Browse Topic: Electronic equipment

Items (6,463)
Autonomous driving technology has indeed become a focal point of research globally, with significant efforts directed towards enhancing its key components: environment perception, vehicle localization, path planning, and motion control. These components work together to enable autonomous vehicles to navigate complex environments safely and efficiently. Among these components, environment perception stands out as critical, as it involves the robust, real-time detection of targets on the road. This process relies heavily on the integration of various sensors, making data fusion an indispensable tool in the early stages of automation. Sensor fusion between the camera and RADAR (Radio Detection and Ranging) has advantages because they are complementary sensors, where fusion combines the high lateral resolution from the vision system with the robustness in the face of adverse weather conditions and light invulnerability of RADAR, as well as having a lower production cost compared to the
Cury, Hachid HabibTeixeira, Evandro Leonardo SilvaSilva, Rafael Rodrigues
In the automotive industry, the zonal architecture is a design approach that organizes a vehicle’s electronic and communication systems into specific zones. These zones group components based on their function and physical location, enabling more efficient integration and simplified communication between the vehicle’s various systems. An important aspect of this architecture is the implementation of the Controller Area Network (CAN) protocol. CAN is a serial communication protocol developed specifically for automotive applications, allowing various electronic devices within a vehicle, such as sensors, actuators, and Electronic Control Units (ECUs), to communicate with each other quickly and reliably, sharing information essential for the vehicle’s operation. However, due to its limitations, there is a need for more efficient protocols like Automotive Ethernet and Controller Area Network Flexible (CAN FD), which allow for higher transmission rates and larger data packets. To centralize
Santos, Felipe CarvalhoSilva, Antônio LucasPaterlini, BrunoPedroso, Henrique GomesAlves, Joyce MartinsMilani, Pedro Henrique PiresKlepa, Rogério Bonette
Recognizing the significant challenges inherent in the analysis of periodic gas flow through reciprocating engines, one can easily appreciate the value of studying the steady flow through cylinder heads, manifolds, and exhaust systems. In these studies, flow benches are the cornerstone of the experimental apparatus needed to validate theoretical results or to perform purely experimental analysis. The Metal-Mechanics Department of IFSC owns a SuperFlow model SF-110 flow bench that has suffered some in house maintenance and received electronic sensors to allow computerized data acquisition. As the essential original sensors in this flow bench were liquid column manometer (for pressure difference across the test subject) and micromanometer (for pressure difference across the orifice plate used to measure the flow), the essential new sensors are electronic differential pressure sensors (installed in parallel with the original ones). In recent decades, however, the use of a mass air flow
Vandresen, Marcelodos Santos, Luciano Amaury
In response to the escalating demand for high-performance, miniaturized, and integrated radio frequency (RF) systems, this research explores the application of the Zynq UltraScale+ RFSoC XCZU47DR chip in the realm of integrated RF transceiver technology. An 8-channel, 4.8Gsps multi-channel distributed collaborative spectrum sensing architecture has been designed, incorporating lightweight IQ neural network, which comprises a convolutional layer, three Bottleneck Units (BNU), a Global Average Pooling (GAP) layer, and a Fully Connected (FC) layer. Notably, each BNU encapsulates one or two inverted bottleneck residual blocks that integrate the concepts of inverted residual blocks and linear bottlenecks. The parameter counts and computational complexity associated with the convolution operation are significantly reduced to merely 11.89% of those required by traditional networks. The performance metrics of the hardware circuit were validated through a constructed test system. Within a 2GHz
Chen, WangjieYang, JianZhu, WeiqiangShi, SonghuaZhou, MingyuFan, Zhenhong
Recently, four-dimensional (4D) radar has shown unique advantages in the field of odometry estimation due to its low cost, all-weather use, and dynamic and static recognition. These features complement the performance of monocular cameras, which provide rich information but are easily affected by lighting. However, the construction of deep radar visual odometry faces the following challenges: (1) the 4D radar point cloud is very sparse; (2) due to the penetration ability of 4D radar, it will produce mismatches with pixels when projected onto the image plane. In order to enrich the point cloud information and improve the accuracy of modal correspondence, this paper proposes a low-cost fusion odometry method based on 4D radar and pseudo-LiDAR, 4DRPLO-Net. This method proposes a new framework that uses 4D radar points and pseudo-LiDAR points generated by images to construct odometry, bridging the gap between 4D radar and images in three-dimensional (3D) space. Specifically, the pseudo
Huang, MinqingLu, ShouyiZhuo, Guirong
This research introduces a Detailed Digital Fuel Indicator (DDFI) system to enhance fuel monitoring accuracy in automobiles using advanced infrared (IR) sensor technology for precise fuel level detection. The innovative system includes a secondary tank, meticulously calibrated to the volumetric ratio of the primary tank, to ensure consistent and accurate readings. The DDFI system provides real-time data on fuel levels with an impressive accuracy of ±5%, a notable improvement over the traditional methods. Key components of the system include an IR sensor, a programmable integrated circuit (IC), and a secondary tank fabricated from galvanized iron (GI) sheet metal, ensuring durability and reliability in various environmental conditions. The system is designed to be user-friendly, offering an intuitive interface for drivers to monitor fuel levels effortlessly. Additionally, the DDFI system integrates seamlessly with existing vehicle systems, allowing for easy installation and minimal
Mallieswaran, K.Nithya, R.Rajendran, ShurutiArulaalan, M.
A lightning strike during raining season causes significant risks to automobiles, especially modern vehicles mostly dependent on electronic systems. Lightning can cause severe damage to electronic control unit that control the vehicle functions such as engine management, electrical circuits with sensors, braking systems, and safety features. Therefore, this research work focused for developing new electrical polymers with better conductive properties that would create a path for lightning to travel without damaging it. In-situ chemical oxidative polymerization was used to develop a new series of functional electroactive nanocomposites based on silver nanoparticles embedded poly (aniline-co-3-chloroaniline) matrix. Here we would suggest these electroactive polymers can be widely used as additive in paint manufacturing as special coatings in automobiles industry. Because of the internal chemical bonds and internal structure of these materials acts as a semiconducting nature, hence they
Pachanoor, VijayanandMoorthi, Bharathiraja
Object detection (OD) is one of the most important aspects in Autonomous Driving (AD) application. This depends on the strategic sensor’s selection and placement of sensors around the vehicle. The sensors should be selected based on various constraints such as range, use-case, and cost limitation. This paper introduces a systematic approach for identifying the optimal practices for selecting sensors in AD object detection, offering guidance for those looking to expand their expertise in this field and select the most suitable sensors accordingly. In general, object detection typically involves utilizing RADAR, LiDAR, and cameras. RADAR excels in accurately measuring longitudinal distances over both long and short ranges, but its accuracy in lateral distances is limited. LiDAR is known for its ability to provide accurate range data, but it struggles to identify objects in various weather conditions. On the other hand, camera-based systems offer superior recognition capabilities but lack
Maktedar, AsrarulhaqChatterjee, Mayurika
The rapid advancement in the autonomous vehicle industry has underscored the critical role of sensors in identifying and tracking traffic participants. Among these sensors, radar plays a pivotal role due to its ability to function reliably in various weather and lighting conditions. This paper presents a phenomenological radar sensor model designed to simulate the behavior of real radar systems under diverse scenarios, including noisy environments and accidental situations. As the complexity of autonomous systems increases, relying solely on on-road and bench testing becomes insufficient for meeting stringent safety and performance standards. These traditional testing methods may not encompass the wide range of potential scenarios that autonomous vehicles might encounter. As a result, virtual environment modeling has emerged as a crucial tool for validating driving functions, assistance systems, and the strategic placement of multiple sensors. In contrast to high-fidelity radar models
Hanumanthaiah, ManjunathS, GirishDurairaj, Priya
The Battery Management System (BMS) plays a vital role in managing the energy present in the high voltage battery pack of electric vehicles. The wired battery management system is commonly used in automotive applications. The known difficulties with the wired battery management system includes the intricate wiring harness, wiring failures, system scalability and high implementation costs. To mitigate the above challenges, the wireless battery management system is proposed. Several wireless protocols, including BLE, Zigbee, and 2.4GHz proprietary protocol, are being examined for wireless BMS. However, there are technical difficulties with these protocols to be applied in the battery pack environment. This research paper looks at the Ultra-Wide Band (UWB) communication protocol for wireless BMS, considering UWB’s efficiency low latency and robust Radio Frequency (RF) performance. The UWB protocol is used to communicate between the Cell Supervisory Circuit (CSC) and the Battery Management
Dannana, Arun KumarSubbiah Subbulakshmi, NallaperumalChandirasekaran, RamachandranBeemarajan, Mutharasu
Driving at night presents a myriad of challenges, with one of the most significant being visibility, especially on curved roads. Despite the fact that only a quarter of driving occurs at night, research indicates that over half of driving accidents happen during this period. This alarming statistic underscores the urgent need for improved illumination solutions, particularly on curved roads, to enhance driver visibility and consequently, safety. Conventional headlamp systems, while effective in many scenarios, often fall short in adequately illuminating curved roads, thereby exacerbating the risk of accidents during nighttime driving. In response to this critical issue, considerable efforts have been directed towards the development of alternative technologies, chief among them being Adaptive Front Lighting Systems (AFS). The primary objective of this endeavor is to design and construct a prototype AFS that can seamlessly integrate into existing fixed headlamp systems. Throughout the
T, KarthiG, ManikandanP C, MuruganS, SakthivelN, VinuP, Dineshkumar
This SAE Aerospace Standard (AS) identifies the requirements for mitigating Counterfeit EEE parts in the Authorized Distribution Channel. If an organization is not performing Authorized Distribution but acting as another seller (such as an Authorized Reseller, Broker, or Independent Distributor), then only 3.3.1 applies
G-19 Counterfeit Electronic Parts Committee
A silicone membrane for wearable devices is more comfortable and breathable thanks to better-sized pores made with the help of citric acid crystals. The new preparation technique fabricates thin, silicone-based patches that rapidly wick water away from the skin. The technique could reduce the redness and itching caused by wearable biosensors that trap sweat beneath them. The technique was developed by bioengineer and professor Young-Ho Cho and his colleagues at KAIST and reported in the journal Scientific Reports
A recent study combines three-dimensional embroidery techniques with machine learning to create a fabric-based sensor that can control electronic devices through touch
The final frontier in digital transformation is the analog edge, where apertures and actuators meet the mission. Buried behind layers of firmware and analog mitigation, open architecture has a new frontier to conquer, and the opportunity starts at the component level, where digital transformation and the miniaturization enabled by Moore's Law is having its biggest impact. Miniature, modular, and intelligent gateways can be embedded into analog components to replace and re-imagine old firmware and analog mitigation circuitry. These new, embedded gateways promise to bring open architecture deeper into the tactical edge and realize a new level of agility throughout the lifecycle of a system, from design through sustainment of hybrid digital and analog systems
The future of wireless technology - from charging devices to boosting communication signals - relies on the antennas that transmit electromagnetic waves becoming increasingly versatile, durable and easy to manufacture. Researchers at Drexel University and the University of British Columbia believe kirigami, the ancient Japanese art of cutting and folding paper to create intricate three-dimensional designs, could provide a model for manufacturing the next generation of antennas. Recently published in the journal Nature Communications, research from the Drexel-UBC team showed how kirigami - a variation of origami - can transform a single sheet of acetate coated with conductive MXene ink into a flexible 3D microwave antenna whose transmission frequency can be adjusted simply by pulling or squeezing to slightly shift its shape
Automotive electrical and electronics manufacturer MTA attended IAA Transportation for the first time, demonstrating its new range of wireless communication technologies for the truck industry. Earlier this year, the company acquired Calearo Antenne S.p.A, a company with a long history of producing antennas, amplifiers and cables. MTA global sales director Davide Bonelli explained to Truck & Off-Highway Engineering how that acquisition complements its business. “From a more strategic point of view, we see the world of antennas as complementary to what MTA does,” he said. “Often MTA products have an antenna as an interface, so this is one reason why we have done the deal. There are also a lot of synergies from an engineering standpoint. Historically, MTA is a company that uses many mechanical parts - plastics, metals - which we are very strong with so we can share them. And there are also some competences from Calearo Antenne that can be transferred to us
Kendall, John
The aerospace and defense industries demand the highest levels of reliability, durability, and performance from their electronic systems. Central to achieving these standards are laminate materials, which form the backbone of printed circuit boards (PCBs) and flexible circuits used in a multitude of applications, from avionics to missile guidance systems. Building these systems, which are typically implemented in environments that experience both temperature extremes and wide variations of temperature over time, requires robust materials that can stand up to punishing environmental conditions. Laminates and films for circuit boards and flexible circuits are a vital component of this protective material profile
Deliberate RF jamming of drones has become one of the most common battlefield tactics in Ukraine. But what is jamming, how does it work and how can it be countered by unmanned aerial vehicles (UAVs) in the field? Radio frequency (RF) jamming of drones involves deliberate interference with the radio signals used for communication between drones and their operators
Hypersonic platforms provide a challenge for flight test campaigns due to the application's flight profiles and environments. The hypersonic environment is generally classified as any speed above Mach 5, although there are finer distinctions, such as “high hypersonic” (between Mach 10 to 25) and “reentry” (above Mach 25). Hypersonic speeds are accompanied, in general, by a small shock standoff distance. As the Mach number increases, the entropy layer of the air around the platform changes rapidly, and there are accompanying vortical flows. Also, a significant amount of aerodynamic heating causes the air around the platform to disassociate and ionize. From a flight test perspective, this matters because the plasma and the ionization interfere with the radio frequency (RF) channels. This interference reduces the telemetry links' reliability and backup techniques must be employed to guarantee the reception of acquired data. Additionally, the flight test instrumentation (FTI) package needs
Hensoldt Taufkirchen, Germany lothar.belz@Hensoldt.net
Imagine you had a dedicated wireless channel for communication that was hundreds of times faster than the Wi-Fi we use today, with hundreds of times more bandwidth. That dream may not be far off thanks to the development of metasurfaces: tiny engineered sheets that can reflect and otherwise direct light in desired ways
United States microchip fab plants can cram billions of data-processing transistors onto a tiny silicon chip, but the “clock,” which times the transistors’ operations, must be made separately, which creates a flaw in chip security as well as the supply line. However, a new approach uses commercial chip fab materials and techniques to fabricate specialized transistors to serve as the building block of the timing device
Purdue University engineers have developed a method to transform existing cloth items into battery-free wearables resistant to laundering. These smart clothes are powered wirelessly through a flexible, silk-based coil sewn on the textile
Wearable devices that use sensors to monitor biological signals can play an important role in health care. These devices provide valuable information that allows providers to predict, diagnose, and treat a variety of conditions while improving access to care and reducing costs
This ARP covers three common light sources, incandescent, electroluminescent and light emitting diode that, when NVG filtered, can be used to illuminate NVG compatible aerospace crew stations. It is recognized that many other different light sources can also be used for this purpose. Also see 2.1.1 for other SAE documents that cover particular applications within the crew station environment. This ARP sets forth recommendations for the design of NVG compatible lighting, utilizing these light sources, that will meet the requirements of MIL-L-85762 Lighting, Aircraft, Interior, Night Vision Imaging System (NVIS) Compatible. This also includes the replacement document MIL-STD-3009: Lighting, Aircraft, Night Vision Imaging System (NVIS) Compatible. Although this ARP concentrates on lamp light sources for illumination, the information contained within this ARP may be directly applied to incandescent, electroluminescent and light emitting diode information display devices. Regardless of the
A-20A Crew Station Lighting
ABSTRACT Model-Based Systems Engineering (MBSE) has grown in popularity since the introduction of SysML a decade ago. Pockets of modeling excellence have developed within many government, industrial, and educational organizations. Few, if any, have achieved “wall-to-wall” adoption. This paper will focus on a key component of a successful system modeling efforts: the individuals who must translate sound systems engineering into robust, useful system models. The author routinely teaches systems architecture, systems engineering, and system modeling and will share methods and techniques for identifying and growing modeling talent. Success depends as much upon mindset and approach as it does upon understanding tool user interfaces and modeling conventions. Published texts, class exercises, videos, and case studies can be used to shape engineers’ problem-solving methods. In addition, a craft system (with apprentice, journeyman, and master modelers engaged in interlocking skill development
Vinarcik, Michael J.
ABSTRACT This paper presents two techniques for autonomous convoy operations, one based on the Ranger localization system and the other a path planning technique within the Robotic Technology Kernel called Vaquerito. The first solution, Ranger, is a high-precision localization system developed by Southwest Research Institute® (SwRI®) that uses an inexpensive downward-facing camera and a simple lighting and electronics package. It is easily integrated onto vehicle platforms of almost any size, making it ideal for heterogeneous convoys. The second solution, Vaquerito, is a human-centered path planning technique that takes a hand-drawn map of a route and matches it to the perceived environment in real time to follow a route known to the operator, but not to the vehicle. Citation: N. Alton, M. Bries, J. Hernandez, “Autonomous Convoy Operations in the Robotic Technology Kernel (RTK)”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI
Alton, NicholasBries, MatthewHernandez, Joseph
Object detection is one of the core tasks in autonomous driving perception systems. Most perception algorithms commonly use cameras and LiDAR sensors, but the robustness is insufficient in harsh environments such as heavy rain and fog. Moreover, velocity of objects is crucial for identifying motion states. The next generation of 4D millimeter-wave radar retains traditional radar advantages in robustness and speed measurement, while also providing height information, higher resolution and density. 4D radar has great potential in the field of 3D object detection. However, existing methods overlook the need for specific feature extraction modules for 4D millimeter-wave radar, which can lead to potential information loss. In this study, we propose RadarPillarDet, a novel approach for extracting features from 4D radar to achieve high-quality object detection. Specifically, our method introduces a dual-stream encoder (DSE) module, which combines traditional multilayer perceptron and
Yang, LongZheng, LianqingMo, JingyueBai, JieZhu, XichanMa, Zhixiong
ABSTRACT Presenting a reference architecture for High Performance Embedded Computing for use in Ground Vehicles, based on OpenVPX, up to 40 Gigabit / Second data fabrics (Infiniband and Ethernet), methods of Remote Direct Memory Access, and Open Standard software layers (OFED). How to provide the appropriate chassis and backplanes to accommodate the HPEC modules, Signal I/O, and data fabrics which can then provide sophisticated capabilities, such as software defined radios, active protection systems, electronic warfare, and sensor processing (fusion and analysis). Illustrate paths for technology refresh, showing historical and expected gains in hardware performance across technology refresh cycles and the SWaP-C reduction for a fixed amount of processing capacity over time
Jedynak, David
ABSTRACT The need for improved electrical power conversion systems and components is being driven by requirements for higher efficiency, performance, and improved survivability and lethality capabilities on current and future Army platform power system. The U.S. Army Research Laboratory (ARL) has demonstrated a 1200 V, 400 A silicon carbide (SiC) power module based on a standard commercial design. This module uses large area SiC MOS-FETs and diodes and has been evaluated under varying temperatures, loads, and switching frequencies. Throughout the operating range, the module has demonstrated improved efficiency and thermal performance, and higher frequency operation, when compared with similarly rated silicon insulated gate bipolar transistor (IGBT) modules
Geil, Bruce R.Tipton, Charles W.Urciuoli, Damian P.
ABSTRACT PPG formulates N-methyl pyrrolidone free (NMP−free) cathodes for Li−ion batteries capable of delivering sufficient power for automotive starting, lighting and ignition (SLI) as well as adequate charge capacity for powering auxiliary electronics. In this paper, NMP−free energy cathodes and power cathodes were formulated using developmental binders, and refinement of carbon/binder ratio and slurry mix procedure. Learnings from the energy and power cathode development were conceptually combined in the formulation of capacity enhanced power cathodes. These cathodes were evaluated electrochemically via power capability and rate capability testing in battery coin cells, as well as in 0.5 Ah multilayer pouch cells. Carbon content was found to be a critical factor in attaining high cold crank performance. This work represents significant steps toward potential commercialization of NMP−free cathode coated foil for Li−ion batteries. Citation: S. Esarey, A. Kizzie, C. Woodley, I. Matts
Esarey, Samuel L.Kizzie, AustinWoodley, ChristopherMatts, IanHellring, StuartZhou, ZhilianTerrago, Gina
ABSTRACT The Integrated Bridge currently fielded in the MRAP FoV is a capabilities insertion that provides data integration and visualization services to the vehicle crew. The Integrated Bridge combines displays, data buses, video sensors, switches/routers, radio interfaces, power management components, etc. to provide a unified view as well as a vehicle system control means to its crew members. The Integrated Bridge provides a flexible and modular architecture that can readily be adapted to the variety of Government Furnished Mission Equipment found in the MRAP FoV utilizing developmental hardware and software augmented with VICTORY technology to provide additional standardization and capabilities. This paper describes the continuation and capability extension of the VICTORY Radio Adapter, now called the Integrated Bridge GPIU (General Purpose Interface Unit). Details of the work leading to the fielding of a significantly enhanced version of the GPIU are discussed. GPIU software and
Petty, Millard E.Wilson, Chad J.Wong, Michael C.Smith, Michael R.Wright, Ronnie L.
ABSTRACT Radio frequency products spanning multiple functions have become increasingly critical to the warfighter. Military use of the electromagnetic spectrum now includes communications, electronic warfare (EW), intelligence, and mission command systems. Due to the urgent needs of counterinsurgency operations, various quick reaction capabilities (QRCs) have been fielded to enhance warfighter capability. Although these QRCs were highly successfully in their respective missions, they were designed independently resulting in significant challenges when integrated on a common platform. This paper discusses how the Modular Open RF Architecture (MORA) addresses these challenges by defining an open architecture for multifunction missions that decomposes monolithic radio systems into high-level components with well-defined functions and interfaces. The functional decomposition maximizes hardware sharing while minimizing added complexity and cost due to modularization. MORA achieves
Melber, AdamDirner, JasonJohnson, Michael
ABSTRACT Given the system complexity of the Mission Enabling Technologies Demonstrator (MET-D) it is necessary to consider a robust communications management solution capable of consolidating network management onto a “unified interface” while providing distributed, hierarchical, and efficient management of network attached nodes on multiple platforms regardless of the vendor or implemented technology. Citation: D. Jedynak, C. Kawasaki, D. Gregory, “Managing Next Generation Open Standard Vehicle Electronics Architectures”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019
Jedynak, DavidGregory, DavidNelson, Jeff
ABSTRACT There has been a lot of interest in the secure embedded L4 (seL4) microkernel in recent years as the basis of a cyber-security platform because it has been formally proven to be correct and free of common defects. However, while the seL4 microkernel has a formal proof of correctness, it does so at the cost of deferring functionality to the user space that most developers and system integrators would deem necessary for real life products and solutions, and use of formal proofs for user space can be prohibitively expensive. DornerWorks took an approach to bypass the need for native seL4 user space applications to develop a representative real-world system for GVSC VEA based on seL4 by enabling its virtual machine monitor functionality for ARMv8 platforms, allowing feature rich software stacks to be run in isolation guaranteed by the seL4 formal proofs. This paper describes that system and the efforts undertaken to achieve real world functionality. Citation: R. VanVossen, J
VanVossen, RobbieMillwood, JesseGuikema, ChrisElliott, LeonardRoach, Jarvis
ABSTRACT This paper describes a novel network security appliance -- the Tactical Smart Network Interface Card (TSNIC) – that leverages state-of-the-art Field Programmable Gate Array (FPGA) technologies to continuously maintain the integrity of tactical missions. The Smart NIC appears as an all-hardware “bump-in-the-wire” along any network segment or attached to an industry standard bus interface providing infrastructure defense for ground vehicles. It can be custom configured to provide encryption, protocol and file format validation, and/or protocol encapsulation. These capabilities are achieved by several innovations: high-level synthesis (HLS) for rapid circuit development, automated parser generation to adapt to mission requirements, and a hardware nano-marshal to dynamically adapt defensive posture in the face of changing threat profiles. Citation: J. Dahlstrom, S. Padnos, J. Brock, and S. Taylor, “The Tactical Smart NIC,” In Proceedings of the Ground Vehicle Systems Engineering
Dahlstrom, JasonPadnos, StephenBrock, JamesTaylor, Stephen
Abstract This paper presents a fault-tolerant powertrain topology for series hybrid electric vehicles (SHEVs). The introduction of a redundant phase leg that is shared by three converters in a standard SHEV drive system allows to maximize the reliability improvement with minimal part-count increase. The new topology features fast response in fault detection and isolation, and post-fault operation at rated power throughput. The operating principle, control strategy, and fault diagnostic methods are elaborated. The substantially improved reliability over the standard topology is verified by the Markov reliability model. Time-domain simulation based on a Saber model has been conducted and the results have verified the feasibility and performance of the proposed SHEV drive system with fault-tolerant capability. The experimental results from a prototype have further validated the robust fault detection scheme and excellent post-fault performance
Song, YantaoWang, Bingsen
ABSTRACT Localization refers to the process of estimating ones location (and often orientation) within an environment. Ground vehicle automation, which offers the potential for substantial safety and logistical benefits, requires accurate, robust localization. Current localization solutions, including GPS/INS, LIDAR, and image registration, are all inherently limited in adverse conditions. This paper presents a method of localization that is robust to most conditions that hinder existing techniques. MIT Lincoln Laboratory has developed a new class of ground penetrating radar (GPR) with a novel antenna array design that allows mapping of the subsurface domain for the purpose of localization. A vehicle driving through the mapped area uses a novel real-time correlation-based registration algorithm to estimate the location and orientation of the vehicle with respect to the subsurface map. A demonstration system has achieved localization accuracy of 2 cm. We also discuss tracking results
Stanley, ByronCornick, MatthewKoechling, Jeffrey
ABSTRACT Curtiss-Wright has developed an advanced, open system architectural approach to Vehicle Electronics, based on our vast experience in providing military electronics to many programs for ground, sea, and air platforms. This experience has provided Curtiss-Wright with a unique understanding of key architectural concepts which provide for highly successful implementation of specific Vehicle Electronics suites to meet Ground Combat System program and platform requirements. This Open-Standard and COTS based Intra-Vehicle Network Reference Architecture was previously presented the paper “Ground Combat Systems Common Vehicle Electronics Architecture and Applications” (D. Jedynak, et al., 2010) and will be summarized and described in terms of the US Army’s VICTORY Architecture in this paper as a foundation for discussion. Clarification is provided for the differences between federated and distributed architectures with regard to function, and how physical and functional system
Jedynak, Mr. David
ABSTRACT The Bradley Combat Vehicle Motor Chatter case study focuses on one aspect of a combat vehicle program, specifically, responding to a vehicle production situation where combat vehicles produced with in-spec components and subsystems exhibit out-of-spec and failing system behavior. This typically results in an extended production line-down or line-degraded situation lasting for several quarters until the problem can be diagnosed, fixed, validated and verified. Subsequently, adequate quantities of the modified or replaced sub-systems must be put back into the production flow. The direct and indirect costs of an occurrence like this in peace-time are measured in the 10’s to 100’s of Millions of dollars. The schedule, program and perception impact to the vehicle platform can be potentially devastating. In war-time all of these impacts are magnified greatly by the added risk to soldiers’ lives. This paper describes the Bradley Combat Vehicle Motor Chatter case study and the
Scheitrum, MarkWillhoft, MarkSmith, AlanDavis, Annette
ABSTRACT Given the complexity of existing and anticipated ground vehicle networks it is necessary to consider a robust communications management software solution - that consolidates the management plane of networks onto a “single pane of glass” regardless of the type of technology or vendor – that is capable of providing distributed, hierarchical, and efficient management of network attached nodes on multiple platforms and at multiple tiers
Jedynak, DavidKawasaki, CharlieGregory, David
Items per page:
1 – 50 of 6463