Browse Topic: Electronic equipment
In the automotive industry, the zonal architecture is a design approach that organizes a vehicle’s electronic and communication systems into specific zones. These zones group components based on their function and physical location, enabling more efficient integration and simplified communication between the vehicle’s various systems. An important aspect of this architecture is the implementation of the Controller Area Network (CAN) protocol. CAN is a serial communication protocol developed specifically for automotive applications, allowing various electronic devices within a vehicle, such as sensors, actuators, and Electronic Control Units (ECUs), to communicate with each other quickly and reliably, sharing information essential for the vehicle’s operation. However, due to its limitations, there is a need for more efficient protocols like Automotive Ethernet and Controller Area Network Flexible (CAN FD), which allow for higher transmission rates and larger data packets. To centralize
Recognizing the significant challenges inherent in the analysis of periodic gas flow through reciprocating engines, one can easily appreciate the value of studying the steady flow through cylinder heads, manifolds, and exhaust systems. In these studies, flow benches are the cornerstone of the experimental apparatus needed to validate theoretical results or to perform purely experimental analysis. The Metal-Mechanics Department of IFSC owns a SuperFlow model SF-110 flow bench that has suffered some in house maintenance and received electronic sensors to allow computerized data acquisition. As the essential original sensors in this flow bench were liquid column manometer (for pressure difference across the test subject) and micromanometer (for pressure difference across the orifice plate used to measure the flow), the essential new sensors are electronic differential pressure sensors (installed in parallel with the original ones). In recent decades, however, the use of a mass air flow
This SAE Aerospace Standard (AS) identifies the requirements for mitigating Counterfeit EEE parts in the Authorized Distribution Channel. If an organization is not performing Authorized Distribution but acting as another seller (such as an Authorized Reseller, Broker, or Independent Distributor), then only 3.3.1 applies
A silicone membrane for wearable devices is more comfortable and breathable thanks to better-sized pores made with the help of citric acid crystals. The new preparation technique fabricates thin, silicone-based patches that rapidly wick water away from the skin. The technique could reduce the redness and itching caused by wearable biosensors that trap sweat beneath them. The technique was developed by bioengineer and professor Young-Ho Cho and his colleagues at KAIST and reported in the journal Scientific Reports
A recent study combines three-dimensional embroidery techniques with machine learning to create a fabric-based sensor that can control electronic devices through touch
The final frontier in digital transformation is the analog edge, where apertures and actuators meet the mission. Buried behind layers of firmware and analog mitigation, open architecture has a new frontier to conquer, and the opportunity starts at the component level, where digital transformation and the miniaturization enabled by Moore's Law is having its biggest impact. Miniature, modular, and intelligent gateways can be embedded into analog components to replace and re-imagine old firmware and analog mitigation circuitry. These new, embedded gateways promise to bring open architecture deeper into the tactical edge and realize a new level of agility throughout the lifecycle of a system, from design through sustainment of hybrid digital and analog systems
The future of wireless technology - from charging devices to boosting communication signals - relies on the antennas that transmit electromagnetic waves becoming increasingly versatile, durable and easy to manufacture. Researchers at Drexel University and the University of British Columbia believe kirigami, the ancient Japanese art of cutting and folding paper to create intricate three-dimensional designs, could provide a model for manufacturing the next generation of antennas. Recently published in the journal Nature Communications, research from the Drexel-UBC team showed how kirigami - a variation of origami - can transform a single sheet of acetate coated with conductive MXene ink into a flexible 3D microwave antenna whose transmission frequency can be adjusted simply by pulling or squeezing to slightly shift its shape
Automotive electrical and electronics manufacturer MTA attended IAA Transportation for the first time, demonstrating its new range of wireless communication technologies for the truck industry. Earlier this year, the company acquired Calearo Antenne S.p.A, a company with a long history of producing antennas, amplifiers and cables. MTA global sales director Davide Bonelli explained to Truck & Off-Highway Engineering how that acquisition complements its business. “From a more strategic point of view, we see the world of antennas as complementary to what MTA does,” he said. “Often MTA products have an antenna as an interface, so this is one reason why we have done the deal. There are also a lot of synergies from an engineering standpoint. Historically, MTA is a company that uses many mechanical parts - plastics, metals - which we are very strong with so we can share them. And there are also some competences from Calearo Antenne that can be transferred to us
The aerospace and defense industries demand the highest levels of reliability, durability, and performance from their electronic systems. Central to achieving these standards are laminate materials, which form the backbone of printed circuit boards (PCBs) and flexible circuits used in a multitude of applications, from avionics to missile guidance systems. Building these systems, which are typically implemented in environments that experience both temperature extremes and wide variations of temperature over time, requires robust materials that can stand up to punishing environmental conditions. Laminates and films for circuit boards and flexible circuits are a vital component of this protective material profile
Deliberate RF jamming of drones has become one of the most common battlefield tactics in Ukraine. But what is jamming, how does it work and how can it be countered by unmanned aerial vehicles (UAVs) in the field? Radio frequency (RF) jamming of drones involves deliberate interference with the radio signals used for communication between drones and their operators
Hypersonic platforms provide a challenge for flight test campaigns due to the application's flight profiles and environments. The hypersonic environment is generally classified as any speed above Mach 5, although there are finer distinctions, such as “high hypersonic” (between Mach 10 to 25) and “reentry” (above Mach 25). Hypersonic speeds are accompanied, in general, by a small shock standoff distance. As the Mach number increases, the entropy layer of the air around the platform changes rapidly, and there are accompanying vortical flows. Also, a significant amount of aerodynamic heating causes the air around the platform to disassociate and ionize. From a flight test perspective, this matters because the plasma and the ionization interfere with the radio frequency (RF) channels. This interference reduces the telemetry links' reliability and backup techniques must be employed to guarantee the reception of acquired data. Additionally, the flight test instrumentation (FTI) package needs
Hensoldt Taufkirchen, Germany lothar.belz@Hensoldt.net
Imagine you had a dedicated wireless channel for communication that was hundreds of times faster than the Wi-Fi we use today, with hundreds of times more bandwidth. That dream may not be far off thanks to the development of metasurfaces: tiny engineered sheets that can reflect and otherwise direct light in desired ways
United States microchip fab plants can cram billions of data-processing transistors onto a tiny silicon chip, but the “clock,” which times the transistors’ operations, must be made separately, which creates a flaw in chip security as well as the supply line. However, a new approach uses commercial chip fab materials and techniques to fabricate specialized transistors to serve as the building block of the timing device
Purdue University engineers have developed a method to transform existing cloth items into battery-free wearables resistant to laundering. These smart clothes are powered wirelessly through a flexible, silk-based coil sewn on the textile
Wearable devices that use sensors to monitor biological signals can play an important role in health care. These devices provide valuable information that allows providers to predict, diagnose, and treat a variety of conditions while improving access to care and reducing costs
This ARP covers three common light sources, incandescent, electroluminescent and light emitting diode that, when NVG filtered, can be used to illuminate NVG compatible aerospace crew stations. It is recognized that many other different light sources can also be used for this purpose. Also see 2.1.1 for other SAE documents that cover particular applications within the crew station environment. This ARP sets forth recommendations for the design of NVG compatible lighting, utilizing these light sources, that will meet the requirements of MIL-L-85762 Lighting, Aircraft, Interior, Night Vision Imaging System (NVIS) Compatible. This also includes the replacement document MIL-STD-3009: Lighting, Aircraft, Night Vision Imaging System (NVIS) Compatible. Although this ARP concentrates on lamp light sources for illumination, the information contained within this ARP may be directly applied to incandescent, electroluminescent and light emitting diode information display devices. Regardless of the
ABSTRACT This paper presents two techniques for autonomous convoy operations, one based on the Ranger localization system and the other a path planning technique within the Robotic Technology Kernel called Vaquerito. The first solution, Ranger, is a high-precision localization system developed by Southwest Research Institute® (SwRI®) that uses an inexpensive downward-facing camera and a simple lighting and electronics package. It is easily integrated onto vehicle platforms of almost any size, making it ideal for heterogeneous convoys. The second solution, Vaquerito, is a human-centered path planning technique that takes a hand-drawn map of a route and matches it to the perceived environment in real time to follow a route known to the operator, but not to the vehicle. Citation: N. Alton, M. Bries, J. Hernandez, “Autonomous Convoy Operations in the Robotic Technology Kernel (RTK)”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI
ABSTRACT The Integrated Bridge currently fielded in the MRAP FoV is a capabilities insertion that provides data integration and visualization services to the vehicle crew. The Integrated Bridge combines displays, data buses, video sensors, switches/routers, radio interfaces, power management components, etc. to provide a unified view as well as a vehicle system control means to its crew members. The Integrated Bridge provides a flexible and modular architecture that can readily be adapted to the variety of Government Furnished Mission Equipment found in the MRAP FoV utilizing developmental hardware and software augmented with VICTORY technology to provide additional standardization and capabilities. This paper describes the continuation and capability extension of the VICTORY Radio Adapter, now called the Integrated Bridge GPIU (General Purpose Interface Unit). Details of the work leading to the fielding of a significantly enhanced version of the GPIU are discussed. GPIU software and
ABSTRACT Radio frequency products spanning multiple functions have become increasingly critical to the warfighter. Military use of the electromagnetic spectrum now includes communications, electronic warfare (EW), intelligence, and mission command systems. Due to the urgent needs of counterinsurgency operations, various quick reaction capabilities (QRCs) have been fielded to enhance warfighter capability. Although these QRCs were highly successfully in their respective missions, they were designed independently resulting in significant challenges when integrated on a common platform. This paper discusses how the Modular Open RF Architecture (MORA) addresses these challenges by defining an open architecture for multifunction missions that decomposes monolithic radio systems into high-level components with well-defined functions and interfaces. The functional decomposition maximizes hardware sharing while minimizing added complexity and cost due to modularization. MORA achieves
ABSTRACT Given the system complexity of the Mission Enabling Technologies Demonstrator (MET-D) it is necessary to consider a robust communications management solution capable of consolidating network management onto a “unified interface” while providing distributed, hierarchical, and efficient management of network attached nodes on multiple platforms regardless of the vendor or implemented technology. Citation: D. Jedynak, C. Kawasaki, D. Gregory, “Managing Next Generation Open Standard Vehicle Electronics Architectures”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019
ABSTRACT There has been a lot of interest in the secure embedded L4 (seL4) microkernel in recent years as the basis of a cyber-security platform because it has been formally proven to be correct and free of common defects. However, while the seL4 microkernel has a formal proof of correctness, it does so at the cost of deferring functionality to the user space that most developers and system integrators would deem necessary for real life products and solutions, and use of formal proofs for user space can be prohibitively expensive. DornerWorks took an approach to bypass the need for native seL4 user space applications to develop a representative real-world system for GVSC VEA based on seL4 by enabling its virtual machine monitor functionality for ARMv8 platforms, allowing feature rich software stacks to be run in isolation guaranteed by the seL4 formal proofs. This paper describes that system and the efforts undertaken to achieve real world functionality. Citation: R. VanVossen, J
ABSTRACT Localization refers to the process of estimating ones location (and often orientation) within an environment. Ground vehicle automation, which offers the potential for substantial safety and logistical benefits, requires accurate, robust localization. Current localization solutions, including GPS/INS, LIDAR, and image registration, are all inherently limited in adverse conditions. This paper presents a method of localization that is robust to most conditions that hinder existing techniques. MIT Lincoln Laboratory has developed a new class of ground penetrating radar (GPR) with a novel antenna array design that allows mapping of the subsurface domain for the purpose of localization. A vehicle driving through the mapped area uses a novel real-time correlation-based registration algorithm to estimate the location and orientation of the vehicle with respect to the subsurface map. A demonstration system has achieved localization accuracy of 2 cm. We also discuss tracking results
ABSTRACT The Bradley Combat Vehicle Motor Chatter case study focuses on one aspect of a combat vehicle program, specifically, responding to a vehicle production situation where combat vehicles produced with in-spec components and subsystems exhibit out-of-spec and failing system behavior. This typically results in an extended production line-down or line-degraded situation lasting for several quarters until the problem can be diagnosed, fixed, validated and verified. Subsequently, adequate quantities of the modified or replaced sub-systems must be put back into the production flow. The direct and indirect costs of an occurrence like this in peace-time are measured in the 10’s to 100’s of Millions of dollars. The schedule, program and perception impact to the vehicle platform can be potentially devastating. In war-time all of these impacts are magnified greatly by the added risk to soldiers’ lives. This paper describes the Bradley Combat Vehicle Motor Chatter case study and the
ABSTRACT Given the complexity of existing and anticipated ground vehicle networks it is necessary to consider a robust communications management software solution - that consolidates the management plane of networks onto a “single pane of glass” regardless of the type of technology or vendor – that is capable of providing distributed, hierarchical, and efficient management of network attached nodes on multiple platforms and at multiple tiers
Items per page:
50
1 – 50 of 6463