Browse Topic: Agricultural vehicles and equipment

Items (1,148)
The deployment of autonomous trucks in off-road environments poses significant engineering challenges due to terrain variability and dynamic operating conditions. While recent advancements in perception, planning, and control architectures have improved vehicle autonomy, experimental validations comparing autonomous and manual control particularly regarding propulsion efficiency remain limited. This study addresses this gap by conducting structured field experiments to evaluate the performance of a heavy-duty truck operating in autonomous and manual modes. Tests were performed on a dedicated proving ground using a multi-sensor autonomous system. Key performance indicators included vehicle speed stability, engine speed regulation, and fuel consumption. The results show that autonomous driving achieved a 4.5% reduction in fuel consumption compared to manual operation. This gain is attributed to the system’s ability to maintain lower speed variance and more consistent engine behavior
Paula Silva, CiriloYoshioka, Leopoldo RidekiKitani, Edson CaoruAndré, Fatec SantoSilva, Nouriandres Liborio
Agrícola Cana Caiana and Grunner have developed an innovative vehicle for sugarcane harvesting, focused on reducing fuel consumption. This optimization is vital and relevant for similar operations in the largest global producers: Brazil (724 mi t - 37%), India (439 mi t - 22%), China (103 mi t - 5.3%), Thailand (92 mi t - 4.7%), Pakistan (88 mi t - 4.5%), Mexico (55 mi t - 2.8%), Colombia (35 mi t - 1.8%), Indonesia (32 mi t - 1.6%), USA (31 mi t - 1.6%), and Australia (28 mi t - 1.4%). In Brazil, São Paulo leads with 383.4 mi t (54.1% of the 23/24 harvest), followed by Minas Gerais (81.3 mi t). This innovative agricultural machinery, a result of the owners' experience, has already sold over a thousand units, proving its impact on the efficiency of the sugar-alcohol sector. The Belei family's expertise generated this solution that optimizes resources and increases harvesting productivity, with the potential to advance sustainability and profitability globally, driving agricultural
Ferreira, Antonio Eustáquio Sirolli
Automating harvesters started out as a necessary solution to a severe labor shortage in 1990, Trebro Manufacturing states on its website. The Billings, Montana-based manufacturer has been producing turf harvesting machines since 1999, and its automated sod harvesters and entire harvesting process feature self-driving, automated-control functions. The company's tag line, “The Future of Turf Harvesting,” refers to its position of being the first in the industry to offer automated turf harvesting products. Trebro's AutoStack 3 harvester is an automated combine for turf that steers itself while an operator monitors and performs quality control actions when needed. The harvesting process combines several automated control processes.
As countries race to expand renewable energy infrastructure, balancing clean electricity production with land use for food remains a pressing challenge — especially in Japan, where mountainous terrain limits space. A recent study led by researchers from the University of Tokyo explores a promising solution: integrating solar panels with traditional rice farming in a practice known as agrivoltaics.
This study aims to assess how alternative electrified powertrain technologies affect energy use for agricultural tractors in the Autonomie simulation tool. The goal of this study is also to assess the feasibility and performance of hydrogen internal combustion engines as a suitable alternative for the agricultural tractor powertrains. The energy consumption and efficiencies of alternative powertrains and fuel options are analyzed and compared across a variety of duty cycles using modeling and simulation methodologies. The considered alternative powertrains are series, parallel, power-split hybrid electric, fuel cell, and battery electric powertrains. The alternative fuel and powertrains are evaluated for their energy efficiency as well as their potential to reduce greenhouse gas emissions and improve overall tractor performance in a variety of agricultural applications. Following a methodology developed by Argonne National Laboratory and Aramco Americas, the study applied prospective
Kim, NamdooYan, ZimingVijayagopal, RamJung, JaekwangHe, Xin
(TC)The paper presents a designed and evaluated optimal traction control (TC) strategy for unmanned agriculture vehicle, where onboard sensors acquire various real-time information about wheel speed, load sharing, and terrain characteristics to achieve the precise control of the powertrain by establishing an optimal control command; moreover, the developed AMT-adaptive SMC combines the AMT adaptive control algorithm and the SMC to implement the dynamic gear shifting, torque output, and driving mode switching to obtain an optimal power distribution according to different speed demand and harvest load. Based on the establishment of models of the autonomous agriculture vehicle and corresponding tire model, a MATLAB/Simulink method based on dynamic simulation is adopted to simulate the unmanned agricultural vehicle traversing different terrains conditions. The results from comparison show that the energy saving reaches 19.0%, rising from 2. 1 kWh/km to 1. 7 kWh/km, an increase in
Feng, ZhenghaoLu, YunfanGao, DuanAn, YiZhou, Chuanbo
Prognostics and Health Management (PHM) is framework for electrical/mechanical components in heavy machines represents a transformative approach that harnesses cutting-edge sensing technologies and analytics to predict and elevate reliability and efficiency of agricultural/construction machinery. By using advanced data collection and sophisticated analytics, PHM achieves real-time monitoring of critical performance parameters such as voltage, current, temperature, and operational cycles, along with field data mapped with GPS coordinates as well as environmental conditions. This capability allows for the early detection of anomalies and potential failures, thereby enhancing operational reliability. Data collected from the machine will be pushed to the server periodically and whenever any failure is detected advanced AI algorithms on machine and server will analyze the information and link to collected data which will be used to identify possible failures or assess the safety of the
Shinde, Ketan Kishor
The rapid evolution of autonomy in Off-Highway Vehicles (OHVs)—spanning agriculture, mining, and construction—demands robust cybersecurity strategies. Sensor-control systems, the cognitive core of autonomous OHVs, operate in harsh, connectivity-limited environments. This paper presents a structured approach to applying threat modeling to these architectures, ensuring secure-by-design systems that uphold safety, resilience, and operational integrity.
Kotal, Amit
Off-highway vehicles (OHVs) in sectors such as mining, construction, and agriculture contribute significantly to global greenhouse gas (GHG) emissions, particularly carbon dioxide (CO₂) and nitrogen oxides (NOₓ). Despite the growth of alternative fuels and electrification, diesel engines remain dominant due to their superior torque, reliability, and adaptability in harsh environments. This paper introduces a novel onboard exhaust capture and carbon sequestration system tailored for diesel-powered OHVs. The system integrates nano-porous filters, solid-state CO₂ adsorbents, and a modular storage unit to selectively capture CO₂ and NOₓ from exhaust gases in real time. Captured CO₂ is then compressed for onboard storage and potential downstream utilization—such as fuel synthesis, carbonation processes, or industrial sequestration. Key innovations include: A dual-function capture mechanism targeting both CO₂ and NOₓ Lightweight thermal-regenerative adsorption materials Integration with
Vashisht, Shruti
To provide needs of food, clothing and infrastructure for growing population of the world, off-highway vehicles such as those in construction, agriculture and commercial landscaping are moving towards electrification for enhanced precision, productivity, efficiency and sustainability. It has also paved way to adopt autonomy of these vehicles to address challenges like skilled labour shortage for timely and efficient execution. There are many challenges and opportunities of electrification in off-highway domain, be it through completely replacing engine in vehicles or efficiency improvements using hybrid architecture for powertrain and auxiliary power demands, electrification being key enabler precision and speed of the complex operations, automation of complex operation. This paper explains the need of electrification in electric off-highway vehicles and shows how the electrification solves the current challenges faced by off-highway heroes like farmers, construction site owners and
Deshpande, Chinmay VasudevMujumdar, ChaitanyaBachhav, Kiran
Off-highway vehicles (OHVs) are essential in heavy-duty industries like mining, agriculture, and construction, as equipment availability and efficiency directly affect productivity. In these harsh settings, conventional maintenance plans relying on set intervals frequently result in either early component replacements or unexpected breakdowns. This document presents a Connected Aftermarket Services Platform (CASP) that utilizes real-time data analysis, predictive maintenance techniques, and unified e-commerce functionalities to evolve OHV fleet management into a proactive and smart operation. The suggested system integrates IoT-enabled telematics, cloud-based oversight, and AI-powered diagnostics to gather and assess machine health indicators such as engine load, vibration, oil pressure, and usage trends. Models for predictive maintenance utilize both historical and real-time data to produce advance notifications for component failures and maintenance requirements. Fleet managers get
Vashisht, Shruti
To provide growing needs of food, clothing and infrastructure for growing population of the world, off-highway vehicles such as those in construction, agriculture and commercial landscaping are moving towards electrification for enhanced precision, productivity, efficiency and sustainability. It has also paved a way to adopt autonomy of these vehicles to address challenges like skilled labor shortage for timely and efficient execution. Despite the tremendous advantages of electrification, be it through completely replacing engines in vehicles or efficiency improvements using hybrid architecture for powertrain and auxiliary power demands, safety remains a significant challenge and critical requirement for off-highway electric vehicles. This paper explains the concept and importance of functional safety in electric off-highway vehicles, and shows how different standards like ISO 26262, ISO 25119, ISO 13849 can be utilized to achieve state of the art in functional safety for different off
Mujumdar, Chaitanya GajananBachhav, KiranDeshpande, Chinmay
Recent advancements in energy efficient wireless communication protocols and low powered digital sensor technologies have led to the development of wireless sensor network (WSN) applications in diverse industries. These WSNs are generally designed using Bluetooth Low Energy (BLE), ZigBee and Wi-Fi communication protocol depending on the range and reliability requirements of the application. Designing these WSN applications also depends on the following factors. First, the environment under which devices operate varies with the industries and products they are employed in. Second, the energy availability for these devices is limited so higher signal strength for transmission and retransmission reduces the lifetime of these nodes significantly and finally, the size of networks is increasing hence scheduling and routing of messages becomes critical as well. These factors make simulation for these applications essential for evaluating the performance of WSNs before physical deployment of
Periwal, GarvitKoparde, PrashantSewalkar, Swarupanand
Large farms cultivating forage crops for the dairy and livestock sectors require high-quality, dense bales with substantial nutritional value. The storage of hay becomes essential during the colder winter months when grass growth and field conditions are unsuitable for animal grazing. Bale weight serves as a critical parameter for assessing field yields, managing inventory, and facilitating fair trade within the industry. The agricultural sector increasingly demands innovative solutions to enhance efficiency and productivity while minimizing the overhead costs associated with advanced systems. Recent weighing system solutions rely heavily on load cells mounted inside baling machines, adding extra costs, complexity and weight to the equipment. This paper addresses the need to mitigate these issues by implementing an advanced model-based weighing system that operates without the use of load cells, specifically designed for round baler machines. The weighing solution utilizes mathematical
Kadam, Pankaj
Agricultural tractors require self-cleaning and cooling technology, especially in hot and dusty environments. This study introduces a novel reversible fan system designed which is incorporating a manually operated lever-type connection mechanism as an alternative to conventional pneumatic systems. Traditional reversible fans often rely on pneumatic actuators for blade rotation control, which can introduce complexity, maintenance challenges, and energy inefficiency. The proposed design replaces pneumatic components with a mechanically optimized lever linkage system, enabling users to manually reverse the fan’s airflow direction with minimal effort. This innovation enhances operational simplicity, reduces dependency on compressed air systems, and low costs as compared to conventional type reversible fan. The lever mechanism, engineered for ergonomic usability, ensures rapid switching between sucker and pusher modes, optimizing the fan’s utility in applications such as dust removal
Debbarma, RespectParwal, MahendraBaghel, Anand
In the electrical machines, detrimental effects resulted often due to the overheating, such as insulation material degradation, demagnetization of the magnet and increased Joule losses which result in decreased lifetime, and reduced efficiency of the motor. Hence, by effective cooling methods, it is vital to optimize the reliability and performance of the electric motors and to reduce the maintenance and operating costs. This study brings the analysis capability of CFD for the air-cooling of an Electric-Motor (E-Motor) powering on Deere Equipment's. With the aggressive focus on electrification in agriculture domain and based on industry needs of tackling rising global warming, there is an increasing need of CFD modeling to perform virtual simulations of the E-Motors to determine the viability of the designs and their performance capabilities. The thermal predictions are extremely vital as they have tremendous impact on the design, spacing and sizes of these motors.
Singh, BhuvaneshwarTirumala, BhaskarBadgujar, SwapnilHK, Shashikiran
The reliability and durability of off-highway vehicles are crucial for industries like construction, mining, and agriculture. Failures in such machines not only disrupt operations but can also lead to significant economic losses and safety concerns. Effective failure and warranty analysis processes are essential to improve customer support, minimize downtime, and enhance equipment life cycle. This paper outlines a comprehensive 7-step failure analysis methodology tailored for off-highway vehicles, accompanied by warranty analysis using Weibull, 6MIS, and 12MIS IPTV. It details the process from problem identification through permanent solution implementation, emphasizing tools and techniques necessary for sustainable improvements. The structured approach provides an actionable blueprint for OEMs and service teams to enhance customer satisfaction, support sustainable development goals, and maintain regulatory compliance.
Mulla, TosifThakur, AnilTripathi, Ashish
Transmission tuning involves adjusting parameters within a vehicle's transmission control unit (TCU) or transmission control module (TCM) to optimize performance, efficiency, and driving experience. Transmission tuning is beneficial for optimizing performance, improving fuel efficiency, smoother shifting and enhancing drivability particularly when a vehicle's power output is increased or for specific driving conditions. Especially in offroad and agricultural machines, transmission tuning is vital to significantly improve vehicle performance during different operations. The process of transmission tuning is quite time consuming as multiple tuning iterations are required on the actual vehicle. A significant reduction in tuning time can be achieved using a simulation environment, which can mimic the actual vehicle dynamics and the real time vehicle behavior. In this paper, tuning during the forward and reverse motion of the tractor is described. A two-level PI control-based shift strategy
Varghese, Nithin
An agricultural tractor comprises a tightly packed underhood compartment, which poses distinct challenges in managing airflow through its heat exchangers. The intricate design results in uneven airflow patterns, as the fan-driven system draws air from the front, top, and side openings. This work presents a methodology to measure the cooling airflow volume in the tractor and establishing a correlation between test airflow and CFD simulated airflow values. A handheld anemometer and 3x3 matrix type anemometer used for airflow measurement. Measurements were taken at front and back of heat exchanger. It was concluded that, measuring airflow through the heat exchanger with a matrix-type anemometer positioned behind it can enhance the correlation with CFD results to 84%.
A, BoopalshanmugamGanesan, ThanigaivelReddy, LakkuSateesh, TadiGopinathan, Nagarajan
The evolution of Autonomous off-highway vehicles (OHVs) has transformed mining, construction, and agriculture industries by significantly improving efficiency and safety. These vehicles operate in high dust, uneven terrain, and potential communication failures, where safety is challenged. To guarantee vehicle safety in such situations, a robust architecture that combines AI-driven perception, fail-safe mechanisms, and conformance to many ISO standards is required. In unstructured environments, AI-driven perception, decision-making, and fail-safe mechanisms are not fully addressed by traditional safety standards like ISO26262 (road vehicles), ISO19014 (earth-moving machinery and it is replacing withdrawn ISO 15998), ISO12100 (Safety of machinery) and ISO25119 (agriculture), ISO 18497 (safety of highly automated agricultural machinery), and ISO/CD 24882 (cybersecurity for machinery).These standards mainly concentrate on the reliability of mechanical and electric/electronic systems
Muthusamy, Sugantha
Tillage, a fundamental agricultural practice involving soil preparation for planting, has traditionally relied on mechanical implements with limited real-time data collection or adjustment capabilities. The lack of real-time data and implement statistics results in fleet managers struggling to track performance, driver behavior, and operational efficiency of the implements. Lack of data on vehicle performance can result in unexpected breakdowns and higher maintenance costs, ensuring compliance with regulations is challenging without proper data tracking, potentially leading to fines and legal issues. Bluetooth-enabled mechanical implements for tillage operations represent an emerging frontier in precision agriculture, combining traditional soil preparation techniques with modern wireless technology. Implement mounted battery powered BLE (Bluetooth Low Energy) modules operated by solar panel based rechargeable batteries to power microcontroller. When Implement is operational turns
Kaniche, OnkarRajurkar, KartikGokhale, SourabhaVadnere, Mohan
Off-Highway Vehicles (OHVs) — including mining trucks, construction machinery, and agricultural equipment — contribute significantly to greenhouse gas (GHG) emissions and local air pollutants due to their dependence on fossil diesel. Achieving sustainable development goals in off-highway sectors requires transitioning toward alternate fuels that can reduce CO₂, NOₓ, and particulate matter (PM) emissions while maintaining performance and reliability. This paper comprehensively evaluates alternate fuels such as biodiesel, renewable diesel, compressed and liquefied natural gas (CNG/LNG), liquefied petroleum gas (LPG), hydrogen, and alcohol-based blends. Using insights from Service Bulletins, fuel standards, and the Worldwide Fuel Charter, it discusses fuel properties, engine compatibility, operational challenges, sustainability impacts, economic feasibility, safety considerations, and regulatory aspects. Case studies of alternate fuel deployment in OHVs illustrate practical challenges and
Mulla, TosifThakur, AnilTripathi, Ashish
Operating tractors on inclined & uneven terrains for prolonged operations presents safety and ergonomic challenges. Applications such as shuttle operations, loader use, or long-duration implement usage prove to be highly critical based on field observations across Mahindra tractor platforms and it requires skill & experience for maneuvering at ease across usage. We identified the need to offload these repeatable tasks from the operator to improve control & offer comfort. This paper explains the role of Advanced drive assistance features developed for Mahindra tractors suited for all prime mover types – ICE, Alternate Fuels including electric. These features include Hill Hold, Electronic parking brake, Cruise control & Creep mode. Each feature is designed to offload frequent manual tasks from the operator and ensure smoother, safer operation. Hill hold and electronic parking brake work in tandem to offer unparalleled safety by eliminating the fear of tractor roll back in uneven terrain
M, RojerSundaram, PavithraNatarajan, SaravananDevakumar, KiranMuniappan, Balakrishnan
Off-highway vehicles (OHVs) are vital for India’s construction, mining, agriculture, and infrastructure sectors. With growing demand for productivity and sustainability, the need for efficient customer support and precise diagnostic techniques has become paramount. This paper presents a comprehensive study of challenges faced in India, current and emerging diagnostic technologies, troubleshooting techniques, and strategies for effective customer support. Case studies, tables, and diagrams illustrate practical solutions.
Mulla, TosifThakur, AnilTripathi, Ashish
Off Highway vehicles recreation has rapidly expanded across the globe hence it is important to consider the safety of off-highway vehicles which is significantly influenced by various environmental factors, which can pose unique challenges and risks. it is important to make sure that the entire vehicle operates safely and reliably even in the toughest conditions. This paper investigates the impact of environmental conditions on the safety and performance of off-highway vehicles, such as construction equipment, agricultural machinery, and mining vehicles. By examining factors such as terrain, weather conditions, visibility, and natural obstacles, the study aims to identify key hazards and propose strategies to mitigate them. The paper explores how advanced technologies, including digital twins and predictive analytics, can be leveraged to enhance safety measures and improve vehicle resilience in diverse environmental settings. Through comprehensive case studies and empirical data, we
Mogal, MasthanvaliChennamalla, Chandra Shekar
This paper studies an important industrial controls engineering problem statement on mitigating vibrations in a mechanical boom structure for an off-highway agricultural vehicle. The work discusses the implementation of an active force control concept to efficiently dampen out vibrations in a boom. Through rigorous simulation comparison with respect to an existing PID mechanism, the efficacy of the AFC is demonstrated. A notable reduction of 60 % to 70 % in the boom vibrations was observed.
Patil, BhagyeshBawankar, Shubham
In the agricultural industry, the logistics of transporting and storing bales, used as cattle feed, pose significant challenges for large scale farms. Traditional storage of bales in barns is labor-intensive, high in capital expenditure and requires multiple trips of transport vehicle on and off the field. Improper handling during this transition can lead to substantial losses in time, resources and loss of hay. This development aims to eliminate the last-mile transportation step, by enabling year-round storage of bales directly in the field. A patented wrapping material, along with strategic orientation of wrapped bales, enhances their resistance to weather conditions. Field experiments demonstrated that this innovative material not only protects the bales from adverse environmental factors but also effectively retains their nutrient and moisture content. A critical aspect of this solution is ensuring the correct orientation of the wrap seams, as the bales are continuously rotated
Kadam, Pankaj
To ensure the effective operation of engine cooling systems in agricultural tractors, several critical parameters must be considered, including grille opening area and location, grille resistance, front-end blockage, fan speed, and coolant flow rate. While grille design has been moderately explored for highway vehicles, research specific to grille configuration in agricultural tractors remains limited. This study investigates the influence of grille location, grille resistance (modeled using porous inertial and viscous resistance coefficients) front-end blockage, fan speed, and coolant flow rate on radiator top tank temperature (TTT) using Computational Fluid Dynamics (CFD). The analysis is conducted in two phases: first, the effects of grille opening area and location, grille resistance, and front-end blockage are evaluated under fixed fan speed and coolant flow rate; second, an orthogonal array design of experiments is employed to rank the influence of grille opening area, fan speed
Subramani, SridharanBaskar, SubramaniyanGopinathan, Nagarajan
Off-highway vehicles (OHVs) routinely navigate unstable and varied terrains—mud, sand, loose gravel, or uneven rock beds—causing increased rolling resistance, reduced traction, and high energy expenditure. Traditional rigid chassis systems lack the flexibility to adapt dynamically to changing surface conditions, leading to inefficiencies in vehicle stability, maneuverability, and fuel economy. This paper proposes an adaptive terrain morphing chassis (ATMC) that can actively modify its structural geometry in real-time using embedded sensors, hydraulic actuators, and soft robotic elements. Drawing inspiration from nature and recent advances in adaptive materials, the ATMC adjusts vehicle ground clearance, track width, and load distribution in response to terrain profile data, thereby optimizing fuel efficiency and performance. Key contributions include: A multi-sensor fusion system for real-time terrain classification Hydraulic actuators and morphing polymers for variable chassis
Vashisht, Shruti
Measuring the volume of harvested material behind the machine can be beneficial for various agricultural operations, such as baling, dropping, material decomposition, cultivation, and seeding. This paper aims to investigate and determine the volume of material for use in various agricultural operations. This proposed methodology can help to predict the amount of residue available in the field, assess field readiness for the next production cycle, measure residue distribution, determine hay readiness for baling, and evaluate the quantity of hay present in the field, among other applications which would benefit the customer. Efficient post-harvest residue management is essential for sustainable agriculture. This paper presents an Automated Offboard System that leverages Remote Sensing, IoT, Image Processing, and Machine Learning/Deep Learning (ML/DL) to measure the volume of harvested material in real-time. The system integrates onboard cameras and satellite imagery to analyze the field
Singh, Rana ShaktiStallin, Saravanan
This paper focuses on the potential application of hydrogen fueled internal combustion engine (HICE) in the off-road market, examining HICE based on a diesel engine. In the transition to HICE, priority was given to compatibility with existing systems, minimizing changes from the base engine. By adopting a PFI (Port Fuel Injection) method for fuel injection, low-pressure hydrogen supply was achieved. To address the issue of backfire associated with PFI, optimization of injection pressure using a variable pressure control valve, along with adjustments to valve timing and injection timing, was implemented to suppress backflow of residual gases into the intake system and minimize hydrogen retention. Regarding pre-ignition, in addition to suppressing hotspots, the relationship between the homogenization of the air-fuel mixture and NOx emissions was examined, revealing a correlation. This engine was mounted on a generator, and efforts were made to improve the important characteristic of
Shiraishi, KentaroKishi, ShinjiKato, DaichiMitamura, KentaMurakami, KeiMikuni, Yusuke
In recent years, China has persistently rolled out initiatives to build and showcase rural road networks. This study aimed to examine the effect of the rural road demonstration and creation policy on people’s living standards. Using SPSSPRO software and the difference-in-differences (DID) method, we established an effectiveness evaluation model. We analyzed Engel coefficient data covering the period from 2012 to 2022, gathered from 10 cities – some participating in the demonstration and some not. The findings suggest that the policy on rural road development yields benefits by lowering the Engel coefficient in rural areas, thereby enhancing farmers’ quality of life. The study’s conclusions provide significant insights for furthering the rural road demonstration and construction initiative, as well as for promoting the high-quality progression of rural road networks.
Zhou, YiyanQiao, Rui
This SAE Standard provides a uniform method to calculate the lift capacity of knuckle-boom log loaders and certain forestry equipment. It establishes definitions and specifies machine conditions for calculations. This document applies to knuckle-boom log loaders as defined in ISO 6814 and ISO 17591 and certain forestry equipment defined in ISO 6814 that have a rotating upper-structure such as feller bunchers, forwarders, harvesters, and behind the cab or rear-mounted knuckle-boom log loaders not having their own power supply. It does not apply to harvesters that are incapable of lifting a tree or log completely off the ground. This document applies to those machines that are crawler, rubber-tired, and pedestal or stationary mounted.
MTC4, Forestry and Logging Equipment
While traditional industrial robots have long been the workhorses of manufacturing, excelling at pre-programmed, repetitive tasks within controlled, isolated environments, the landscape of automation is shifting. Collaborative robots (cobots), robotic systems designed to interact physically and safely with humans in a shared workspace, are vital not only for future industrial endeavors, such as Industry 5.0, but also for enhancing safety and efficiency across various sectors, including healthcare, agriculture, logistics, and even consumer service applications. Their ability to quickly adapt to changes in a production process or tool failures without compromising quality is a significant advancement.
This SAE Recommended Practice describes the classification of off-road tires and rims designed specifically for forestry machines (refer to SAE J1116), defines related terminology in common use, and shows representative construction details of component parts.
MTC8, Tire and Rim
This paper presents a methodology for optimizing the steering system of a multi-purpose agricultural vehicle (MPAV) equipped with four-wheel steering (4WS) and a symmetrically configured double-wishbone suspension on both axles. The MPAVs are often prone to bump steer issues due to their narrow track width and the need for long suspension travel. The objective is to define and dimension the steering geometry while maintaining the existing suspension kinematics and preserving the hard points of the wheel hubs. In the scientific literature, this issue is typically addressed by adjusting the hard points of both the steering mechanism and the suspension kinematics. The proposed optimization framework begins with a sensitivity analysis of key design parameters: the position and length of the steering actuator. Based on this analysis, the problem is formulated as an optimization task with two different objective functions, whose solutions are then compared. The functions aim to minimize bump
Belloni, MattiaVignati, MicheleSabbioni, Edoardo
The Vision for Off-road Autonomy (VORA) project used passive, vision-only sensors to generate a dense, robust world model for use in off-road navigation. The research resulted in vision-based algorithms applicable to defense and surveillance autonomy, intelligent agricultural applications, and planetary exploration. Passive perception for world modeling enables stealth operation (since lidars can alert observers) and does not require more expensive or specialized sensors (e.g., radar or lidar). Over the course of this three-phase program, SwRI built components of a vision-only navigation pipeline and tested the result on a vehicle platform in an off-road environment.
Towler, Meera DayGarza, Harold A.Chambers, David R.
In recent years, the powertrains of agricultural tractors have been transitioning toward hybrid electric configurations, paving the way for a greener future agricultural machinery. However, stability challenges arise in hybrid electric tractors due to the relative small capacity to perform power-intensive tasks, such as plowing and harvesting. These operations demand significant power, which are supplied by the electric power take-off system. The substantial disturbances introduced by the electric power take-off system during these tasks render conventional small-signal analysis methods inadequate for ensuring system stability. In this article, we first develop a large-signal model of the onboard power electronic systems, which includes components such as the diesel engine–generator set, batteries, in-wheel motors, and electric power take-off system. By employing mixed potential theory, we conduct a thorough analysis of this model and derive a stability criterion for the onboard power
Li, FangyuanLi, ChenhuiGao, LefeiMa, QichaoLiu, Yanhong
Items per page:
1 – 50 of 1148