna as an interface, so this is one reason why we have done the deal. There are also a lot of synergies from an engineering standpoint. Historically, MTA is a company that uses many mechanical parts - plastics, metals - which we are very strong with so we can share them. And there are also some competences from Calearo Antenne that can be transferred to us.”
Kendall, John
This SAE Standard applies to horizontal earthboring machines found in SAE J2022 of the following types: a Auger boring machines b Rod pushers c Rotary rod machines d Impact machines This document does not apply to horizontal directional drilling (HDD) machines as defined in ISO 21467, mining machinery covered in SAE J1116, Table 1, nor does it apply to conveyors, tunnel boring machines, pipe jacking systems, micro tunnelers, or well drilling machines.
MTC9, Trenching and Horizontal Earthboring Machines
A digital twin is a digital representation of a real physical system, product, or process that functions as its practically identical digital counterpart for tasks such as testing, integration, monitoring, and maintenance. Creating digital twins allows the ‘digital system’ or ‘digital product’ to be tested at faster-than-real-time which improves overall program efficiency and shortens the programme duration. The HORIBA Intelligent Lab virtual engineering toolset was used to generate an Empirical Digital Twin (EDT) of a contemporary off-highway diesel Internal Combustion Engine (ICE) from physical testing, accounting for the effects of altitude and combustion air temperature. The EDT was subsequently used to predict engine performance and emissions for several synthetic off-highway machine cycles at sea-level and 3000m altitude. The synthetic agricultural cycles which included ploughing, seeding, spraying, fertilising, and roading were generated using a machine simulation programme
Roberts, PhilBates, LukeWhelan, SteveMaroni, ClaudioLeo, ElisabettaPezzola, Marco EzioChild, Steven
The use of carbon-free fuels, such as ammonia or hydrogen, or at least carbon neutral fuels, such as green methane or methanol is one of the most important paths in the development of low-carbon internal combustion engines (ICE). Especially for large, heavy-duty engines, this is a promising route, as replacing them with battery electric or fuel cell drives poses even greater challenges, at least for the time being. For some applications or areas of the world, small ICEs for trucks, passenger cars or off-road vehicles, operated with alternative fuels will still remain the means of choice. One of the biggest challenges in the development of hydrogen combustion engines is achieving high compression ratios and mean effective pressures due to combustion anomalies, caused by the low ignition delay and broad flammability limit of hydrogen. Oil droplets are considered to be one of the main triggers for pre-ignition and knocking. This paper will give a brief introduction, showing the results of
Rossegger, BernhardGrabner, PeterGschiel, KevinVareka, Martin
This SAE Standard describes alternator physical, performance, and application requirements for heavy-duty electrical charging systems for off-road work machines, including those defined in SAE J1116.
CTTC C2, Electrical Components and Systems
Every fall, SAE International's COMVEC symposium brings leaders from the on-highway, off-highway and defense sectors together to collaborate on solutions for the macro and micro challenges within the commercial vehicle industry. One of the executive panels at this year's conference tackled the intricacies of AI's effects both present and future on the industry and how various OEMs are approaching its implementation. “There's a lot of things going on in the industry that really aren't getting a lot of airtime but are actually really important,” said Alan Berger, managing partner at abcg and moderator for the panel. “One of those things is the hype around generative AI. Is this topic relevant in our industry? What about all the data that we're generating? How do we use that? Do these technologies have an impact on business models and how we go to market? And how do we get the right talent into the organization? We need to untangle all this.”
Wolfe, Matt
HD Hyundai recently announced several new additions to its portfolio of off-highway machines. The expansion includes the HD100 dozer, the HX355A excavator, and a quartet of new models for its HX-A series of compact excavators. The HD100 is Hyundai's first new crawler dozer model. “The new HD100 dozer will be a great addition to the equipment fleets of earthmoving contractors, forestry, waste handlers and other customers who already enjoy the benefits of using Hyundai wheel loaders and excavators,” said Mike Ross, senior VP, HD Hyundai Construction Equipment North America.
Wolfe, Matt
Increased performance and lower emissions explain why hybrid technology is an appealing option for certain off-highway vehicles. Just ask John Deere. Vocational off-highway vehicles are piling on the miles with power provided by an internal combustion engine (ICE) with additional hybrid technology. “We often get asked the question, especially by those outside the industry, ‘Why don't we just electrify everything?’ The reason is the current challenges we have with battery-electric vehicles,” Grant Van Tine, product manager for electric vehicles at John Deere, said during an August 22 webinar hosted by SAE Media Group. Van Tine and Mihai Dorobantu, PhD, Eaton Mobility Group's director of technology planning and government affairs, cited facts, figures and in-field and in-development examples of why hybrid innovations are especially relevant today in a session addressing “The Future Role of Hybrids in Off-Highway Vehicles” (www.sae.org/webcasts/sae-on-demand).
Buchholz, Kami
The next-gen 15-liter diesel engine meets all 2027 EPA emissions regulations while boosting fuel efficiency. Cummins provided extensive details of the design and engineering efforts involved in developing the new HELM version of its X15 diesel engine. The company says its new engine will offer up to a 7% improvement in fuel economy compared to the current EPA 2024-certified X15 while also meeting all 2027 emissions targets. Truck & Off-Highway Engineering was invited to tour the company's headquarters in Columbus, Indiana, where journalists were given a comprehensive update on the hardware powering the latest X15.
Wolfe, Matt
Vocational off-highway vehicles are piling on the miles with power provided by an internal combustion engine (ICE) with additional hybrid technology. “We often get asked the question, especially by those outside the industry, ‘Why don't we just electrify everything?’ The reason is the current challenges we have with battery-electric vehicles,” Grant Van Tine, product manager for electric vehicles at John Deere, said during a webinar hosted by SAE Media Group. Van Tine and Mihai Dorobantu, Eaton Mobility Group's director of technology planning and government affairs, cited facts, figures and infield and in-development examples of why hybrid innovations are especially relevant today in a session addressing “The Future Role of Hybrids in Off-Highway Vehicles.”
Buchholz, Kami
Traditionally the off-highway vehicles like tractors, construction and road building machinery have been using diesel engine as the power source. In recent times there has been more and more focus to adopt either all electric or hybrid powertrain for off highway vehicles to reduce the carbon footprint. The e machines involve various electrical components like Battery pack, On board Charger, DC/DC converter, Inverters, Traction motors, PTO Motor and e transmission. The cooling requirement and the fluid temperature limits for these electric components is different compared to the conventional engine. In most of the cases the battery cell temperature needs to be around 20 to 30 °C which in most cases would be below the ambient temperature. Whereas the hydraulic oil temperature can be as high as 100 °C. The hydraulic oil temperature can be maintained using a separate air-cooled hydraulic oil cooler or a plate cooler. Therefore, the cooling system for the e components will be unique and
Dewangan, NitinJoshi, Prathamesh
This SAE Standard establishes the procedures for the application of Tonne Kilometer Per Hour (TKPH) rating values for off-the-road tires; utilizing empirical data formula, it describes the procedure for evaluating and predicting off-the-road tire TKPH requirements as determined by a work cycle analysis.
MTC8, Tire and Rim
This practice applies to guarding of engine cooling fans used on Off-Road Self-Propelled Work Machines defined in SAE J1116. It does not include guarding for belts, pulleys, or other rotating equipment used on these machines.
OPTC1, Personnel Protection (General)
Volvo made several key announcements at the 2024 Advanced Clean Transportation (ACT) Expo in Las Vegas. The company also reaffirmed its goal of reaching net-zero carbon emissions with a 100% fossil-free fleet of trucks and off-highway machines by 2040. “The sustainable future is not only about electric trucks, though they do play a very important role,” said Peter Voorhoeve, president of Volvo Trucks North America. “It's about all the things that we transport. For a sustainable future, there is not one silver bullet. We will have different technologies that all enable zero-emissions trucks. This will include electric drivelines, hydrogen fuel cells, and internal combustion engines.”
Wolfe, Matt
Electric trucks and off-highway vehicles weigh about 30% more than their gasoline- and diesel-powered counterparts. That's a challenge for OEMs who want to reduce vehicle weight to increase range but are bound by the limits of current battery technology. To reduce vehicle weight, OEMs can make design changes in other areas, such as by replacing steel with thermoformed plastics, aluminum alloys and composite materials. What manufacturers may overlook, however, is the weight savings that can be achieved with industrial rubber products. Rubber is already lightweight, but there are heavier-than-necessary elastomeric components used throughout vehicle interiors and exteriors, typically with metal or plastic fasteners.
Manufacturers at the forefront of sustainability efforts and intent on electrifying commercial trucks and off-highway machines still see the necessity to include internal combustion engines in their future product plans. Take Volvo, for example. At the 2024 ACT Expo in Las Vegas, the company reaffirmed its goal of reaching net-zero carbon emissions with a 100% fossil-free fleet of vehicles by 2040 (see page 25). And ICE will remain a staple. “The internal combustion engine will continue to exist in the future - after 2040, after 2050. Then we can ask ourselves, what kind of fuel do we use, to what extent are we able to use fossil-free fuels like HVO,” Peter Voorhoeve, president of Volvo Trucks North America, said at ACT Expo during a CEO Roundtable on Scaling Vehicle Electrification. “The internal combustion engine will [celebrate] its 200th birthday in my opinion.”
Gehm, Ryan
This SAE Standard specifies requirements and design guidelines for electrical wiring systems of less than 50 V and cable diameters from 0.35 to 19 mm2 used on off-road, self-propelled earthmoving machines as defined in SAE J1116 and agricultural tractors as defined in ASAE S390.
CTTC C2, Electrical Components and Systems
The heavy-duty off-road industry continues to expand efforts to reduce fuel consumption and CO2e (carbon dioxide equivalent) emissions. Many manufacturers are pursuing electrification to decrease fuel consumption and emissions. Future policies will likely require electrification for CO2e savings, as seen in light-duty on-road vehicles. Electrified architectures vary widely in the heavy-duty off-road space, with parallel hybrids in some applications and series hybrids in others. The diverse applications for different types of equipment mean different electrified configurations are required. Companies must also determine the value in pursuing electrified architectures; this work analyzes a range of electrified architectures, from micro hybrids to parallel hybrids to series hybrids to a BEV, looking at the total cost, total CO2e, and cost per CO2e (cost of carbon abatement, or cost of carbon reduction) using data for the year 2021. This study is focused on a heavy-duty off-road material
Goodenough, BryantCzarnecki, AlexanderRobinette, DarrellWorm, JeremyBurroughs, BrianLatendresse, PhilWestman, John
The pace of innovations in battery development is revolutionizing the landscape and opportunities for energy storage applications leading to a stronger market segmentation enabling a better suitability to fulfill specific application requirements. For automotive applications, several approaches to increase energy densities, to improve fast charging performance, and to reduce cost on a pack level are considered. Among them, a promising example is the direct integration of battery cells into the battery pack (Cell-to-pack; CTP) or vehicle (Cell-to-chassis, CTC) to increase energy densities and to reduce costs, as already commercialized by Tesla, CATL and others. On cell level, a segmentation between high-performance and low-cost applications is realized in the technology developments. Hereby, a diversification of the cell manufacturer’s product portfolio can be observed. As a strong demand for NMC and LFP-based battery cells is leading to fluctuating raw material prices (especially for
Miller, Ines
Today’s engines used in Agriculture, Mining and Construction are designed for robustness and cost. Here, the Diesel powertrain is the established mainstream solution, offering long operation times without refueling at any desired power rating. In view of the steps towards Carbon Neutrality by 2050, this segment of the Transportation Sector needs to reduce its CO2 emissions. Currently, the EU and US emissions legislations (EU Stage V / EPA Tier4) do not include a CO2 reduction scheme, but this is expected to change with the next update towards EU Stage VI / EPA Tier5 coming into effect 2030 and after. Applications demanding high power or long operational range still require the use of renewable, liquid fuels or hydrogen. The cost-up of such fuels could be counterbalanced by more efficient engines in combination with a hybridized powertrain. The current paper therefore introduces a serial HEV solution for a large wheel loader application of 12t tipping load, which is an example of a
Weber, JostSchatorje, JesperFrekers, YonaHerrmann, OlafGries, Rafael
Deutronic is not alone in developing and integrating thermal-management solutions to meet the specific demands of off-highway EVs. Modine, for example, in 2023 launched a new edition of its EVantage battery thermal-management system with a liquid-cooled condenser (L-CON BTMS) that combines proprietary heat-exchanger technology with smart controls and electronics. The system is designed to withstand harsh environments found in mining, construction, agriculture, specialty and transportation applications, according to Mike Kis, Director of Advanced Thermal Systems at Modine.
Kodiak Robotics launched its first autonomous military prototype vehicle in December 2023 - a Ford F-150 upfitted with the Kodiak Driver autonomous system. Developed for the Department of Defense (DoD), the vehicle runs the same software as Kodiak's autonomous long-haul trucks but with more robust DefensePod enclosures for the sensors. Now the company is collaborating with Textron Systems to develop a purpose-built uncrewed military vehicle designed without space for a driver and intended for advanced terrain environments. The companies plan to demonstrate driverless operations later in 2024. “The initial integration work is largely being done at a Textron Systems facility in Maine, with testing planned at Kodiak facilities,” Kodiak's chief technology officer Andreas Wendel told Truck & Off-Highway Engineering. He shared his thoughts on the “immense” potential for autonomous technology in tactical vehicles.
Gehm, Ryan
North America's first electric, fully integrated custom cab and chassis refuse collection vehicle - slated for initial customer deliveries in mid-2024 - is equipped with a standard advanced driver-assistance system (ADAS). “A typical garbage truck uses commercial off-the-shelf active safety technologies, but the electrified McNeilus Volterra ZSL was purpose-built with active safety technologies to serve our refuse collection customer,” said Brendan Chan, chief engineer for autonomy and active safety at Oshkosh Corporation, McNeilus' parent company. “We wanted to make the safest and best refuse collection truck out there. And by using cloud-based simulation, we could accelerate the development of ADAS and other technologies,” Chan said in an interview with Truck & Off-Highway Engineering during the 2024 dSPACE User Conference in Plymouth, Michigan.
Buchholz, Kami
Axiomatic AX141155, compact CAN-Bluetooth® Low Energy Converter, is IP67-rated, CE, FCC, and vibration compliant for off-highway. Operate in SAE J1939 interface or CAN (protocol independent) Bridge modes. Power from 12V, 24V or 48Vdc and temperature range from 30 to +85°C. Configure via the Axiomatic CAN2BT app on compatible Apple iOS or Android devices. axiomatic.com
Items per page:
1 – 50 of 645