Browse Topic: Antennas
Dangling from a weather balloon 80,000 feet above New Mexico, a pair of antennas sticks out from a Styrofoam cooler. From that height, the blackness of space presses against Earth’s blue skies. But the antennas are not captivated by the breathtaking view. Instead, they listen for signals that could make air travel safer.
In contemporary society, where Global Navigation Satellite Systems (GNSS) are utilised extensively, their inherent fragility gives rise to potential hazards with respect to the safety of ship navigation. In order to address this issue, the present study focuses on an ASM signal delay measurement system based on software defined radio peripherals. The system comprises two distinct components: a transmitting end and a receiving end. At the transmitting end, a signal generator, a first time-frequency synchronisation device, and a VHF transmitting antenna are employed to transmit ASM signals comprising dual Barker 13 code training sequences. At the receiving end, signals are received via software-defined radio equipment, a second time-frequency synchronisation device, a computing host, and a VHF receiving antenna. Utilising sliding correlation algorithms enables accurate time delay estimation. The present study leverages the high performance and low cost advantages of the universal
Reliable antenna performance is crucial for aircraft communication, navigation, and radar detection systems. However, an aircraft’s structure can detune the antenna input impedance and obstruct radiation, creating a range of potential problems from a low-quality experience for passengers who increasingly expect connectivity while in the air, to violating legal requirements around strict compliance standards. Determining appropriate antenna placement during the design phase can reduce risk of costly problems arising during physical testing stages.
Reliable antenna performance is crucial for aircraft communication, navigation, and radar detection systems. However, an aircraft's structure can detune the antenna input impedance and obstruct radiation, creating a range of potential problems from a low-quality experience for passengers who increasingly expect connectivity while in the air, to violating legal requirements around strict compliance standards. Determining appropriate antenna placement during the design phase can reduce risk of costly problems arising during physical testing stages. Engineers traditionally use a variety of CAD and electromagnetic simulation tools to design and analyze antennas. The use of multiple software tools, combined with globally distributed aircraft development teams, can result in challenges related to sharing models, transferring data, and maintaining the associativity of design and simulation results. To address these challenges, aircraft OEMs and suppliers are implementing unified modeling and
Data security remains an issue of the utmost concern in contested environments. Mechanisms such as data encryption, beam-forming antennas, and frequency-hopping radio have emerged to mitigate some of the concerns in radio-frequency (RF) communications, but they do not remove all risk. Consequently, there is still a consistent appetite for alternative solutions. This paper presents a case for the use of the free-space optical (FSO) communications technology ImpLi-Fi as one such alternative. FSO communication is promising because of the ease with which the signal beam may be steered and limited, making detection and interception more difficult than with RF, and ImpLi-Fi in particular is desirable for its exceptional outdoor performance and ease of integration into existing light sources. The paper briefly illustrates the origins of the contested logistics (CL) problem and CL use cases for secure communication channels, before describing the ImpLi-Fi technology in some detail; exploring
As NASA’s Artemis missions build out infrastructure on and around the Moon in the coming years, CubeSats and other small satellites will likely play an important role in a communications network that will enable not only conversation with mission control but also navigation, direct scientific observations, and more, all enabled by an internet-like “LunaNet.” These little satellites are cheap to launch and can form constellations for relaying signals reliably. But their small size makes it hard for them to carry antennas large enough to communicate across vast distances.
The global satellite communications (SATCOM) sector is undergoing profound transformation. Fueled by the rapid growth of low Earth-orbit (LEO) constellations, increased government investment, and heightened demand for secure, high-throughput connectivity, the market is projected to expand from $66.75 billion in 2025 to $103.78 billion by 20291, 2. This momentum reflects a broader realignment of priorities across commercial and defense markets: a shift from reliance on legacy geostationary systems toward agile, resilient networks capable of supporting next-generation missions and applications.
Automotive electrical and electronics manufacturer MTA attended IAA Transportation for the first time, demonstrating its new range of wireless communication technologies for the truck industry. Earlier this year, the company acquired Calearo Antenne S.p.A, a company with a long history of producing antennas, amplifiers and cables. MTA global sales director Davide Bonelli explained to Truck & Off-Highway Engineering how that acquisition complements its business. “From a more strategic point of view, we see the world of antennas as complementary to what MTA does,” he said. “Often MTA products have an antenna as an interface, so this is one reason why we have done the deal. There are also a lot of synergies from an engineering standpoint. Historically, MTA is a company that uses many mechanical parts - plastics, metals - which we are very strong with so we can share them. And there are also some competences from Calearo Antenne that can be transferred to us.”
The future of wireless technology - from charging devices to boosting communication signals - relies on the antennas that transmit electromagnetic waves becoming increasingly versatile, durable and easy to manufacture. Researchers at Drexel University and the University of British Columbia believe kirigami, the ancient Japanese art of cutting and folding paper to create intricate three-dimensional designs, could provide a model for manufacturing the next generation of antennas. Recently published in the journal Nature Communications, research from the Drexel-UBC team showed how kirigami - a variation of origami - can transform a single sheet of acetate coated with conductive MXene ink into a flexible 3D microwave antenna whose transmission frequency can be adjusted simply by pulling or squeezing to slightly shift its shape.
Imagine you had a dedicated wireless channel for communication that was hundreds of times faster than the Wi-Fi we use today, with hundreds of times more bandwidth. That dream may not be far off thanks to the development of metasurfaces: tiny engineered sheets that can reflect and otherwise direct light in desired ways.
Phased array radar technology has been gaining popularity since its initial introduction in the 1960s and is now being used in a variety of applications, from military and defense to civilian sectors and even space exploration. This cutting-edge technology has revolutionized radar systems by offering unparalleled flexibility, precision, and speed. At the heart of phased array radar lies a sophisticated antenna system composed of numerous individual elements, each capable of independently emitting and receiving radio waves. Unlike traditional radar systems that rely on mechanically rotating antennas, phased array radars electronically steer their beams, enabling rapid and precise target acquisition. This breakthrough is made possible by meticulously controlling the phase of radio waves emitted from each antenna element.
Researchers from Stanford and the American University of Beirut have developed a lightweight, portable antenna that can communicate with satellites and devices on the ground, making it easier to coordinate rescue and relief efforts in disaster-prone areas. Stanford University, Stanford, California When an earthquake, flood, or other disaster strikes a region, existing communication infrastructure such as cell phone and radio towers are often damaged or destroyed. Restoring emergency communications as quickly as possible is vital for coordinating rescue and relief efforts. Researchers at Stanford University and the American University of Beirut (AUB) have developed a portable antenna that could be quickly deployed in disaster-prone areas or used to set up communications in underdeveloped regions. The antenna, described recently in Nature Communications, packs down to a small size and can easily shift between two configurations to communicate either with satellites or devices on the
Testing aircraft antennas is challenging since optimal tests are made after antenna installation. Aircraft are often taken to anechoic antenna test facilities which create long lead times, transportation hassle, and very high costs. Portable alternatives exist but often have compromised testing fidelity. Innovators at the NASA Glenn Research Center have developed the PLGRM system, which allows an installed antenna to be characterized in an aircraft hangar. All PLGRM components can be packed onto pallets, shipped, and easily operated.
When an earthquake, flood, or other disaster strikes a region, existing communication infrastructure such as cell phone and radio towers are often damaged or destroyed. Restoring emergency communications as quickly as possible is vital for coordinating rescue and relief efforts.
In this paper, in order to obtain the specified communication range, this work provides a novel optimization approach for antenna placement inside a design space of a vehicle is proposed. The design community can undertake antenna design iterations and quickly investigate antenna placement areas with the help of the optimal placement of antenna utilizing computational electromagnetic (CEM) based optimization approach. The design of experiments (DOE) for various antenna positions and orientations was produced using the Taguchi method [5]. To examine the impact of near field E throughout communication range, Quasi-Newtonian gradient technique and high frequency simulation software (HFSS) are employed. Response curves were created from the received near field E in order to examine the mean, large mean, and cost-wise approaches in order to find the antenna's ideal position and orientation for a strong signal across the communication range.
Researchers at the University of Birmingham have developed a new type of high-performance “phase shifter” using a liquid gallium alloy — which varies the phase angle of microwave and millimeter-wave radio signals — for use in advanced phase array antenna systems.
Researchers have created electrostatic materials that function even with extremely weak ultrasound, heralding the era of permanent implantable electronic devices in biomedicine. Recent research explores implantable medical devices that operate wirelessly, yet finding a safe energy source and protective materials remains challenging. Presently, titanium (Ti) is used due to its biocompatibility and durability. However, radio waves cannot pass through this metal, necessitating a separate antenna for wireless power transmission. Consequently, this enlarges the device size, creating more discomfort for patients.
The traditional centralized random access (RA) and data transmission (DT) protocol used to transmit small-sized packets suffers from high signaling overhead and low channel utilization. To cope with that, this paper proposes a novel distributed queuing random access and data transmission protocol based on multiple-input multiple-output (MIMO) technology for intelligent aircraft scenarios. In the RA phase, the collided, successful, and idle states are redefined according to the degree of freedom (DOF) in MIMO to utilize the RA channel effectively. In the DT phase, the optimal number of simultaneously transmitted M2M devices in the data queue is derived by the number of base station’s antennas to enhance throughput and reduce signaling. Results reveal that the proposed protocol can not only improve the efficiency of RA but also increase the throughput and reduce the delay of DT with the aid of DoF in MIMO while reducing the signaling overhead.
A team of University of Otago researchers and physicists have demonstrated a new form of antenna, developed with a small glass bulb containing an atomic vapor. The bulb was wired with laser beams and could therefore be placed far from any receiver electronics. Dr. Susi Otto, from the Dodd-Walls Centre for Photonic and Quantum Technologies, led the field testing of the portable atomic radio frequency sensor. Such sensors, that are enabled by atoms in a so-called Rydberg state, can provide superior performance over current antenna technologies as they are highly sensitive, have broad tunability, and small physical size, making them attractive for use in defense and communications.
A team of University of Otago researchers and physicists have demonstrated a new form of antenna, developed with a small glass bulb containing an atomic vapor. The bulb was wired with laser beams and could therefore be placed far from any receiver electronics.
Recent advances in the operation of advanced CMOS processes for extremely high-speed and high dynamic range analog-to-digital (ADC) and digital-to-analog (DAC) data converters has led to their use in directly sampling microwave and even millimeter wave signals. Typically, in these applications, minimal pre or post-conditioning stages separate the ADCs and DACs from the antenna or, for Active Electronically Steered Arrays (AESA) antenna elements. This results in an extremely compact and flexible system solution and this has enabled a generation of fully digital phased arrays that are capable of being dynamically reconfigured to perform a multitude of functions.
Recent advances in the operation of advanced CMOS processes for extremely high-speed and high dynamic range analog-to-digital (ADC) and digital-to-analog (DAC) data converters has led to their use in directly sampling microwave and even millimeter wave signals. Typically, in these applications, minimal pre or post-conditioning stages separate the ADCs and DACs from the antenna or, for Active Electronically Steered Arrays (AESA) antenna elements. This results in an extremely compact and flexible system solution and this has enabled a generation of fully digital phased arrays that are capable of being dynamically reconfigured to perform a multitude of functions.
Synthetic Aperture Radar (SAR) images are a powerful tool for studying the Earth’s surface. They are radar signals generated by an imaging system mounted on a platform such as an aircraft or satellite. As the platform moves, the system emits sequentially high-power electromagnetic waves through its antenna. The waves are then reflected by the Earth’s surface, re-captured by the antenna, and finally processed to create detailed images of the terrain below.
A new paper on wireless connectivity from researchers at the lab of Dinesh Bharadia, an affiliate of the UC San Diego Qualcomm Institute (QI), introduces a new technique for increasing access to the 5G-and-beyond millimeter wave (mmWave) network.
Innovators at NASA Johnson Space Center have developed a quarter-wavelength RFID slot antenna that provides polarization diversity and employs dual resonances, but in a form factor that is much smaller than other RFID antennas that provide similar functionality.
Historically, patch antennas have been used for SmallSat communications. While new antenna technologies are in development, some are not optimized for size, mass, and performance — especially beyond low-Earth orbit (LEO). Engineers at NASA’s Marshall Space Flight Center identified the need for a small form factor antenna to provide high data rate communications for such missions.
Antennas are used in many industries and products where quality and reliability are crucial. Testing aircraft antennas is challenging since optimal tests are made after antenna installation. Aircraft are often taken to anechoic antenna test facilities which create long lead times, transportation hassle, and very high costs. This makes such testing cost-prohibitive for early R&D work. Portable alternatives exist but often have compromised testing fidelity. Innovators at the NASA Glenn Research Center have developed the PLGRM system, which allows an installed antenna to be characterized in an aircraft hangar. All PLGRM components can be packed onto pallets, shipped, and easily operated.
In the late 1970’s and early 1980’s, Jing-Yau Chung along with Joseph Pope published several external General Motors reports on the then novel measurement of sound intensity (SI) using the two-microphone, cross-spectral method. Application of this measurement method was then extended to sound intensity measurements in flow. Through component wind tunnel measurements, it was determined that the intensity of noise sources could be accurately measured up to a level of 15 dB below the sound pressure level generated by flow noise on microphones. An initial application of this method was to the identification of noise sources alongside rolling truck tires. It was then extended to the measurement of the aerodynamic noise generated by protrusions added to automotive vehicle designs. These included items such as outside rearview mirrors, windshield wipers, A-pillar offsets, grille whistles, roof racks, underbodies, and fixed-mast radio antennas. Many of these could be applied on the early full
When astronauts begin to build a permanent base on the Moon, as NASA plans to do in the coming years, they’ll need help. Robots could potentially do the heavy lifting by laying cables, deploying solar panels, erecting communications towers, and building habitats. But if each robot is designed for a specific action or task, a Moon base could become overrun by a zoo of machines, each with its own unique parts and protocols.
HUBER+SUHNER (Herisau, Switzerland) has developed the SENCITY Road MULTI antenna, which reportedly enables multiple onboard applications to be hosted in a single antenna. It was designed specifically for commercial vehicles, such as buses, trucks, ambulances, forest harvesters and agricultural machines. The company states that the antenna groups a number of required elements within one low-profile housing, with single-hole mounting and easy cabling feed-through. The company also claims that through the antenna, customers can deploy 4X4 MIMO wireless modules, including the latest cellular frequencies, as well as up to 8X8 MIMO for Wi-Fi applications. https://www.hubersuhner.com/en
This method is used to define the immunity of electric and electronic apparatus and equipment (products) to radiated electromagnetic (EM) energy. This method is based on injecting the calibrated radio frequency currents (voltages) into external conductors and/or internal circuits of the product under test, measuring the strength of the EM field generated by this product and evaluating its immunity to the external EM field on the basis of the data obtained. The method can be utilized only when it is physically possible to connect the injector to the conductors and/or circuits mentioned before. The method allows: Evaluating immunity of the product under test to external EM fields of the strength equal to a normalized one; Calculating the level of external EM field strength at which the given (including maximum permissible) induced currents or voltages are generated in the equipment under test, or solving the “opposite” task; Finding potentially “weak” points of the product design
In-space and planetary surface assembly for human exploration is a challenging domain that encompasses various technological thrusts to support human missions. NASA is developing autonomous assembly agents to build structures like habitats and antennae on the Moon. These modular and reconfigurable Assembler robots will provide robotic assembly of structures, even in locations that prohibit constant human oversight and teleoperation.
Rohde & Schwarz's (Munich, Germany) R&S ATS1500C automotive radar test chamber now offers a new temperature test option and a new feed antenna. According to the company, these additional features enable temperature-controlled measurements in a wide range, as well as parallel access to both polarizations, increasing test efficiency and flexibility. The ARC-TEMP temperature test supports a range from −40 °C to +85 °C (−40° to 185° F). The heated or cooled air is provided by an external thermal air stream system that supplies the air to the temperature bubble mounted on the positioner. The new ARC-FX90 universal-feed antenna supports 60 GHz to 90 GHz and includes an orthomode transducer, which reportedly enables parallel access to vertical and horizontal polarizations. For more information, visit http://info.hotims.com/84487-400
Retrieving objects from a pile is a daunting task for a robot as it involves complex reasoning about the pile and objects in it, which presents a steep challenge. MIT researchers previously demonstrated a robotic arm that combines visual information and radio frequency (RF) signals to find hidden objects that were tagged with RFID tags (which reflect signals sent by an antenna). Building off that work, they have now developed a new system that can efficiently retrieve any object buried in a pile. As long as some items in the pile have RFID tags, the target item does not need to be tagged for the system to recover it.
Innovators at NASA Johnson Space Center have developed a cost-effective method to create fabric-based circuits and antennas by combining conventional embroidery with automated milling. The technology allows for higher surface conductivity, improved impedance control, expanded design and application potential, and greater choice of materials for optimized performance.
Items per page:
50
1 – 50 of 785