Browse Topic: Electronic equipment

Items (6,444)
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in Title 14, Code of Federal Regulations (14 CFR) parts 23, 25, 27, or 29 (as applicable to the seat type). Two formats of this standard (MS Excel and Adobe PDF) are available. The standards provided in both formats (MS Excel and Adobe PDF) contain the same text.
Aircraft Seat Committee
Exterior noise (EN) regulations for earth-moving machines (EMMs) require original equipment manufacturers (OEMs) to develop noise mitigation solutions early in the design process. Predicting the effectiveness of these solutions at this stage, however, is challenging. Excavators differ from other EMMs due to their rotating upper frame, which operates atop a fixed lower frame. Regulations such as ISO 6395 and EC/2000/14 mandate specific operating maneuvers, where noise sources dynamically change their position, directivity, and speed throughout the operating cycle. This complexity makes noise contribution analysis more difficult, as it must account for variations in angular position and operating conditions. While previous studies successfully applied Acoustic Source Quantification (ASQ) and contribution analysis to linearly moving EMMs, the angular motion of an excavator’s cab with respect to fixed target microphones introduces additional data processing challenges. This study addresses
Vesikar, Prasad BalkrishnaChaduvula, PrasannaAquino Arriaga, Adrian AntonioHaynes, TimothyDrabison II, John
To predict the sound field produced by a vehicle horn requires a good source representation of it in the full vehicle model. This paper investigates the characterization of a physical vehicle horn by an inverse method called pellicular analysis. To implement this method, firstly an acoustic testing is performed to measure the sound pressure radiated from the horn at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual horn, the locations of each microphone and measured sound pressure data, pellicular analysis is adopted to recover a set of vibration pattern of the virtual horn. The virtual horn and the recovered vibration information are then incorporated in a full vehicle numerical model to simulate its exterior sound field. The validity of this approach is confirmed by comparing the prediction for a horn in a production vehicle to the corresponding physical test which is required to meet the Brazilian regulation CONTRAN 764/2018.
Yang, WenlongMelo, Andre
The arrangement of error microphones for a vehicle active noise control (ANC) system is no trivial work, especially for heavy-duty trucks, due to the dilemma resulted from the large volume of the cab and the limited number of microphones accepted by most manufacturers in the auto industry. Although some pioneering work has laid the foundation for the application of numerical methods exemplified by the genetic-algorithm (GA) to optimize the error sensor arrangement in an ANC system, most ANC developers still resort to trial and error in practice, which is not only a heavy workload given the amount of interested working conditions to be tested, but also does not guarantee to yield the optimum noise cancellation performance. In this paper, the authors designed and implemented an error microphone selection process using a genetic-algorithm (GA) -based mechanism. The target vehicle was a heavy-duty truck with a six-piston diesel engine, and two application scenarios were particularly
Wang, JianLing, ZihongZhang, ZheCai, DeHualv, XiaoZhang, MingGao, GuoRan
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
Rittenschober, Thomas
In active noise control, the control region size (same meaning as zone of control) decreases as the frequency increases, so that even a small moving of the passenger's head causes the ear position to go out of the control region. To increase the size of the control region, many speakers and microphones are generally required, but it is difficult to apply it in a vehicle cabin due to space and cost constraints. In this study, we propose moving zone of quiet active noise control technique. A 2D image-based head tracking system captured by a camera to generate the passenger's 0head coordinates in real time with deep learning algorithm. In the controller, the control position is moved to the ear position using a multi-point virtual microphone algorithm according to the generated ear position. After that, the multi-point adaptive filter training system applies the optimal control filter to the current position and maintains the control performance. Through this study, it is possible to
Oh, ChiSungKang, JonggyuKim, Joong-Kwan
Large eddy simulations (LES) of two HVAC duct configurations at different vent blade angles are performed with the GPU-accelerated low-Mach (Helmholtz) solver for comparison with aeroacoustics measurements conducted at Toyota Motor Europe facilities. The sound pressure level (SPL) at four near-field experimental microphones are predicted both directly in the simulation by recording the LES pressure time history at the microphone locations, and through the use of a frequency-domain Ffowcs Williams-Hawking (FW-H) formulation. The A-weighted 1/3 octave band delta SPL between the two vent blades angle configurations is also computed and compared to experimental data. Overall, the simulations capture the experimental trend of increased radiated noise with the rotated vent blades, and both LES and FW-H spectra show good agreement with the measurements over most of the frequency range of interest, up to 5,000Hz. For the present O(30) million cell mesh and relatively long noise data collection
Besem-Cordova, Fanny M.Dieu, DonavanWang, KanBrès, Guillaume A.Delacroix, Antoine
Rattling noise from electrical sound systems is becoming one of the prominent issues for automakers as it directly affects the perception of customers about vehicle quality. Recently, quality sound system is prerequisite for automotive passenger vehicles. And, in the whole systems subwoofer forms dominant part of sound output. However, subwoofer rattle noise problems sometimes occur in small and midsize Sports Utility Vehicles (SUV). Mainly rattle is noise resulting from physical contact of two parts due to vibrations when relative displacement is bigger than gap of two parts, it occurred certain frequency (Between F1~F2), which is main excitation range of subwoofer. In this study, we analyze the subwoofer structural vibration analysis for five sample vehicles based on the test and correlation. However, the present subwoofer system model has limitation in determining the level of this rattle noise. Therefore, this paper discusses how to correlate subwoofer model, frequency
Thota, JagadeeshChoi, SeungchanPark, Jong-Suh
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes performance requirements, design requirements, and design guidelines for electronic devices.
Test Methods and Equipment Stds Committee
A team of researchers has developed self-powered, wearable, triboelectric nanogenerators (TENGs) with polyvinyl alcohol (PVA)-based contact layers for monitoring cardiovascular health. TENGs help conserve mechanical energy and turn it into power.
This document establishes test plans/procedures for the AS5643 Standard that by itself defines guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. This test specification defines procedures and criteria for testing device compliance with the AS5643 Standard.
AS-1A Avionic Networks Committee
Most electric 2-wheelers on the market today seek to replace combustion engine vehicles from 50cc to 150cc which equates to an electric motor power between 2 and 12 kW. The traction voltage level of these vehicles is mostly between 44V and 96V. However, the actual choice of voltage on a specific vehicle seems to be arbitrary and higher voltage does not necessarily correlate with higher motor power. This paper seeks to highlight considerations and tradeoffs which feed the choice of traction voltage levels. Important criteria are electrical safety standards and their impact on vehicle electrical architecture, the performance and availability of key electronics parts such as capacitors, MOSFETs, and gate drivers, while also highlighting functional safety aspects. This paper shows by a comprehensive analysis of the motor drive that for the vehicle class mentioned above the traction voltage level can be kept below 60V without any performance impact, while also ensuring electrical and
Schmitt, Stefan
Electric double-layer capacitors (EDLCs) store charge by adsorbing ions at the electrode-electrolyte interface, offering fast charge/discharge rates, high power density, minimal heat generation, and long cycle life. These characteristics make EDLCs ideal for memory backup in electronic devices and power assistance in electric and hybrid vehicles. However, their energy density is lower than that of batteries, necessitating improvements in electrical capacity and potential. Traditionally, activated carbon with a high specific surface area has been used, but recent research focuses on mesoporous carbon materials for better ion diffusion. This study uses resorcinol-formaldehyde-carbon cryogel (RFCC) with mesopores and organic electrolytes with a wider electrochemical window. Various RFCCs with different pore sizes were synthesized and evaluated. Comprehensive investigations into the pore structures and surface properties of both synthesized carbon gels and commercial mesoporous materials
Cheng, ZairanOkamura, TsubasaOhnishi, YutoNakagawa, Kiyoharu
As the main power source for modern portable electronic devices and electric vehicles, lithium-ion batteries (LIBs) are favored for their high energy density and good cycling performance. However, as the usage time increases, battery performance gradually deteriorates, leading to a heightened risk of thermal runaway (TR) increases, which poses a significant threat to safety. Performance degradation is mainly manifested as capacity decline, internal resistance increase and cycle life reduction, which is usually caused by internal factors of LIBs, such as the fatigue of electrode materials, electrolyte decomposition and interfacial chemical reaction. Meanwhile, external factors of LIBs also contribute to performance degradation, such as external mechanical stresses leading to internal structural damage of LIBs, triggering internal short-circuit (ISC) and violent electrochemical reactions. In this paper, the performance degradation of LIBs and TR mechanism is described in detail, as well
Zhou, JingtaoZhong, XiongwuWang, KunjunZhou, YouhangYou, GuojianTang, Xuan
Driver distraction remains a leading cause of traffic accidents, making its recognition critical for enhancing road safety. In this paper, we propose a novel method that combines the Information Bottleneck (IB) theory with Graph Convolutional Networks (GCNs) to address the challenge of driver distraction recognition. Our approach introduces a 2D pose estimation-based action recognition network that effectively enhances the retention of relevant information within neural networks, compensating for the limited data typically available in real-world driving scenarios. The network is further refined by integrating the CTR-GCN (Channel-wise Topology Refinement Graph Convolutional Network), which models the dynamic spatial-temporal relationships of human skeletal data. This enables precise detection of distraction behaviors, such as using a mobile phone, drinking water, or adjusting in-vehicle controls, even under constrained input conditions. The IB theory is applied to optimize the trade
Zhang, JiBai, Yakun
Automotive audio components must meet high quality expectations with ever-decreasing development costs. Predictive methods for the performance of sound systems in view of the optimal locations of loudspeakers in a car can help to overcome this challenge. Use of simulation methods would enable this process to be brought up front and get integrated in the vehicle design process. The main objective of this work is to develop a virtual auralization model of a vehicle interior with audio system. The application of inverse numerical acoustics [INA] to source detection in a speaker is discussed. The method is based on truncated singular value decomposition and acoustic transfer vectors The arrays of transfer functions between the acoustic pressure and surface normal velocity at response sites are known as acoustic transfer vectors. In addition to traditional nearfield pressure measurements, the approach can also include velocity data on the boundary surface to improve the confidence of the
Baladhandapani, DhanasekarThaduturu, Sai RavikiranDu, Isaac
SAE J1939 is a CAN-based standard used for connecting various ECUs together within a vehicle. There are also some related protocols sharing many of the features of SAE J1939 across other industries including ISO11783, RVC and NMEA 2000. The standard has enabled the easy integration of electronic devices into a vehicle. However, as with all CAN-based protocols, several vulnerabilities to cyberattacks have been identified and are discussed in this paper. Many are at the CAN-level, whilst others are in common with those protocols from the SAE J1939 family of protocols. This paper reviews the known vulnerabilities that have been identified with the SAE J1939 protocol at CAN and J1939-levels, along with proposed mitigation strategies that can be implemented in software. At the CAN-level, the weaknesses include ways to spoof the network by exploiting parts of the protocol. Denial of Service is also possible at the CAN-level. At the SAE J1939-level, weaknesses include Denial of Service type
Quigley, Christopher
Automotive industry is growing rapidly with innovations leading to increase in new features and improving the Quality of vehicles. These new components are developed with the available design standards across global OEMs. This Quality research paper aims to address the need of revision of design standards due to environmental factors prevailing in India. With the increase towards autonomous mobility, the number of electronics is also increasing, and this involves hardware & software evaluation. The hardware testing is a point of concern due to increase in the failure rate from the markets. Environment changes are very much evident with the growing economies and OEMs are developing the components with innovation, but if the basic design standards are not revised in parallel with the changing environment, the issues will continue to trouble the end customers. The failed cases data received from across the country was analyzed and observed that the cases are majorly reported from urban
Marwah, RamnikPyasi, PraveenBindra, RiteshGarg, Vipin
Apple’s mobile phone LiDAR capabilities can be used with multiple software applications to capture the geometry of vehicles and smaller objects. The results from different software have been previously researched and compared to traditional ground-based LiDAR. However, results were inconsistent across software applications, with some software being more accurate and others being less accurate. (Technical Paper 2023-01-0614. Miller, Hashemian, Gillihan, Benes.) This paper builds upon existing research by utilizing the updated LiDAR hardware that Apple has added to its iPhone 15 smartphone lineup. This new hardware, in combination with the software application PolyCam, was used to scan a variety of crashed vehicles. These crashed vehicles were also scanned using a FARO 3D scanners and Leica RTC 360 scanners, which have been researched extensively for their accuracy. The PolyCam scans were compared to FARO and Leica scans to determine accuracy for point location and scaling. Previous
Miller, Seth HigginsStogsdill, MichaelMcWhirter, Seth
Naval Air Systems Command Patuxent, MD navairpao@us.navy.mil
Researchers from Skoltech and the University of Texas at Austin have presented a proof-of-concept for a wearable sensor that can track healing in sores, ulcers, and other kinds of chronic skin wounds, even without the need to remove the bandages. The paper was published in the journal ACS Sensors.
This SAE Aerospace Standard (AS) establishes the minimum performance standards for equipment used as secondary alternating current (AC) electrical power sources in aerospace electric power systems.
AE-7B Power Management, Distribution and Storage
Aerospace and defense system designers are demanding scalable and high-performance I/O solutions. While traditional mezzanine standards have proven reliable, they often fall short of meeting modern bandwidth, size, and flexibility requirements. This challenge is particularly evident in aerospace and defense applications where high-speed data processing must align with stringent size, weight, and power (SWaP) constraints. Current mezzanine solutions also face significant limitations in scalability, thermal management, and I/O density. These constraints can lead to compromised system performance and limited upgrade paths in applications where adaptability is crucial. This article explores how the new VITA 93 (QMC) standard addresses these challenges through its innovative QMC architecture, enabling unprecedented flexibility, scalability, and rugged reliability while maintaining compatibility with existing and future systems. It also covers how VITA 93 (QMC) builds on lessons learned from
A new device aims to detect acute exacerbations of chronic conditions. The wearable monitoring device contains multiple types of sensors, enabling faster and more accurate detection of exacerbations of chronic obstructive pulmonary disease and chronic conditions like asthma, heart disease and other inflammatory disorders. Eventually, the technology may help everyday people monitor their overall health and attune to early warning signs of illness.
Time Sensitive Networking (TSN) Ethernet is a real-time networking capability that is being developed by a growing number of embedded computing companies for the earliest stages of adoption by aerospace and defense manufacturers and their suppliers. According to the Institute of Electrical and Electronics Engineers (IEEE) TSN working group, it is a set of standards that provides deterministic connectivity within IEEE 802-aligned networks. Nigel Forrester is the Director of Product Strategy for Concurrent Technologies, a UK-based provider of high performance embedded computing solutions for aerospace, defense and many other industries. Check out our interview with Forrester about the potential impact of TSN Ethernet on new and legacy aerospace and defense applications, and how it is being adopted by manufacturers and system integrators below.
Writing in Nature Electronics, the Brown University research team describes a novel approach for a wireless communication network that can efficiently transmit, receive, and decode data from thousands of microelectronic chips that are each no larger than a grain of salt.
It might look like a roll of chicken wire, but this tiny cylinder of carbon atoms — too small to see with the naked eye — could one day be used for making electronic devices ranging from night vision goggles and motion detectors to more efficient solar cells, thanks to techniques developed by researchers at Duke University.
Material solutions for thermal management, protection and assembly. Today's ADAS designers are adding more electronic components and redundant computing systems to printed circuit boards (PCBs). These heat-generating electronic assemblies are installed in enclosures that provide environmental protection, but the high heat generated by high-performance computing systems can degrade ADAS performance or cause device failure. Not all thermal management materials can withstand temperatures up to 200 C (392 F), and most do not retain their flexibility at elevated temperatures. This creates a problem when PCB components expand and contract at different rates due to mismatches in their coefficients of thermal expansion.
Sootsman, JosephZou, Lu
As automotive technology advances, modern vehicles increasingly rely on complex electronics such as cameras, sensors, radar and lidar. These components are critical for advanced driver-assistance systems (ADAS) and automated driving. With the growing complexity of these systems, automotive manufacturers face challenges in efficiently transmitting both power and data while minimizing weight and system complexity. Power over Coaxial (PoC) technology offers a solution by allowing the transmission of power and data over a single coaxial cable, significantly simplifying vehicle design. With the integration of more electronic systems, especially those required for ADAS and autonomous driving, the demand for power and high-speed data transmission in vehicles has surged. Modern cars now use multiple cameras and sensors, and as vehicle systems continue to evolve, the number of electronic components is expected to increase. This shift places significant demands on the transmission of both data
Thurman, Travis
At present, 77GHz millimeter-wave (MMW) radar has become a critical sensor in intelligent transportation systems due to its all-weather detection capability, which enables it to resist complex weather and light interference. Radar cross section (RCS) is a significant characteristic of radar, greatly impacting the detection quality of traffic targets across various traffic scenarios. RCS is usually measured in an anechoic chamber to establish a model of the RCS of typical traffic participants. However, due to large target fluctuations and multi-angle scattering centers of targets, representing the RCS characteristics of typical traffic participants with a single point is challenging. Taking global vehicle target (GVT), pedestrian target and cyclist target as examples, this paper proposes a method for measuring and modeling the RCS features of typical traffic participants. For the static RCS features of targets, we measured the RCS of the target under different viewing angles in an
Liu, TengyuShi, WeigangTong, PanpanBi, Xin
This paper presents the development of a cost-effective assistive headgear designed to address the navigation challenges faced by millions of visually impaired individuals in India. Existing solutions are often prohibitively expensive, leaving a significant portion of this population underserved. To address this gap, we propose a novel human-machine interface that utilizes a synergistic combination of computer vision, stereo imaging, and haptic feedback technologies. The focus of this project lies in the creation of a practical and affordable headgear that empowers visually impaired users with real time obstacle detection and navigation capabilities. The solution leverages computer vision for environmental analysis and integrates haptic feedback for intuitive user guidance. This paper details the design intricacies of the headgear, along with the implementation methodologies employed. We present comprehensive testing results and discuss the project's potential to significantly enhance
Manu, RohithS Nair, SreeramBiju, MariyaKM, DevikaSadique, Anwar
Biofeedback training is a technology that enhances cognitive and emotional capabilities, empowering peak performance. What sets it apart is the Biocybernetics adaptation systems, which not only collect biofeedback data but also dynamically adjust your environment based on physiological signals. Imagine surroundings adapting — changing lighting, sounds, and more — in response to your biofeedback. Traditionally confined to clinical or training rooms, the real innovation is its integration into daily life. This system offers a new level of self-regulation. Users can navigate daily life venues with real-time insights into their physiological signals, providing continuous feedback and motivation for cognitive and emotional control. Efforts yield positive surroundings, fostering well-being and peak performance.
British soldiers have successfully trialed for the first time a game-changing weapon that can take down a swarm of drones using radio waves for less than the cost of a pack of mince pies.
Researchers in the emerging field of spatial computing have developed a prototype augmented reality headset that uses holographic imaging to overlay full-color, 3D moving images on the lenses of what would appear to be an ordinary pair of glasses. Unlike the bulky headsets of present-day augmented reality systems, the new approach delivers a visually satisfying 3D viewing experience in a compact, comfortable, and attractive form factor suitable for all-day wear.
The application of millimeter-wave radar technology in autonomous driving has become increasingly widespread with the rapid development of intelligent transportation systems. However, millimeter-wave radar is easily affected by environmental noise, multipath reflections, and electromagnetic interference, resulting in a large number of invalid target signals that reduce the system’s detection accuracy and safety. We proposes a method for filtering invalid targets based on interference signal characteristics and an Adaptive Interactive Multiple Model Kalman Filter (IMM-KF) target tracking algorithm. First, we effectively filter out empty targets, ghost targets, and false targets through a threshold method and lifecycle assessment, achieving a filtering rate exceeding 99.8%. Second, the improved Adaptive IMM-KF algorithm, combined with the Hungarian algorithm, associates and tracks multiple targets. The root mean square error (RMSE) of our methods is reduced by 7.07% and 8.05% compared to
Liu, QiSong, KangXie, HuiMeng, Chunyang
As infrastructure ages, it becomes more susceptible to failure, which can cause safety and mobility concerns for drivers and pedestrians, and economic woes for taxpayers. A recent study published in “Transportation Research Record” shows that high-resolution synthetic aperture radar (SAR) satellite data can detect infrastructure issues early on, which can help prevent further damage to roads in the same way that annual checkups can help prevent more complex health issues in humans.
Autonomous driving technology has indeed become a focal point of research globally, with significant efforts directed towards enhancing its key components: environment perception, vehicle localization, path planning, and motion control. These components work together to enable autonomous vehicles to navigate complex environments safely and efficiently. Among these components, environment perception stands out as critical, as it involves the robust, real-time detection of targets on the road. This process relies heavily on the integration of various sensors, making data fusion an indispensable tool in the early stages of automation. Sensor fusion between the camera and RADAR (Radio Detection and Ranging) has advantages because they are complementary sensors, where fusion combines the high lateral resolution from the vision system with the robustness in the face of adverse weather conditions and light invulnerability of RADAR, as well as having a lower production cost compared to the
Cury, Hachid HabibTeixeira, Evandro Leonardo SilvaSilva, Rafael Rodrigues
In the automotive industry, the zonal architecture is a design approach that organizes a vehicle’s electronic and communication systems into specific zones. These zones group components based on their function and physical location, enabling more efficient integration and simplified communication between the vehicle’s various systems. An important aspect of this architecture is the implementation of the Controller Area Network (CAN) protocol. CAN is a serial communication protocol developed specifically for automotive applications, allowing various electronic devices within a vehicle, such as sensors, actuators, and Electronic Control Units (ECUs), to communicate with each other quickly and reliably, sharing information essential for the vehicle’s operation. However, due to its limitations, there is a need for more efficient protocols like Automotive Ethernet and Controller Area Network Flexible (CAN FD), which allow for higher transmission rates and larger data packets. To centralize
Santos, Felipe CarvalhoSilva, Antônio LucasPaterlini, BrunoPedroso, Henrique GomesAlves, Joyce MartinsMilani, Pedro Henrique PiresKlepa, Rogério Bonette
Recognizing the significant challenges inherent in the analysis of periodic gas flow through reciprocating engines, one can easily appreciate the value of studying the steady flow through cylinder heads, manifolds, and exhaust systems. In these studies, flow benches are the cornerstone of the experimental apparatus needed to validate theoretical results or to perform purely experimental analysis. The Metal-Mechanics Department of IFSC owns a SuperFlow model SF-110 flow bench that has suffered some in house maintenance and received electronic sensors to allow computerized data acquisition. As the essential original sensors in this flow bench were liquid column manometer (for pressure difference across the test subject) and micromanometer (for pressure difference across the orifice plate used to measure the flow), the essential new sensors are electronic differential pressure sensors (installed in parallel with the original ones). In recent decades, however, the use of a mass air flow
Vandresen, Marcelodos Santos, Luciano Amaury
In response to the escalating demand for high-performance, miniaturized, and integrated radio frequency (RF) systems, this research explores the application of the Zynq UltraScale+ RFSoC XCZU47DR chip in the realm of integrated RF transceiver technology. An 8-channel, 4.8Gsps multi-channel distributed collaborative spectrum sensing architecture has been designed, incorporating lightweight IQ neural network, which comprises a convolutional layer, three Bottleneck Units (BNU), a Global Average Pooling (GAP) layer, and a Fully Connected (FC) layer. Notably, each BNU encapsulates one or two inverted bottleneck residual blocks that integrate the concepts of inverted residual blocks and linear bottlenecks. The parameter counts and computational complexity associated with the convolution operation are significantly reduced to merely 11.89% of those required by traditional networks. The performance metrics of the hardware circuit were validated through a constructed test system. Within a 2GHz
Chen, WangjieYang, JianZhu, WeiqiangShi, SonghuaZhou, MingyuFan, Zhenhong
Recently, four-dimensional (4D) radar has shown unique advantages in the field of odometry estimation due to its low cost, all-weather use, and dynamic and static recognition. These features complement the performance of monocular cameras, which provide rich information but are easily affected by lighting. However, the construction of deep radar visual odometry faces the following challenges: (1) the 4D radar point cloud is very sparse; (2) due to the penetration ability of 4D radar, it will produce mismatches with pixels when projected onto the image plane. In order to enrich the point cloud information and improve the accuracy of modal correspondence, this paper proposes a low-cost fusion odometry method based on 4D radar and pseudo-LiDAR, 4DRPLO-Net. This method proposes a new framework that uses 4D radar points and pseudo-LiDAR points generated by images to construct odometry, bridging the gap between 4D radar and images in three-dimensional (3D) space. Specifically, the pseudo
Huang, MinqingLu, ShouyiZhuo, Guirong
This research introduces a Detailed Digital Fuel Indicator (DDFI) system to enhance fuel monitoring accuracy in automobiles using advanced infrared (IR) sensor technology for precise fuel level detection. The innovative system includes a secondary tank, meticulously calibrated to the volumetric ratio of the primary tank, to ensure consistent and accurate readings. The DDFI system provides real-time data on fuel levels with an impressive accuracy of ±5%, a notable improvement over the traditional methods. Key components of the system include an IR sensor, a programmable integrated circuit (IC), and a secondary tank fabricated from galvanized iron (GI) sheet metal, ensuring durability and reliability in various environmental conditions. The system is designed to be user-friendly, offering an intuitive interface for drivers to monitor fuel levels effortlessly. Additionally, the DDFI system integrates seamlessly with existing vehicle systems, allowing for easy installation and minimal
Mallieswaran, K.Nithya, R.Rajendran, ShurutiArulaalan, M.
Items per page:
1 – 50 of 6444