Browse Topic: Electronic equipment
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in Title 14, Code of Federal Regulations (14 CFR) parts 23, 25, 27, or 29 (as applicable to the seat type). Two formats of this standard (MS Excel and Adobe PDF) are available. The standards provided in both formats (MS Excel and Adobe PDF) contain the same text.
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
Large eddy simulations (LES) of two HVAC duct configurations at different vent blade angles are performed with the GPU-accelerated low-Mach (Helmholtz) solver for comparison with aeroacoustics measurements conducted at Toyota Motor Europe facilities. The sound pressure level (SPL) at four near-field experimental microphones are predicted both directly in the simulation by recording the LES pressure time history at the microphone locations, and through the use of a frequency-domain Ffowcs Williams-Hawking (FW-H) formulation. The A-weighted 1/3 octave band delta SPL between the two vent blades angle configurations is also computed and compared to experimental data. Overall, the simulations capture the experimental trend of increased radiated noise with the rotated vent blades, and both LES and FW-H spectra show good agreement with the measurements over most of the frequency range of interest, up to 5,000Hz. For the present O(30) million cell mesh and relatively long noise data collection
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes performance requirements, design requirements, and design guidelines for electronic devices.
A team of researchers has developed self-powered, wearable, triboelectric nanogenerators (TENGs) with polyvinyl alcohol (PVA)-based contact layers for monitoring cardiovascular health. TENGs help conserve mechanical energy and turn it into power.
As the main power source for modern portable electronic devices and electric vehicles, lithium-ion batteries (LIBs) are favored for their high energy density and good cycling performance. However, as the usage time increases, battery performance gradually deteriorates, leading to a heightened risk of thermal runaway (TR) increases, which poses a significant threat to safety. Performance degradation is mainly manifested as capacity decline, internal resistance increase and cycle life reduction, which is usually caused by internal factors of LIBs, such as the fatigue of electrode materials, electrolyte decomposition and interfacial chemical reaction. Meanwhile, external factors of LIBs also contribute to performance degradation, such as external mechanical stresses leading to internal structural damage of LIBs, triggering internal short-circuit (ISC) and violent electrochemical reactions. In this paper, the performance degradation of LIBs and TR mechanism is described in detail, as well
Automotive audio components must meet high quality expectations with ever-decreasing development costs. Predictive methods for the performance of sound systems in view of the optimal locations of loudspeakers in a car can help to overcome this challenge. Use of simulation methods would enable this process to be brought up front and get integrated in the vehicle design process. The main objective of this work is to develop a virtual auralization model of a vehicle interior with audio system. The application of inverse numerical acoustics [INA] to source detection in a speaker is discussed. The method is based on truncated singular value decomposition and acoustic transfer vectors The arrays of transfer functions between the acoustic pressure and surface normal velocity at response sites are known as acoustic transfer vectors. In addition to traditional nearfield pressure measurements, the approach can also include velocity data on the boundary surface to improve the confidence of the
Naval Air Systems Command Patuxent, MD navairpao@us.navy.mil
Researchers from Skoltech and the University of Texas at Austin have presented a proof-of-concept for a wearable sensor that can track healing in sores, ulcers, and other kinds of chronic skin wounds, even without the need to remove the bandages. The paper was published in the journal ACS Sensors.
Aerospace and defense system designers are demanding scalable and high-performance I/O solutions. While traditional mezzanine standards have proven reliable, they often fall short of meeting modern bandwidth, size, and flexibility requirements. This challenge is particularly evident in aerospace and defense applications where high-speed data processing must align with stringent size, weight, and power (SWaP) constraints. Current mezzanine solutions also face significant limitations in scalability, thermal management, and I/O density. These constraints can lead to compromised system performance and limited upgrade paths in applications where adaptability is crucial. This article explores how the new VITA 93 (QMC) standard addresses these challenges through its innovative QMC architecture, enabling unprecedented flexibility, scalability, and rugged reliability while maintaining compatibility with existing and future systems. It also covers how VITA 93 (QMC) builds on lessons learned from
A new device aims to detect acute exacerbations of chronic conditions. The wearable monitoring device contains multiple types of sensors, enabling faster and more accurate detection of exacerbations of chronic obstructive pulmonary disease and chronic conditions like asthma, heart disease and other inflammatory disorders. Eventually, the technology may help everyday people monitor their overall health and attune to early warning signs of illness.
Time Sensitive Networking (TSN) Ethernet is a real-time networking capability that is being developed by a growing number of embedded computing companies for the earliest stages of adoption by aerospace and defense manufacturers and their suppliers. According to the Institute of Electrical and Electronics Engineers (IEEE) TSN working group, it is a set of standards that provides deterministic connectivity within IEEE 802-aligned networks. Nigel Forrester is the Director of Product Strategy for Concurrent Technologies, a UK-based provider of high performance embedded computing solutions for aerospace, defense and many other industries. Check out our interview with Forrester about the potential impact of TSN Ethernet on new and legacy aerospace and defense applications, and how it is being adopted by manufacturers and system integrators below.
Writing in Nature Electronics, the Brown University research team describes a novel approach for a wireless communication network that can efficiently transmit, receive, and decode data from thousands of microelectronic chips that are each no larger than a grain of salt.
It might look like a roll of chicken wire, but this tiny cylinder of carbon atoms — too small to see with the naked eye — could one day be used for making electronic devices ranging from night vision goggles and motion detectors to more efficient solar cells, thanks to techniques developed by researchers at Duke University.
Material solutions for thermal management, protection and assembly. Today's ADAS designers are adding more electronic components and redundant computing systems to printed circuit boards (PCBs). These heat-generating electronic assemblies are installed in enclosures that provide environmental protection, but the high heat generated by high-performance computing systems can degrade ADAS performance or cause device failure. Not all thermal management materials can withstand temperatures up to 200 C (392 F), and most do not retain their flexibility at elevated temperatures. This creates a problem when PCB components expand and contract at different rates due to mismatches in their coefficients of thermal expansion.
As automotive technology advances, modern vehicles increasingly rely on complex electronics such as cameras, sensors, radar and lidar. These components are critical for advanced driver-assistance systems (ADAS) and automated driving. With the growing complexity of these systems, automotive manufacturers face challenges in efficiently transmitting both power and data while minimizing weight and system complexity. Power over Coaxial (PoC) technology offers a solution by allowing the transmission of power and data over a single coaxial cable, significantly simplifying vehicle design. With the integration of more electronic systems, especially those required for ADAS and autonomous driving, the demand for power and high-speed data transmission in vehicles has surged. Modern cars now use multiple cameras and sensors, and as vehicle systems continue to evolve, the number of electronic components is expected to increase. This shift places significant demands on the transmission of both data
This paper presents the development of a cost-effective assistive headgear designed to address the navigation challenges faced by millions of visually impaired individuals in India. Existing solutions are often prohibitively expensive, leaving a significant portion of this population underserved. To address this gap, we propose a novel human-machine interface that utilizes a synergistic combination of computer vision, stereo imaging, and haptic feedback technologies. The focus of this project lies in the creation of a practical and affordable headgear that empowers visually impaired users with real time obstacle detection and navigation capabilities. The solution leverages computer vision for environmental analysis and integrates haptic feedback for intuitive user guidance. This paper details the design intricacies of the headgear, along with the implementation methodologies employed. We present comprehensive testing results and discuss the project's potential to significantly enhance
Biofeedback training is a technology that enhances cognitive and emotional capabilities, empowering peak performance. What sets it apart is the Biocybernetics adaptation systems, which not only collect biofeedback data but also dynamically adjust your environment based on physiological signals. Imagine surroundings adapting — changing lighting, sounds, and more — in response to your biofeedback. Traditionally confined to clinical or training rooms, the real innovation is its integration into daily life. This system offers a new level of self-regulation. Users can navigate daily life venues with real-time insights into their physiological signals, providing continuous feedback and motivation for cognitive and emotional control. Efforts yield positive surroundings, fostering well-being and peak performance.
British soldiers have successfully trialed for the first time a game-changing weapon that can take down a swarm of drones using radio waves for less than the cost of a pack of mince pies.
Researchers in the emerging field of spatial computing have developed a prototype augmented reality headset that uses holographic imaging to overlay full-color, 3D moving images on the lenses of what would appear to be an ordinary pair of glasses. Unlike the bulky headsets of present-day augmented reality systems, the new approach delivers a visually satisfying 3D viewing experience in a compact, comfortable, and attractive form factor suitable for all-day wear.
As infrastructure ages, it becomes more susceptible to failure, which can cause safety and mobility concerns for drivers and pedestrians, and economic woes for taxpayers. A recent study published in “Transportation Research Record” shows that high-resolution synthetic aperture radar (SAR) satellite data can detect infrastructure issues early on, which can help prevent further damage to roads in the same way that annual checkups can help prevent more complex health issues in humans.
In the automotive industry, the zonal architecture is a design approach that organizes a vehicle’s electronic and communication systems into specific zones. These zones group components based on their function and physical location, enabling more efficient integration and simplified communication between the vehicle’s various systems. An important aspect of this architecture is the implementation of the Controller Area Network (CAN) protocol. CAN is a serial communication protocol developed specifically for automotive applications, allowing various electronic devices within a vehicle, such as sensors, actuators, and Electronic Control Units (ECUs), to communicate with each other quickly and reliably, sharing information essential for the vehicle’s operation. However, due to its limitations, there is a need for more efficient protocols like Automotive Ethernet and Controller Area Network Flexible (CAN FD), which allow for higher transmission rates and larger data packets. To centralize
Recognizing the significant challenges inherent in the analysis of periodic gas flow through reciprocating engines, one can easily appreciate the value of studying the steady flow through cylinder heads, manifolds, and exhaust systems. In these studies, flow benches are the cornerstone of the experimental apparatus needed to validate theoretical results or to perform purely experimental analysis. The Metal-Mechanics Department of IFSC owns a SuperFlow model SF-110 flow bench that has suffered some in house maintenance and received electronic sensors to allow computerized data acquisition. As the essential original sensors in this flow bench were liquid column manometer (for pressure difference across the test subject) and micromanometer (for pressure difference across the orifice plate used to measure the flow), the essential new sensors are electronic differential pressure sensors (installed in parallel with the original ones). In recent decades, however, the use of a mass air flow
Items per page:
50
1 – 50 of 6444