Browse Topic: Electronic equipment
This Aerospace Recommended Practice (ARP) provides recommended requirements for the testing of electromechanical actuators (EMAs). General test considerations are also provided. While many EMA configurations include motor control electronics, the specific tests required for the electronic hardware, software, or firmware are outside the scope of this document.
With rising environmental concerns, developing lead-free solders is crucial for sustainable electronics. Traditional lead-based solders, while effective, pose health and environmental risks, prompt a shift to safer alternatives that retain reliability. Sn-9Zn alloys, when alloyed with elements such as cerium (Ce) and chromium (Cr), show enhanced mechanical and thermal properties suited for modern electronics. This study examines the effects of Ce and Cr, and their combination in Sn-9Zn solder alloy, analyzing improvements in microstructure, thermal, wettability, and hardness properties. Microstructural analysis reveals that Ce and Cr additions refine the alloy’s structure, benefiting performance. Wettability testing shows that Sn-9Zn-0.05Ce achieves the lowest wetting angle, while Sn-9Zn-0.05Ce-0.1Cr displays a balanced angle between Sn-9Zn-0.05Ce and Sn-9Zn-0.1Cr. Differential scanning calorimetry (DSC) results indicate that Sn-9Zn-0.05Ce has the lowest melting temperature, while Sn
The U-Shift IV represents the latest evolution in modular urban mobility solutions, offering significant advancements over its predecessors. This innovative vehicle concept introduces a distinct separation between the drive module, known as the driveboard, and the transport capsules. The driveboard contains all the necessary components for autonomous driving, allowing it to operate independently. This separation not only enables versatile applications - such as easily swapping capsules for passenger or goods transportation - but also significantly improves the utilization of the driveboard. By allowing a single driveboard to be paired with different capsules, operational efficiency is maximized, enabling continuous deployment of driveboards while the individual capsules are in use. The primary focus of U-Shift IV was to obtain a permit for operating at the Federal Garden Show 2023. To achieve this goal, we built the vehicle around the specific requirements for semi-public road
Vehicles are prime examples of cyber-physical systems that rely on multiple domains, including mechanics, electronics, and software. Due to high customizability and software changes introduced by bug fixes or functional upgrades, vehicle instances vary in space (variants) and time (versions). This results in a huge number of possible variants and versions; thus, testing all combinations to ensure functional safety is practically infeasible. Moreover, components of all domains interact with each other; thus, solely focusing on single domains while testing multi-domain cyber-physical systems is insufficient. In this paper, we propose a process for change-aware testing of cyber-physical systems, including test activities we identified during a literature analysis. The process consists of multiple structured steps, including the selection of affected variants, test case selection, and adaptive configuration of test environments. Based on the process and identified activities, we discuss
This SAE Standard encompasses connectors between two cables or between a cable and an electrical component and focuses on the connectors external to the electrical component. This document provides environmental test requirements and acceptance criteria for the application of connectors for direct current electrical systems of 60 V or less in the majority of heavy-duty applications typically used in off-highway machinery. Severe applications can require higher test levels or field-testing on the intended application.
This document applies to the development of Plans for integrating and managing electronic components in equipment for the military and commercial aerospace markets, as well as other ADHP markets that wish to use this document. Examples of electronic components described in this document include resistors, capacitors, diodes, integrated circuits, hybrids, application specific integrated circuits, wound components, and relays. It is critical for the Plan owner to review and understand the design, materials, configuration control, and qualification methods of all “as-received” electronic components and their capabilities with respect to the application; and to identify risks and, where necessary, take additional action to mitigate the risks. The technical requirements are in Section 3 of this standard and the administrative requirements are in Section 4.
The global satellite communications (SATCOM) sector is undergoing profound transformation. Fueled by the rapid growth of low Earth-orbit (LEO) constellations, increased government investment, and heightened demand for secure, high-throughput connectivity, the market is projected to expand from $66.75 billion in 2025 to $103.78 billion by 20291, 2. This momentum reflects a broader realignment of priorities across commercial and defense markets: a shift from reliance on legacy geostationary systems toward agile, resilient networks capable of supporting next-generation missions and applications.
The Department of Defense (DoD) is developing technology for satellites to communicate via lasers. Laser communications could transmit data faster and more securely than traditional radio frequency communications. DoD has made progress in developing this technology, but it has also faced delays and other issues-and hasn't fully demonstrated that it works in space. Despite these challenges, DoD plans to continue to develop and launch hundreds of satellites worth billions of dollars that require the use of laser communications.
Airbus Defense London, UK aeron.a.haworth@airbus.com
Today, our mobile phones, computers, and GPS systems can give us very accurate time indications and positioning thanks to the over 400 atomic clocks worldwide. All sorts of clocks - be it mechanical, atomic or a smartwatch - are made of two parts: an oscillator and a counter. The oscillator provides a periodic variation of some known frequency over time while the counter counts the number of cycles of the oscillator. Atomic clocks count the oscillations of vibrating atoms that switch between two energy states with very precise frequency.
Researchers developed wearable skin sensors that can detect what’s in a person’s sweat. Using the sensors, monitoring perspiration could bypass the need for more invasive procedures like blood draws and provide real-time updates on health problems such as dehydration or fatigue. The sensor design can be rapidly manufactured using a roll-to-roll processing technique that essentially prints the sensors onto a sheet of plastic.
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
Large eddy simulations (LES) of two HVAC duct configurations at different vent blade angles are performed with the GPU-accelerated low-Mach (Helmholtz) solver for comparison with aeroacoustics measurements conducted at Toyota Motor Europe facilities. The sound pressure level (SPL) at four near-field experimental microphones are predicted both directly in the simulation by recording the LES pressure time history at the microphone locations, and through the use of a frequency-domain Ffowcs Williams-Hawking (FW-H) formulation. The A-weighted 1/3 octave band delta SPL between the two vent blades angle configurations is also computed and compared to experimental data. Overall, the simulations capture the experimental trend of increased radiated noise with the rotated vent blades, and both LES and FW-H spectra show good agreement with the measurements over most of the frequency range of interest, up to 5,000Hz. For the present O(30) million cell mesh and relatively long noise data collection
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes performance requirements, design requirements, and design guidelines for electronic devices.
A team of researchers has developed self-powered, wearable, triboelectric nanogenerators (TENGs) with polyvinyl alcohol (PVA)-based contact layers for monitoring cardiovascular health. TENGs help conserve mechanical energy and turn it into power.
A major challenge in self-powered wearable sensors for health care monitoring is distinguishing different signals when they occur at the same time. Researchers from Penn State and China’s Hebei University of Technology addressed this issue by uncovering a new property of a sensor material, enabling the team to develop a new type of flexible sensor that can accurately measure both temperature and physical strain simultaneously but separately to more precisely pinpoint various signals.
Researchers at the Beijing Institute of Technology have unveiled an innovative electrothermal microgripper that promises to improve microelectronics, biomedical engineering, and MEMS applications. With its remarkable deformation capabilities, excellent size compatibility and reliable catch strength, the microgripper enables the manipulation and assembly of micro- and nano-scale objects with exceptional efficiency. This technological advancement is poised to enhance microscale engineering and pave the way for innovations across various high-tech industries.
Not only the use, but also the wearing time of medical wearables continues to increase in modern healthcare. However, to ensure that wearable products do not cause skin irritation, product designers must consider the moisture vapor transmission rate (MVTR) during development. It plays an important role in skin compatibility and wearing comfort — and can be decisively influenced by the right joining technology.
A joint research effort led by the University of Illinois Urbana-Champaign has shown how coal can play a vital role in next-generation electronic devices.
Modern communication networks rely on optical signals to transfer vast amounts of data. But just like a weak radio signal, these optical signals need to be amplified to travel long distances without losing information. The most common amplifiers, erbium-doped fiber amplifiers (EDFAs), have served this purpose for decades, enabling longer transmission distances without the need for frequent signal regeneration. However, they operate within a limited spectral bandwidth, restricting the expansion of optical networks.
The mass production of conventional silicon chips relies on a successful business model with large “semiconductor fabrication plants” or “foundries.” New research by KU Leuven and imec shows that this “foundry” model can also be applied to the field of flexible, thin-film electronics. Adopting this approach would give innovation in the field a huge boost.
An invention that uses microchip technology in implantable devices and other wearable products such as smart watches can be used to improve biomedical devices including those used to monitor people with glaucoma and heart disease.
Researchers have designed and synthesized a unique material with controllable capabilities that make it promising for future electronics including cellphones and computers.
Naval Air Systems Command Patuxent, MD navairpao@us.navy.mil
Hensoldt Taufkirchen, Germany nico.fritz@hensoldt.net
Researchers from Skoltech and the University of Texas at Austin have presented a proof-of-concept for a wearable sensor that can track healing in sores, ulcers, and other kinds of chronic skin wounds, even without the need to remove the bandages. The paper was published in the journal ACS Sensors.
Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat into electricity via light. Using an unconventional approach inspired by quantum physics, Rice engineer Gururaj Naik and his team designed a thermal emitter that can deliver high efficiencies within practical design parameters.
Just one year after signing a ground-breaking trilateral agreement, the Deep Space Advanced Radar Capability partnership is completing facilities construction at the first of three sites that will host a global network of advanced ground-based sensors.
As the main power source for modern portable electronic devices and electric vehicles, lithium-ion batteries (LIBs) are favored for their high energy density and good cycling performance. However, as the usage time increases, battery performance gradually deteriorates, leading to a heightened risk of thermal runaway (TR) increases, which poses a significant threat to safety. Performance degradation is mainly manifested as capacity decline, internal resistance increase and cycle life reduction, which is usually caused by internal factors of LIBs, such as the fatigue of electrode materials, electrolyte decomposition and interfacial chemical reaction. Meanwhile, external factors of LIBs also contribute to performance degradation, such as external mechanical stresses leading to internal structural damage of LIBs, triggering internal short-circuit (ISC) and violent electrochemical reactions. In this paper, the performance degradation of LIBs and TR mechanism is described in detail, as well
Items per page:
50
1 – 50 of 6498