Browse Topic: Electronic equipment
Scientists used a “smart” shirt equipped with an electrocardiogram to track participants’ heart-rate recovery after exercise and developed a tool for analyzing the data to predict those at higher or lower risk of heart-related ailments.
The rapid advancement of electric vehicle (EV) technology has created a demand for reliable and Thermal - efficient electronic components for power electronics and control systems on printed circuit boards (PCBs). The research looks at the overall simulation and study of a PCB for Electric Vehicles, including how it handles heat, stress, and reliability in real working conditions like considering casing (Heat Sink) in which PCB is held, into the simulation. We have used numerical based methods (reliability), Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) methods to simulate heat performance looking at steady-state and changing load profiles common in EV powertrains. We ran structural and thermal simulations to check the PCB's toughness against heat expansion and shaking loads often seen in cars. We also did a reliability check looking at heat cycling life for PCB components, and possible ways it could break to guess long-term toughness. The results show critical
Electric vehicles present unique challenges in electromagnetic compatibility testing due to compact packaging, high-frequency switching systems. This paper presents a systematic debugging methodology for identifying radiated emission and radiated immunity issues in these EV platforms. A comprehensive approach is outlined, covering radiated emission measurement; Bulk Current Injection based immunity simulation, and near-field probing techniques. For RI evaluation, BCI testing in the 20 to 400 MHz range is used to simulate radiated threats on the vehicle's power and signal harnesses and handy transmitter near field injections for higher frequency simulation. For RE diagnosis, conducted emission measurements on vehicle harnesses are performed using current probes to capture high-frequency currents. Additionally, near-field electric probes are used at the component to identify dominant noise sources such as DC-DC converters, Motor control unit, and improperly grounded shielding. Case
This study introduces a novel in-cabin health monitoring system leveraging Ultra-Wideband (UWB) radar technology for real-time, contactless detection of occupants' vital signs within automotive environments. By capturing micro-movements associated with cardiac and respiratory activities, the system enables continuous monitoring without physical contact, addressing the need for unobtrusive vehicle health assessment. The system architecture integrates edge computing capabilities within the vehicle's head unit, facilitating immediate data processing and reducing latency. Processed data is securely transmitted via HTTPS to a cloud-based backend through an API Gateway, which orchestrates data validation and routing to a machine learning pipeline. This pipeline employs supervised classifiers, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF) to analyze features such as temporal heartbeat variability, respiration rate stability, and heart rate. Empirical
Engineers have developed a next-generation wearable system that enables people to control machines using everyday gestures — even while running, riding in a car, or floating on turbulent ocean waves.
Researchers from Harbin Institute of Technology and their collaborators have developed a multifunctional polyelectrolyte hydrogel reinforced with aramid nanofibers (ANFs) and MXene nanosheets, achieving outstanding performance in absorption-dominated electromagnetic interference (EMI) shielding and wearable sensing. This innovative hydrogel addresses the long-standing challenge of balancing electrical conductivity and effective EMI absorption in flexible electronic materials. The research was published in the journal Nano-Micro Letters. 1
In this article we will discuss the development and implementation of a computer vision system to be used in decision-making and control of an electro-hydraulic mechanism in order to guarantee correct functioning and efficiency during the logistics project. To achieve this, we have brought together a team of engineering students with knowledge in the area of Artificial Intelligence, Front End and mechanical, electrical and hydraulic devices. The project consists of installing a system on a forklift that moves packaged household appliances that can identify and differentiate the different types of products moved in factories and distribution centers. Therefore, the objective will be to process this identification and control an electro-hydraulic pressure control valve (normally controlled in PWM) so that it releases only the hydraulic pressure configured for each type of packaging/product, and thus correctly squeezing (compressing) the specific volume, without damaging it due to
Lithium-ion batteries (LIBs) have consolidated their place in the technology market for the energetic transition, with global manufacturing capacity exceeding 1 TWh in recent years and costs falling in this competitive environment. At the same time, the number of end-of-life LIBs is increasing, stimulating the recycling industry to process battery streams, thus promoting the circular economy to meet the increased demand for strategic raw materials and decarbonization. Vehicle electrification is the main driver of battery production, but their end-of-life will take some time to be significant in volume in the next years. Consumer electronics such as smartphones, laptops and power tools are now available at an appropriate volume enabling the preparation of recycling industry for the moment. In this scenario, recyclers are looking for sustainable routes to absorb all these streams and the different LIBs chemistries (LFP, NCA, NMC, LCO, LMO) to recover the critical metals (Ni, Co, Cu, Mn
The U.S. Space Force (USSF) Space Systems Command (SSC) achieved a major milestone during a demonstration event in August, showcasing the Joint Antenna Marketplace (JAM) and successfully transferring the U.S. Naval Research Laboratory's (NRL) Transmit/Receive Enterprise (TREx) Service from a research and development project into an SSC operational prototype. During the demonstration, the team demonstrated the use of commercial antennas for real-time contacts between a Space Development Agency's (SDA) satellite operations center and their Tranche 0 satellites using JAM which leveraged the newly integrated TREx system.
From satellites and commercial aircraft to uncrewed aerial vehicles (UAVs), the reliability of aerospace and defense electronics depends on their ability to perform flawlessly in extreme conditions. While stresses such as altitude changes, vacuum, vibration, moisture and chemical exposure have the potential to wreak havoc on electronic components, conformal coatings have become essential to providing protection in the midst of these challenges. Applied as thin, lightweight films that follow the contours of printed circuit boards (PCBs) and components, conformal coatings create a barrier between the electronics and the harsh environments in which they must perform. The coatings' ability to provide dielectric insulation, chemical protection and moisture resistance ensures that mission-critical electronics remain functional on the ground, in the sea, in flight or in orbit.
Perception radar company Arbe was at IAA Mobility in Munich this year to press the case that customers can and should trust automated vehicles. One reason is the global trend of stricter regulations from the NHTSA, Euro NCAP, and in China, which now require automated vehicles to safely meet demanding use cases that are not covered by current sensors, according to Arbe co-founder and CTO Noam Arkind. Arkind told SAE Media that one such category is detecting vulnerable road users (VRU) in poor weather and lighting conditions. “We know from recent tests that a lot of Chinese cars, for example, failed VRU detections in the dark,” he said. “Camera alone doesn't really have reliable pedestrian detection in a dark situation. Radar is a great sensor. It's very sensitive. It's not dependent on weather conditions or lighting conditions, but it's noisy, it's low resolution, and it's hard to use.”
Battery technology is at the center of global innovation. From electric vehicles and off-highway machinery to consumer electronics and grid storage, demand for high-performing, reliable batteries has never been higher. This acceleration creates pressure on manufacturers to scale production while safeguarding quality and throughput.
All-solid-state batteries are safe, powerful ways to power EVs and electronics and store electricity from the energy grid, but the lithium used to build them is rare, expensive, and can be environmentally devastating to extract. Sodium is an inexpensive, plentiful, less-destructive alternative, but the all-solid-state batteries they create currently don’t work as well at room temperature.
The U.S. Space Force (USSF) Space Systems Command (SSC) achieved a major milestone during a demonstration event in August, showcasing the Joint Antenna Marketplace (JAM) and successfully transferring the U.S. Naval Research Laboratory’s (NRL) Transmit/Receive Enterprise (TREx) Service from a research and development project into an SSC operational prototype.
Oak Ridge National Laboratory (ORNL) researchers have overcome a barrier to using a more affordable, dry process for manufacturing the Li-ion batteries used in vehicles and electronic devices. The resulting batteries provide greater electricity flow and reduced risk of overheating.
This document provides guidelines for the long-term storage (LTS) of electronic devices (dice, wafers, packaged parts, and electronic assemblies). The guidelines identify the protective storage conditions to retain the functionality of electronic devices as received from device manufacturers, distributors, or other facilities.
In the race toward practical quantum computers and networks, photons — fundamental particles of light — hold intriguing possibilities as fast carriers of information at room temperature. Photons are typically controlled and coaxed into quantum states via waveguides on extended microchips, or through bulky devices built from lenses, mirrors, and beam splitters. The photons become entangled — enabling them to encode and process quantum information in parallel — through complex networks of these optical components. But such systems are notoriously difficult to scale up due to the large numbers and imperfections of parts required to do any meaningful computation or networking.
Dangling from a weather balloon 80,000 feet above New Mexico, a pair of antennas sticks out from a Styrofoam cooler. From that height, the blackness of space presses against Earth’s blue skies. But the antennas are not captivated by the breathtaking view. Instead, they listen for signals that could make air travel safer.
Researchers from RMIT University have developed a wearable wound monitoring device with integrated sensors that could reduce infection risks by minimizing the need for frequent physical contact.
Items per page:
50
1 – 50 of 6560