Browse Topic: Trailers

Items (905)
The truck industry's primary focus is on global transportation, necessitating the efficient movement of goods and materials. There are many types of trucks designed for different purposes, and one of the most significant ones is the tractor trailer which offers great flexibility and can carry heavy loads. The tractor-trailer assembly unit consists of a complex integration of mechanical, electrical, and pneumatic connections, each serving a critical role in the overall functionality and performance of the vehicle. The disconnection of electrical interconnections between the truck trailer and tractor is crucial to prevent damage to the connectors within the wiring harness, which can lead to hazardous situations on the road. The tractor unit serves as the power source, while the trailer is responsible for carrying cargo, with the wiring harness being a crucial yet vulnerable component. When the trailer disengages from the fifth wheel coupling, it is vital to ensure that the electrical
Singh, AmandeepKumar, PradeepSuresh, KarthikrajanKotian, PradeepT, ThirunavukkarasuChitreddy, BharathR, Sunilkumar
Sensata Technologies' booth at this year's IAA Transportation tradeshow included two of the company's Precor radar sensors. The PreView STA79 is a heavy-duty vehicle side-monitoring system launched in May 2024 and designed to comply with Europe-wide blind spot monitoring legislation introduced in June 2024. The PreView Sentry 79 is a front- and rear-monitoring system. Both systems operate on the 79-GHz band as the nomenclature suggests. PreView STA79 can cover up to three vehicle zones: a configurable center zone, which can monitor the length of the vehicle, and two further zones that can be independently set to align with individual customer needs. The system offers a 180-degree field of view to eliminate blind spots along the vehicle sides and a built-in measurement unit that will increase the alert level when turning toward an object even when the turn indicator is not used. The system also features trailer mitigation to reduce false positive alerts on the trailer when turning. The
Kendall, John
This SAE Recommended Practice provides instructions and test procedures for measuring air consumption of air braked vehicles equipped with Antilock Brake Systems (ABS) used on highways
Truck and Bus Brake Systems Committee
This document establishes minimum performance criteria at GCWR and calculation methodology to determine tow-vehicle TWR for passenger cars, multipurpose passenger vehicles, and trucks. This includes all vehicles up to 14000 pounds GVWR
Tow Vehicle Trailer Rating Committee
The objective of the project was to evaluate the energy efficiency of a hybrid electric tractor-semi-trailer combination prototype. The prototype was developed for log hauling application by integrating an existing tractor with an electric semi-trailer to improve fuel consumption and reduce greenhouse gas emissions. One of the conventional axles of the quad axle semi-trailer was replaced with a drive axle powered by an electric motor. Tests were conducted on a 105 km test route with a maximum difference in elevation of 355 m, including a hilly section with a length of 89 km. The results indicated fuel savings ranging from 10.5% to 14% per test run, with an average fuel savings of 12% when the electric drive axle was engaged. The hybrid electric tractor semi-trailer consumed 17.5% less fuel up-hill and 9.4% less down-hill. Throughout each test run, the battery’s state of charge fluctuated, averaging between 88% at the start and 52% at the end. Prior to each run, the batteries were
Surcel, Marius-DorinMercier, SteveBonsi, Adime Kofi
This SAE Recommended Practice defines the system and component functions, measurement metrics, and testing methodologies for evaluating the functionality and performance of tire pressure systems for use on trailers under 26000 pounds GVWR within the known operating environments. This document is applicable to all towed trailers under 26000 pounds GVWR. Examples of towed trailers are recreational vehicle travel trailers and fifth wheels, utility trailers, cargo trailers, livestock trailers, flatbed trailers, boat trailers, and snowmobile trailers. These trailers can be equipped with one, two, or three axles with each axle supporting either two or four tires. These systems are recommended to address all tires in service as originally installed on a trailer by the OEM. This recommended practice can also be applied to external TPMS that also cover tow vehicles and trailers simultaneously. This document will focus on tire pressure systems of the monitoring type
Trailer Committee
As an important contributor to greenhouse gas emissions, the road freight sector plays a significant role when it comes to reaching global climate goals. Due to the requirements regarding payloads and ranges, the transition towards zero emissions is particularly challenging in this sector. A technical solution that can contribute to the reduction of greenhouse gas emissions are electrified semi-trailer systems. These vehicles can be combined with conventional tractor vehicles in order to reduce their fuel consumption and CO2 footprint, as well as with tractor vehicles with alternative powertrains to increase their driving range. In this paper, a simulation study that evaluates the potentials of different configurations for such a system is performed. In the first part the general working principle of an electrified trailer is described. This includes a cloud based predictive energy management system that was used during the simulations. Based on a general vehicle model, the potentials
Knaup, LarsBeidl, Christian
In contrast to passenger cars, whose regulation allowed only a simple trailer combination, the autonomous technologies implementation of Electronic Stability Control (ESC) and Advanced Emergency Braking System (AEBS) for commercial vehicles demands more application and calibration efforts. At this case, the focus is on dynamic control of towing vehicles when applying the service brakes of trailer, in special when complex combination as bi-train and road-train, allowed in North and South America. However, the major risk is present occurrence when an ESC or AEBS equipped towing vehicles is connected to a double or triple trailer combination with a conventional braking system, it means: a system that is not equipped with Anti-lock Braking System (ABS). For instance, if during autonomous control, trailers wheels lock, a jackknifing phenomenon can easily occur. Therefore, in case longer and heavier vehicles (LHV) or megatrucks as called in Europe, the strategy for safety assistance systems
Guarenghi, Vinicius MendesPizzi, Rafael FortunaDepetris, AlessandroPinto, Gustavo Laranjeira NunesCollobialli, Germano
In recent decades, it can be noted an advance in new technologies applied to commercial vehicles. This advancement led to the development of new functions making products more efficient and safer, benefiting the society in general. Commercial vehicle manufacturers brought their products to levels higher than those required by current legal resolutions. Among the various resolutions applied to the braking system, in CONTRAN #915/22, which specifies minimum requirements of performance of vehicles brakes, the part 7 of NBR 10966 stands out. This standard determines requirements for compatibility between towing and towed units combined as a vehicle. The purpose of this study was to evaluate the thermal balance between the brakes of a motor vehicle combined with a semi-trailer. The tests were carried out by varying the pneumatic pressure that controls the service brake of towed units during braking. Some of the pressure levels were complying with compatibility requirements, others were not
Dias, Eduardo MirandaTravaglia, Carlos Abílio PassosRodrigues, AndréRudek, CludemirBritto, Danilo
The Kenworth booth at the 2024 Advanced Clean Transportation (ACT) Expo in Las Vegas garnered much interest thanks to the reveal of its futuristic-looking SuperTruck 2. Developed over a six-year period as part of the DOE's SuperTruck program, the demonstrator vehicle improved freight efficiency by up to 136% compared to the 2009 T660 model. The team improved fuel efficiency up to 12.8 mpg and reduced the combination weight by about 7,100 lb (3,220 kg) - 4,150 lb (1,880 kg) from the tractor and 2,950 lb (1,340 kg) from the trailer. The design led to a 48% reduction in drag compared to Kenworth's baseline vehicle. A Paccar MX-11 diesel engine, rated at 455 hp (339 kW), is paired with a Paccar TX-12 automated transmission and a 48-volt electric generator, creating a mild hybrid system to operate accessories and provide engine-off “hoteling.” The 48V generator also powers the exhaust heater in an in-house-developed close coupled aftertreatment system that demonstrated CARB 2027 ultra-low
Gehm, Ryan
Rooftop solar panels will soon power about 90% of PFG's Gilroy, California, operations, the starting point for cold food deliveries. The vehicles getting the various edibles and food-related products from the warehouse to restaurants, schools, hotels and other customers include new battery-electric Class 8 trucks that mate to trailers fitted with zero-emission transport refrigeration units (TRUs). “Our Gilroy, California, location is the pilot for how we intend to develop sustainable distribution centers,” said Jeff Williamson, senior vice president of operations for Richmond, Virginia-headquartered Performance Food Group (PFG). Williamson and others were recently interviewed by Truck & Off-Highway Engineering following an Earth Day open house at the Gilroy site
Buchholz, Kami
This SAE Recommended Practice establishes methods to determine grade parking performance with respect to: a Ability of the parking brake system to lock the braked wheels. b The trailer holding or sliding on the grade, fully loaded, or unloaded. c Applied manual effort. d Unburnished or burnished brake lining friction conditions. e Down and upgrade directions
Truck and Bus Brake Systems Committee
A road test on semi-trailers is carried out, and accelerations of some characteristic points on the braking system,axles,and truck body is measured,also brake pressure and noise around the support frame is acquired.The measured data was analyzed to determine the causes of the brake noise, and the mechanism of the noise of the drum brake of semi-trailers during low-speed braking was investigated. The following conclusions are obtained: (1) Brake noise of the drum brake of the semi-trailer at low-frequency is generated from vibrations of the brake shoes, axle, and body, and the vibration frequency is close to 2nd natural frequency of the axle. (2) Brake noise is generated from stick-slip motion between the brake shoes and the brake drum, where the relative motion between the brake drum and the brake shoes is changed alternately with sliding and sticking, resulting in sudden changes in acceleration and shock vibration. A multi-body dynamic model of the semi-trailer is established for
Tang, HaoShangguan, Wen-BinKang, YingziZheng, Jing-YuanLan, Wen-Biao
Validation of powertrain systems is nowadays performed with specific durability relevant load cycles, which represent the lifetime requirement of individual powertrain components. The definition of such durability relevant load cycles, which are used for vehicle testing should ideally be based on the actual vehicle's usage. Recording driving cycles within a vehicle is one of the most typical ways of collecting vehicle usage and relevant end customer behavior, but the generation of such measured vehicle data can be time consuming. In addition, this method of capturing on-road measurements has limitations in the variation of vehicle loadings (e.g., number of passengers, luggage, trailer usage etc.). Especially for new applications, entering new target markets, these kinds of in-vehicle measurements are not possible in early development stages, as the required vehicle or powertrain configuration is not available in hardware or incapable of measurements. This paper shows a method to
Haspl, AndreasUnterweger, MichaelaKuruc, JanPlettenberg, MirkoAkasapu, Uday Venkateswar
An experiment is carried out to measure creep groan of a drum brake located in a trailer axle of a truck. The noise nearby the drum brake and accelerations on brake shoes, axle and trailer frame are collected to analyze the occurring conditions and characteristics of the creep groan. A multi-body dynamics model with 1/4 trailer chassis structures is established for analyzing brake component vibrations that generates the creep groan. In the model, the contact force between brake cam and brake shoes, the contact friction characteristics between brake linings and inner circular surface of brake drum, and the properties of chassis structure are included. Dynamic responses of brake shoes, axle and trailer frame during the braking process are estimated using the established model and the responses are compared with the measured results, which validate the model. Three conclusions of measurement and calculation are obtained. (1) The creep groan is usually generated when braking speed is lower
Zheng, Jing-YuanShangguan, Wen-BinTang, HaoLan, Wen-biao
This SAE Recommended Practice identifies the minimum truck tractor electrical power output of the stop lamp and ABS (antilock brake system) circuits measured at the primary SAE J560 tractor trailer interface connector(s
Truck and Bus Electrical Systems Committee
The phenomenon of liquid transfer in the liquid tank of the semi-trailer vehicle for transporting dangerous cargo (SVTDC) during braking is analyzed and the relevant mathematical model is established. The braking dynamic model of the SVTDC considering the liquid sloshing in the tank is established, and the model is verified based on the co-simulation method. Based on the typical conditions, the braking deceleration and axle load calculation functions of the model are simulated and analyzed, and the application prospect of the model in the development of driving automation control strategy is discussed
Li, GangyanZhao, RanFu, Teng
This SAE Recommended Practice provides uniform procedures and minimum performance requirements for fatigue testing ferrous and aluminum wheels intended for normal highway service on travel, camping, and boat and light utility trailers drawn by passenger cars, light trucks, and multipurpose vehicles. For procedures and minimum performance requirements for wheels used on trucks, see SAE J267, and for wheels used on passenger cars, see SAE J328. For the application of passenger car and light truck wheels (inset less than 0.10 m) to this trailer service, use this procedure. For the application of heavier truck wheels (inset 0.10 m (or more)) use SAE J267. Mobile home service is outside the scope of this document. There are two basic test procedures described, a cornering fatigue test and radial fatigue test. The cornering test is directed at the wheel disc; whereas the radial test also examines the rim and attachment portion of the wheel. Both test procedures are required to obtain a
Wheel Standards Committee
This SAE Recommended Practice defines a method for implementing a bidirectional, serial communications link over the vehicle power supply line among modules containing microcomputers. This document defines those parameters of the serial link that relate primarily to hardware and software compatibility such as interface requirements, system protocol, and message format that pertain to Power Line Communications (PLC) between Tractors and Trailers. This document defines a method of activating the trailer ABS Indicator Lamp that is located in the tractor
Truck and Bus Control and Communications Network Committee
Parking an articulated vehicle is a challenging task that requires skill, experience, and visibility from the driver. An automatic parking system for articulated vehicles can make this task easier and more efficient. This article proposes a novel method that finds an optimal path and controls the vehicle with an innovative method while considering its kinematics and environmental constraints and attempts to mathematically explain the behavior of a driver who can perform a complex scenario, called the articulated vehicle park maneuver, without falling into the jackknifing phenomena. In other words, the proposed method models how drivers park articulated vehicles in difficult situations, using different sub-scenarios and mathematical models. It also uses soft computing methods: the ANFIS-FCM, because this method has proven to be a powerful tool for managing uncertain and incomplete data in learning and inference tasks, such as learning from simulations, handling uncertainty, and
Rezaei Nedamani, HamidrezaSoleymanifard, MostafaSafaeifar, AliKhiabani, Parisa Masnadi
Bicycle-drawn cargo trailers with an electric drive to enable the transportation of high cargo loads are used as part of the last-mile logistics. Depending on the load, the total mass of a trailer can vary between approx. 50 and 250 kg, potentially more than the mass of the towing bicycle. This can result in major changes in acceleration and braking behavior of the overall system. While existing systems are designed primarily to provide sufficient power, improvements are needed in the powertrain control system in terms of driver safety and comfort. Hence, we propose a novel prototype that allows measurement of the tensile force in the drawbar which can subsequently be used to design a superior control system. In this context, a sinusoidal force input from the cyclist to the trailer according to the cadence of the cyclist is observed. The novelty of this research is to analyze whether torque impulses of the cyclist can be reduced with the help of Model Predictive Control (MPC). In
Miller, MariusPfeil, MarkusKennel, Ralph
Brazil is significant grain (soy, corn, beans and rice) producer in the planet and the road transportation is needed even when rail and maritime mode is used. There are opportunities to improve the grain road transportation efficiency. This paper presents one opportunity which is the aerodynamic drag reduction and therefore the fuel and energy consumption reduction on grain road transportation. This paper will discuss some alternatives to reduce aerodynamic drag on such application considering Brazilian market regulation which has a low limit for front axle load (lower than European regulation for instance) and limit the total composition length. As an example of some alternatives to reduce drag there is the frontal area reduction and trailer to cab gap reduction. Some of those alternatives were implemented on a concept truck briefly presented on this paper, which was tested on a real application, this paper will illustrate some of those alternatives implemented. Also, this paper
Zarpelon, Fernando LuisBalcewicz, LuizFormolo, LucasGuarda, Ricardo
The sugarcane industry holds the second largest share of production value in the Brazilian agricultural sector, with Brazil responsible for more than 20% of the world’s production. Therefore, the increase of efficiency in the production process of sugarcane is an object of interest for producers, with transportation playing an important role in the process, both economically and environmentally. Intending to improve the efficiency in the transportation of sugarcane between cultivation and processing facilities, this work uses simulations to analyze safety aspects of a vehicle combination with 11 axles and 91ton capacity, new to the Brazilian transportation system. Several procedures were performed in a virtual environment to evaluate the vehicle longitudinal and lateral dynamics, including weight distribution, overtaking performance, rollover threshold, rearward amplification, braking and gradeability. The study is focused on providing information about the feasibility and safety of
de Oliveira, Paulo Ricardo Araujode Almeida Lima, ViniciusBougo, José Igor Calsavara
The measurement of the cargo weight on semi-trailer trucks is required to several stakeholders in the logistics market, for this information can reduce expenses on vehicle maintenance, risk for load traffic fines and ensures safer driving of the vehicle. The state-of-the-art on on-board weighing systems of semi-trailers with leaf spring suspension adopt several techniques to estimate the load: solutions based on load cells, vibrating-wires force transducers or strain gauges on the chassis, on the suspension springs or on the axles of the vehicle. In this work, a new system based on hall effect sensor was developed and tested for measurement of the axle load in semi-trailers through the linear movement that occurs between the trailer axle and its chassis. This solution has low sensitivity to environmental phenomena not caused by human intervention, such as humidity or temperature variations. A lab test was made to compare some arrangements of magnets and hall effect sensors to find out
Parigot, AugustoWeschenfelder, ArthurSeibert, ArturLampert, Luis PedroVeras, RafaelZanolli, Willians
This SAE Standard provides the auxiliary requirements for automotive or RV, additional 12 position, sealed Trailer Tow Connector Plug and Receptacle. The information included within this specification is intended to cover the test methods, design, and performance requirements of optional features for additional power, clean ground for electronic functions, video, data communication, and supplementary electric brake control
Connector Systems Standards Committee
This SAE Recommended Practice includes wheel mounting elements subject to standardization in a series of industrial and agricultural disc wheels. The disc may be reversible or nonreversible and concave or convex. (See Figure 1 and Table 1
MTC8, Tire and Rim
Articulated vehicles form an important part of our society for the transport of goods. Compared to rigid trucks, tractor-trailer combinations can transport huge quantities of load without increasing the axle load. The fifth wheel (FW) acts as a bridge between the tractor and trailer, which can be moved within the range to achieve rated front and rear axle loads. When the FW is moved front, it adversely affects the cab dynamics and cab suspension forces. Compared to the cab pitch and roll, yaw motion increases drastically. The current study tries to address this issue by providing reaction rod links in the rear cab suspension. In this study, a 4×2 tractor with a three-axle semitrailer is considered by keeping the FW at its frontmost position, which is the worst-case scenario for a cab. Three different cases of reaction rod arrangement and its influence on cab dynamics are studied in comparison with a model without reaction rods. To assess this, time signal–based relative pseudo-fatigue
Bhat, Sindhoor
This paper provides a simulation analysis of a novel interconnected roll stability control (RSC) system for improving the roll stability of semitrucks with double trailers. Different from conventional RSC systems where each trailer’s RSC module operates independently, the studied interconnected RSC system allows the two trailers’ RSC systems to communicate with each other. As such, if one trailer’s RSC activates, the other one is also activated to assist in further scrubbing speed or intervening sooner. Simulations are performed using a multi-body vehicle dynamics model that is developed in TruckSim® and coupled with the RSC model established in Simulink®. The dynamic model is validated using track test data. The simulation results for a ramp steer maneuver (RSM) and sine-with-dwell (SWD) maneuver indicate that the proposed RSC system reduces lateral acceleration and rollover index for both trailers, decreasing the likelihood of wheel tip-up and vehicle rollover. Specifically, the
Zheng, XiaohanChen, YangAhmadian, Mehdi
Road vehicles have been shown to experience measurable changes in aerodynamic performance when travelling in everyday safe-distance driving conditions, with a major contributor being the lower effective wind speed associated with the wakes from forward vehicles. Using a novel traffic-wake-generator system, a comprehensive test program was undertaken to examine the influence of traffic wakes on the aerodynamic performance of heavy-duty vehicles (HDVs). The experiments were conducted in a large wind tunnel with four primary variants of a high-fidelity 30%-scale tractor-trailer model. Three high-roof-tractor models (conventional North-American sleeper-cab and day-cab, and a zero-emissions-cab style) paired with a standard dry-van trailer were tested, along with a low-roof day-cab tractor paired with a flat-bed trailer. Amongst these, trailer variants provided a total of 10 HDV configurations that were tested in uniform turbulent flow over a range of freestream yaw angles between ±15°, and
McAuliffe, BrianBarber, HaliGhorbanishohrat, Faegheh
Autonomous truck and trailer configurations face challenges when operating in reverse due to the lack of sensing on the trailer. It is anticipated that sensor packages will be installed on existing trailers to extend autonomous operations while operating in reverse in uncontrolled environments, like a customer's loading dock. Power Line Communication (PLC) between the trailer and the tractor cannot support high bandwidth and low latency communication. This paper explores the impact of using Ethernet or a wireless medium for commercial trailer-tractor communication on the lifecycle and operation of trailer electronic control units (ECUs) from a Systems Engineering perspective to address system requirements, integration, and security. Additionally, content-based and host-based networking approaches for in-vehicle communication, such as Named Data Networking (NDN) and IP-based networking are compared. Implementation, testing and evaluation of prototype trailer ECU communication with the
Elhadeedy, AhmedDaily, Jeremy
This article presents an autonomous steering control scheme for articulated heavy vehicles (AHVs). Despite economic and environmental benefits in freight transportation, lateral stability is always a concern for AHVs in high-speed highway operations due to their multi-unit vehicle structures, and high centers of gravity (CGs). In addition, North American harsh winter weather makes the lateral stability even more challenging. AHVs often experience amplified lateral motions of trailing vehicle units in high-speed evasive maneuvers. AHVs represent a 7.5 times higher risk than passenger cars in highway operation. Human driver errors cause about 94% of traffic collisions. However, little attention has been paid to autonomous steering control of AHVs. To improve the directional performance of AHVs under a high-speed lane-change maneuvers, an autonomous steering control scheme is proposed for a tractor/semi-trailer using a model predictive control (MPC) technique, which controls the steering
Sharma, TarunHe, YupingHuang, Wei
This SAE Standard provides the minimum requirements for automotive or RV, seven position, self-draining trailer tow connector interface. The procedures included within this specification are intended to cover the test methods, design, and performance requirements of the electrical interface of the seven-position trailer tow connector in low voltage (0 to 20) road vehicle applications
Connector Systems Standards Committee
This SAE Recommended Practice covers the wiring and rectangularly shaped connector standards for all types of trailers whose gross weight does not exceed 4540 kg (10 000 lb). These trailers are grouped in SAE J684 with running light circuit loads not to exceed 7.5 A per circuit. This document provides circuits for lighting, electric brakes, trailer battery charging, and an auxiliary circuit color code and protection for the wiring from hazards or short circuits. Color code is compatible with SAE J560 and ISO 1724-1980(E
Connector Systems Standards Committee
This paper presents the development of a validation criteria method for designing of spring brackets, wear pads and equalizers of a leaf spring suspension of a semi-trailer from the perspective of durability and peak loads. The method consisted of the application of a finite element model from strain data collected in the application test. The results obtained in the components during the trailer’s operation were converted into load through calibration curves. The stress-life method was adopted, correcting the mean stress by the Goodman criterion and with the calculation of accumulated damage using Palmgren-Miner with cycle counting by rainflow in the structures during the data acquisition path. The relation between damage accumulation and the life expectancy of the components, defined in a specific distance (mileage) was established. Basquin´s equation was also used. The static equivalent load approach was used, where the equivalent stress was converted into load and normalized by the
Michael Mollon, BrunoAlberto Costa, Carlos
This article provides a dimensionless analysis of the rearward amplification (RA), that is, the ratio of peak lateral acceleration between tractor and rearmost trailer, of commercial trucks with single and double trailers. Through the nondimensionalization, a series of dimensionless parameters that are critical to the lateral and yaw dynamics of the vehicle are determined, which primarily includes vehicle mass ratio, momentum ratio, wheelbase ratio, and longitudinal center of gravity (CG) position ratio. A series of simulations are performed with sinusoidal steering maneuvers with various frequencies ranging from 0.01 Hz to 0.6 Hz. A frequency analysis of the effect of the dimensionless parameters on the RA for the single- and double-trailer trucks is provided. The simulation results suggest that increasing the trailer load causes a larger RA at the steering frequencies below 0.5 Hz. In addition, longer trailers could reduce RA by providing additional damping effects that stabilize the
Zhang, ZichenChen, YangAhmadian, Mehdi
Unstable articulated vehicles pose a serious threat to the occupants driving them as well as the occupants of the vehicles around them. Articulated vehicles typically experience three types of instability: snaking, jack-knifing, and rollover. An articulated vehicle subjected to any of these instabilities can result in major accidents. In this study a Nonlinear Model Predictive Control (NMPC) that applies brake-based torque vectoring on the trailer is developed to improve the articulated vehicle stability. The NMPC formulation includes tire saturation and applies constraints to prevent rollover. The controller output is a left and right brake force allowing the longitudinal velocity change to be incorporated into the model. Simulations were conducted to instigate snaking and jack-knifing and show the NMPC controller result compared to a simple proportional controller. The NMPC controller can prevent these instabilities and improves the overall handling and safety of the articulated
Catterick, JamieBotha, TheunisEls, Schalk
Governmental regulations and customer demand for more energy-efficient vehicles are driving the development of new solutions in the automotive sector. One way of improving energy efficiency is by reducing the aerodynamic drag. A possible solution to achieve this is the concept of vehicles driving in close proximity, which is now becoming feasible considering the advances in vehicle automation and communication. This study focuses on the behavior of aerodynamic forces and flow effects in a two-truck platoon when more realistic road conditions, such as lateral offset and yaw, are present. The study is primarily numerical, but the results are validated against an experimental campaign conducted earlier by the authors. The main findings are that the drag of the leading truck is mostly governed by the base pressure of its trailer and that the truck sees only minor changes when a lateral offset is added, except at very short intervehicle distances. For larger yaw angles, the leading truck
Törnell, JohannesSebben, SimoneElofsson, Per
In modern conditions, the rising cost of fuel and the adoption of more stringent environmental standards in developed countries require a reduction in fuel consumption by vehicles. The profitability of the trucking industry depends on the fuel economy of trucks, which, in turn, is determined by many factors, including their aerodynamic characteristics. The article substantiates new ways of reducing the aerodynamic drag of road trains based on a study conducted by the authors. Numerical simulation of the road train aerodynamics allows us to determine the distribution of velocity, pressure, and air turbulence zone around it. The effectiveness of known and proposed technical solutions to reduce the aerodynamic drag of trains with the use of spoilers of various designs has been evaluated and implemented. An effective way to reduce the aerodynamic resistance of road trains is proposed. The method is to use air ducts as a part of the semi-trailer through which air flows in from the front and
Gritsuk, Igor ValeriyovichBatrachenko, OleksandrTarandushka, LiudmylaMitienkova, ViraBazhinov, OleksiyBazhynova, Tetiana
In this article, safe driving methods for large articulated vehicles passing roundabouts are presented using the design of experiment (DOE) method. First, the roundabout driving safety evaluation based on the rollover propensity index calculated with the tire loads was performed through various PC-Crash simulation analysis. And, using the Taguchi method, which is a representative DOE method, major factors affecting the rollover index were set by type and the sensitivity analysis results were quantitatively obtained. Finally, safe driving methods at roundabouts for large articulated vehicles through systematic reduction of rollover propensity were presented, demonstrating that they can be directly applied to advanced driver assist systems
Han, Inhwan
The commercial vehicle development process needs to consider the vehicle aerodynamics not only in ideal flow conditions, but also in the turbulent real world environment. The turbulent real world environment includes not only atmospheric turbulence, but also the vehicle to vehicle interactions that happen when driving around other vehicles or into and out of the wake of in/on coming vehicles. A vehicle driving into the wake of an oncoming vehicle not only experiences an increase in the total aerodynamic forces, it also experiences unsteady transient loads over the vehicle components such as windshield, mirror, sunvisor, door and side fairing. To properly design specific components, designers need to understand the magnitude of unsteady forces on various vehicle components, otherwise these components may fail which imposes warranty and safety risks. In this paper, we attempt to understand the various forces acting on the primary vehicle during a passing maneuver. The main purpose is to
Dasarathan, DevarajHe, WeiSpencer, StaceyGargoloff, Joaquin
This SAE Recommended Practice establishes performance guidelines for the threshold pressure and brake force output of the brakes on the axles of air-braked towing trucks, truck-tractors, truck-trailers, and converter dollies with GVWRs over 4536 kg (10000 pounds) designed to be used on the highway in combination with other air-braked vehicles of this type in commercial operations
Truck and Bus Brake Systems Committee
The scope and purpose of this SAE Recommended Practice is to provide a classification system for deformation sustained by trucks involved in collisions on the highway. Application of the document is limited to medium trucks, heavy trucks, and articulated combinations.1 The Truck Deformation Classification (TDC) classifies collision contact deformation, as opposed to induced deformation, so that the deformation is segregated into rather narrow limits or categories. Studies of collision deformation can then be performed on one or many data banks with assurance that data under study are of essentially the same type.2 Many of the features of the SAE J224 MAR80 have been retained in this document, although the characters within specific columns vary. Each document must therefore be applied to the appropriate vehicle type. It is also important to note that the TDC does not identify specific vehicle configurations and body types. The TDC is an expression, useful to persons engaged in vehicle
Crash Data Collection and Analysis Standards Committee
A tractor-trailer vehicle (TTV) consists of an actuated tractor attached with several full trailers. Because of its nonlinear and noncompleted constraints, it is a challenging task to avoid collisions for path planner. In this paper, we propose an efficient method to plan an optimal trajectory for TTV to reach the destination without any collision. To deal with the complicated constraints, the trajectory planning problem is formulated as an optimal control problem uniformly, which can be solved by the interior point method. A novel incremental optimization solving algorithm (IOSA) is proposed to accelerate the optimization process, which makes the number of trailers and the size of obstacles increase asynchronously. Simulation experiments are carried out in two scenarios with static obstacles. Compared with other methods, the results show that the planning method with IOSA outperforms in the efficiency
Ruan, XinyaoYu, ZhuopingXiong, LuFu, ZhiqiangLi, Zhuoren
With the advent of CONTRAN resolution 641:2016 [1], became mandatory the Stability Control Systems on all articulated vehicles, that will be commercialized in Brazil from 2025. This resolution [1] aim to prevent the principal accident type involving heavy vehicles: The Rollover incidents. It is known that Brazilian heavy trucks market presents several peculiarities on vehicles configurations, in relation of European and American markets. Basically, it can be said that Brazilian articulated cargo vehicles are longer and heavier than American and European cargo vehicles. These characteristics make Brazilian vehicles more susceptible to lateral instabilities. These characteristics raise an important question about what will be the real effectiveness of these electronical stability control systems when it will be applied on these Brazilian cargo vehicles. Previous studies presents that the effectiveness of stability control systems will be lower and reduced on Brazil because these vehicle
Batista, Igor Augusto AlvesGutierrez, Juan Carlos Horta
Articulated vehicles contribute to the major portions of cargo transport through roads. Fifth wheel (FW) is an important component in these vehicles, which acts as the bridge between tractor and trailer and is often used as a parameter to adjust the axle loads. Ride and comfort studies linked to FW position exist. However, its influence on durability is often not considered seriously. In this article, three different FW positions placed at 200 mm, 400 mm, and 600 mm in front of the rear axle are studied virtually on a 4×2 tractor with three-axle semitrailer combination. To assess the risk associated with FW movement, acceleration-based pseudo-relative damage, power spectral density (PSD), and level crossing plots are analyzed for each FW position. Further, fatigue analysis is done on the cab structural components to understand the durability. Outcome shows that the FW position has an influence in determining the cab dynamics and durability of the components to a great extent. When the
Bhat, SindhoorSheepri, Sunil
Passenger vehicles have made astounding technological leaps in recent years. Unfortunately, little of that progress has trickled down to other segments of the transportation industry leaving opportunities for massive gains in safety and performance. In particular, the electric drum brakes on most consumer trailers differ little from those on trailers over 70 years ago. Careful examination of current production passenger vehicle hardware and trailering provided the opportunity to produce a design and test vehicle for a plausible, practical, and performant trailer braking system for the future. This study equips the trailer with high control frequency antilock braking and dynamic torque distribution through use of passenger vehicle grade apply hardware. Combining an electrically boosted one-box brake actuator with a complement of sensors allows one to leverage existing brake and chassis controls to produce high performance with minimal controls changes and off the shelf hardware in the
Reini, StevenSpry, DouglasMarmara, StaceyBrinkman, Todd
Nowadays, E- commerce and logistics business model is booming in India with road transport as a major mode of delivery system using containers. As competition in such business are on rise, different ways of improving profit margins are being continuously evolved. One such scenario is to look at reducing transportation cost while reducing fuel consumption. Traditionally, aero dynamics of commercial vehicles have never been in focus during their product development although literature shows major part of total fuel energy is consumed in overcoming aerodynamic drag at and above 60 kmph in case of large commercial vehicle. Hence improving vehicle exterior aerodynamic performance gives opportunity to reduce fuel consumption and thereby business profitability. Also byproduct of this improvement is reduced emissions and meeting regulatory requirements. To bring this into reality, vehicle manufacturers are looking at different opportunities to reduce aero drag and one such method that are been
ANWAR, FAISALGulavani, Rohan ArunChalipat, SujitJadhav, Satish
Items per page:
1 – 50 of 905