Browse Topic: Electronic equipment
Large eddy simulations (LES) of two HVAC duct configurations at different vent blade angles are performed with the GPU-accelerated low-Mach (Helmholtz) solver for comparison with aeroacoustics measurements conducted at Toyota Motor Europe facilities. The sound pressure level (SPL) at four near-field experimental microphones are predicted both directly in the simulation by recording the LES pressure time history at the microphone locations, and through the use of a frequency-domain Ffowcs Williams-Hawking (FW-H) formulation. The A-weighted 1/3 octave band delta SPL between the two vent blades angle configurations is also computed and compared to experimental data. Overall, the simulations capture the experimental trend of increased radiated noise with the rotated vent blades, and both LES and FW-H spectra show good agreement with the measurements over most of the frequency range of interest, up to 5,000Hz. For the present O(30) million cell mesh and relatively long noise data collection
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes performance requirements, design requirements, and design guidelines for electronic devices.
The mass production of conventional silicon chips relies on a successful business model with large “semiconductor fabrication plants” or “foundries.” New research by KU Leuven and imec shows that this “foundry” model can also be applied to the field of flexible, thin-film electronics. Adopting this approach would give innovation in the field a huge boost.
An invention that uses microchip technology in implantable devices and other wearable products such as smart watches can be used to improve biomedical devices including those used to monitor people with glaucoma and heart disease.
A joint research effort led by the University of Illinois Urbana-Champaign has shown how coal can play a vital role in next-generation electronic devices.
Researchers have designed and synthesized a unique material with controllable capabilities that make it promising for future electronics including cellphones and computers.
Modern communication networks rely on optical signals to transfer vast amounts of data. But just like a weak radio signal, these optical signals need to be amplified to travel long distances without losing information. The most common amplifiers, erbium-doped fiber amplifiers (EDFAs), have served this purpose for decades, enabling longer transmission distances without the need for frequent signal regeneration. However, they operate within a limited spectral bandwidth, restricting the expansion of optical networks.
A major challenge in self-powered wearable sensors for health care monitoring is distinguishing different signals when they occur at the same time. Researchers from Penn State and China’s Hebei University of Technology addressed this issue by uncovering a new property of a sensor material, enabling the team to develop a new type of flexible sensor that can accurately measure both temperature and physical strain simultaneously but separately to more precisely pinpoint various signals.
A team of researchers has developed self-powered, wearable, triboelectric nanogenerators (TENGs) with polyvinyl alcohol (PVA)-based contact layers for monitoring cardiovascular health. TENGs help conserve mechanical energy and turn it into power.
Just one year after signing a ground-breaking trilateral agreement, the Deep Space Advanced Radar Capability partnership is completing facilities construction at the first of three sites that will host a global network of advanced ground-based sensors.
Automotive audio components must meet high quality expectations with ever-decreasing development costs. Predictive methods for the performance of sound systems in view of the optimal locations of loudspeakers in a car can help to overcome this challenge. Use of simulation methods would enable this process to be brought up front and get integrated in the vehicle design process. The main objective of this work is to develop a virtual auralization model of a vehicle interior with audio system. The application of inverse numerical acoustics [INA] to source detection in a speaker is discussed. The method is based on truncated singular value decomposition and acoustic transfer vectors The arrays of transfer functions between the acoustic pressure and surface normal velocity at response sites are known as acoustic transfer vectors. In addition to traditional nearfield pressure measurements, the approach can also include velocity data on the boundary surface to improve the confidence of the
Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat into electricity via light. Using an unconventional approach inspired by quantum physics, Rice engineer Gururaj Naik and his team designed a thermal emitter that can deliver high efficiencies within practical design parameters.
Hensoldt Taufkirchen, Germany nico.fritz@hensoldt.net
As the main power source for modern portable electronic devices and electric vehicles, lithium-ion batteries (LIBs) are favored for their high energy density and good cycling performance. However, as the usage time increases, battery performance gradually deteriorates, leading to a heightened risk of thermal runaway (TR) increases, which poses a significant threat to safety. Performance degradation is mainly manifested as capacity decline, internal resistance increase and cycle life reduction, which is usually caused by internal factors of LIBs, such as the fatigue of electrode materials, electrolyte decomposition and interfacial chemical reaction. Meanwhile, external factors of LIBs also contribute to performance degradation, such as external mechanical stresses leading to internal structural damage of LIBs, triggering internal short-circuit (ISC) and violent electrochemical reactions. In this paper, the performance degradation of LIBs and TR mechanism is described in detail, as well
Naval Air Systems Command Patuxent, MD navairpao@us.navy.mil
Researchers from Skoltech and the University of Texas at Austin have presented a proof-of-concept for a wearable sensor that can track healing in sores, ulcers, and other kinds of chronic skin wounds, even without the need to remove the bandages. The paper was published in the journal ACS Sensors.
A team of engineers is on a mission to redefine mobility by providing innovative wearable solutions to physical therapists, orthotic and prosthetic professionals, and individuals experiencing walking impairment and disability. Co-founded by Ray Browning and Zach Lerner, Portland-based startup Biomotum, aims “to empower mobility by energizing every step” through their wearable robotics technology.
Time Sensitive Networking (TSN) Ethernet is a real-time networking capability that is being developed by a growing number of embedded computing companies for the earliest stages of adoption by aerospace and defense manufacturers and their suppliers. According to the Institute of Electrical and Electronics Engineers (IEEE) TSN working group, it is a set of standards that provides deterministic connectivity within IEEE 802-aligned networks. Nigel Forrester is the Director of Product Strategy for Concurrent Technologies, a UK-based provider of high performance embedded computing solutions for aerospace, defense and many other industries. Check out our interview with Forrester about the potential impact of TSN Ethernet on new and legacy aerospace and defense applications, and how it is being adopted by manufacturers and system integrators below.
Engineers have developed a wearable ultrasound device that can provide long-term, wireless monitoring of muscle activity with potential applications in healthcare and human-machine interfaces. Designed to stick to the skin with a layer of adhesive and powered by a battery, the device enables high-resolution tracking of muscle function without invasive procedures. In tests, the device was worn over the rib cage to monitor diaphragm motion and thickness, which are useful for assessing respiratory health. By tracking diaphragm activity, the technology could potentially support patients with respiratory conditions and those reliant on mechanical ventilation.
Researchers have developed a new method to pull moisture from the air and turn that water into electricity. The paper-based wearable device provides sustained high-efficiency power output through moisture capture.
For years, Proffesor Bozhi Tian’s lab has been learning how to integrate the world of electronics — rigid, metallic, bulky — with the world of the body — soft, flexible, delicate.
Robotics researchers have already made great strides in developing sensors that can perceive changes in position, pressure, and temperature — all of which are important for technologies like wearable devices and human-robot interfaces. But a hallmark of human perception is the ability to sense multiple stimuli at once, and this is something that robotics has struggled to achieve.
Researchers have developed a multifunctional sensor based on semiconductor fibers that emulates the five human senses. Prof. Bonghoon Kim, department of robotics and mechatronics engineering of Daegu Gyeongbuk Institute of Science & Technology (DGIST), conducted the study in collaboration with Prof. Sangwook Kim at KAIST, Prof. Janghwan Kim at Ajou University, and Prof. Jiwoong Kim at Soongsil University. The technology developed in the study is expected to be utilized in fields such as wearables, Internet of Things (IoT), electronic devices, and soft robotics.
University of Minnesota Twin Cities researchers, along with a team at the National Institute of Standards and Technology (NIST), have developed a breakthrough process for making spintronic devices that has the potential to become the new industry standard for semiconductors chips that make up computers, smartphones, and many other electronics. The new process will allow for faster, more efficient spintronics devices that can be scaled down smaller than ever before.
Aerospace and defense system designers are demanding scalable and high-performance I/O solutions. While traditional mezzanine standards have proven reliable, they often fall short of meeting modern bandwidth, size, and flexibility requirements. This challenge is particularly evident in aerospace and defense applications where high-speed data processing must align with stringent size, weight, and power (SWaP) constraints. Current mezzanine solutions also face significant limitations in scalability, thermal management, and I/O density. These constraints can lead to compromised system performance and limited upgrade paths in applications where adaptability is crucial. This article explores how the new VITA 93 (QMC) standard addresses these challenges through its innovative QMC architecture, enabling unprecedented flexibility, scalability, and rugged reliability while maintaining compatibility with existing and future systems. It also covers how VITA 93 (QMC) builds on lessons learned from
There’s some irony in the fact that devices that seem indispensable to modern life — mobile phones, personal computers, and anything battery-powered — depend entirely on minerals extracted from mining, one of the most ancient of human industries. Once their usefulness is spent, we typically return these objects to the Earth in landfills, by the millions.
Researchers at the University of California, Irvine and New York’s Columbia University have embedded transistors in a soft, conformable material to create a biocompatible sensor implant that monitors neurological functions through successive phases of a patient’s development.
From your car’s navigation display to the screen you are reading this on, luminescent polymers — a class of flexible materials that contain light-emitting molecules — are used in a variety of today’s electronics. Luminescent polymers stand out for their light-emitting capability, coupled with their remarkable flexibility and stretchability, showcasing vast potential across diverse fields of application.
Time Sensitive Networking (TSN) Ethernet is a real-time networking capability that is being developed by a growing number of embedded computing companies for the earliest stages of adoption by aerospace and defense manufacturers and their suppliers. According to the Institute of Electrical and Electronics Engineers (IEEE) TSN working group, it is a set of standards that provides deterministic connectivity within IEEE 802-aligned networks.
Items per page:
50
1 – 50 of 6477