Browse Topic: Audio equipment
Airplane manufacturers running noise tests on new aircraft now have a much cheaper option than traditional wired microphone arrays. And it’s sensitive enough to help farmers with pest problems. The wireless microphone array that one company recently created with help from NASA can locate crop-threatening insects by listening for sound they make in fields. And now, it’s making fast, affordable testing possible almost anywhere
The transition from ICE to electric power trains in new vehicles along with the application of advanced active and passive noise reduction solutions has intensified the perception of noise sources not directly linked to the propulsion system. This includes road noise as amplified by the tire cavity resonance. This resonance mainly depends on tire geometry, gas temperature inside the tire and vehicle speed and is increasingly audible for larger wheels and heavier vehicles, as they are typical for current electrical SUV designs. Active technologies can be applied to significantly reduce narrow band tire cavity noise with low costs and minimal weight increase. Like ANC systems for ICE powertrains, they make use of the audio system in the vehicle. In this paper, a novel low-cost system for road induced tire cavity noise control (RTNC) is presented that reduces the tire cavity resonance noise inside a car cabin. The approach is cheap in terms of computational effort (likewise ICE order
When traveling in an open-jet wind tunnel, the path of an acoustic wave is affected by the flow causing a shift of source positions in acoustical maps of phased arrays outside the flow. The well-known approach of Amiet attempts to correct for this effect by computing travel times between microphones and map points based on the assumption that the boundary layer of the flow, the so-called shear layer, is infinitely thin and refracts the acoustical ray in a conceptually analogy to optics. However, in reality, the turbulent nature of both the not-so-thin shear layer and the acoustic emission process itself causes an additional smearing of sources in acoustic maps, which in turn causes deconvolution methods based on these maps – the most prominent example being CLEAN-SC – to produce certain ring effects, so-called halos, around sources. In this paper, we intend to cast some light on this effect by describing our path of analyzing/circumventing these halos and how they are linked to the
While there is a tendency for new vehicles to have a focus on ride, handling, performance and other dynamic elements, the model year 2024 Lincoln Nautilus team added another element to how the driver will experience the midsize SUV. Not that the ride, handling, etc. were ignored, but the global design and engineering team wanted to do something different with this two-row SUV. Recognize that this is a vehicle with a sumptuous interior that includes not only first-class seating (24-way adjustable front seats) and materials (Alpine Venetian leather available on the seats; cashmere for the headliner) but also an available high-end Revel Ultima 3D audio system with 28 speakers. What's more, there's “Lincoln Digital Scent,” small electronically activated pods containing various aromas (e.g., Mystic Forest, Ozonic Azure, Violet Cashmere). Across the top of the instrument panel there is a 48-inch backlit LCD screen and a 11.1-inch touchscreen in the center stack
A pair of earbuds can be turned into a tool to record the electrical activity of the brain as well as levels of lactate in the body with the addition of two flexible sensors screen-printed onto a stamp-like flexible surface
Smart accessories are increasingly common. Rings and watches track vitals, while Ray-Bans now come with cameras and microphones. Wearable tech has even broached brooches. Yet certain accessories have yet to get the smart touch
To empirically estimate the radiation of sound sources, a measurement with microphone arrays is required. These are used to solve an inverse problem that provides the radiation characteristics of the source. The resolution of this estimation is a function of the number of microphones used and their position due to spatial aliasing. To improve the radiation resolution for the same number of microphones compared to standard methods (Ridge and Lasso), a method based on normalizing flows is proposed that uses neural networks to learn empirical priors from the radiation data. The method then uses these learned priors to regularize the inverse source identification problem. The effects of different microphone arrays on the accuracy of the method is simulated in order to verify how much additional resolution can be obtained with the additional prior information
In the late 1970’s and early 1980’s, Jing-Yau Chung along with Joseph Pope published several external General Motors reports on the then novel measurement of sound intensity (SI) using the two-microphone, cross-spectral method. Application of this measurement method was then extended to sound intensity measurements in flow. Through component wind tunnel measurements, it was determined that the intensity of noise sources could be accurately measured up to a level of 15 dB below the sound pressure level generated by flow noise on microphones. An initial application of this method was to the identification of noise sources alongside rolling truck tires. It was then extended to the measurement of the aerodynamic noise generated by protrusions added to automotive vehicle designs. These included items such as outside rearview mirrors, windshield wipers, A-pillar offsets, grille whistles, roof racks, underbodies, and fixed-mast radio antennas. Many of these could be applied on the early full
This contribution describes a novel method for visualizing leakages in automotive structures using a rotating linear array of a few digital ultrasound microphones in combination with a multi-frequency ultrasound transmitter. The rotating array scans the incident sound field generated by the ultrasound transmitter on a circular area. In a typical measurement setup, the ultrasound transmitter is placed in a cavity (e.g. car interior, trunk or similar) and operates at distinct harmonic frequencies at around 40kHz in an omnidirectional fashion. The rotating linear array is operated on the outside of the cavity and captures the sound field escaping through small leakages. While the reduced hardware complexity allows for the design of a lightweight, handheld sound imaging device, the algorithmic portion of the measurement system requires special attention. In fact, established methods of sound imaging like beamforming and nearfield holography cannot be applied to signals stemming from moving
Speaker performance in Acoustic Vehicle Alerting System (AVAS) plays a crucial role for pedestrian safety. Sound radiation from AVAS speaker has obvious directivity pattern. Considering this feature is critical for accurately simulating the exterior sound field of electrical vehicles. This paper proposes a new process to characterize the sound directivity pattern of AVAS speaker. The first step of the process is to perform an acoustic testing to measure the sound pressure radiated from the speaker at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual speaker, the locations of each microphone and measured sound pressure data, an inverse method, namely the inverse pellicular analysis, is adopted to recover a set of vibration pattern of the virtual speaker surface. The recovered surface vibration pattern can then be incorporated in the full vehicle numerical model as an excitation for simulating the exterior sound field. In this study
The implementation of enablers on a luxury sport utility vehicle is used to illustrate the development process for reduction of road noise. The vehicle in this case study was launched into production with two tuned mass dampers for reduction of low frequency road noise content which was amplified by frame modes. Additionally, resonators were integrated into the wheels (rims) to address the dominant cavity resonance frequencies. The results of this successful production implementation are illustrated herein. An RNC (road noise cancellation) system was integrated into the case vehicle to assess its performance relative to the passive enablers listed above. This production representative (embedded software solution) RNC system utilized the vehicle’s existing audio system for creation of active noise to cancel noise content which was predicted using accelerometers mounted to the vehicle chassis. A comparison of in-vehicle noise indicated a significant reduction at low frequencies (at all
Pass-by noise measurement is mandatory for automotive manufacturers for conformity of production. With evolving of pass-by noise requirements (under 68 dB in 2024), all the stakeholders should be able to comply with this criterion. OEMs, suppliers of passive acoustic treatments, road manufacturers and tire manufacturers are concerned and should deploy efforts to provide solutions for control of exterior noise. In this regard, simulations are preferable over measurement campaigns as they can provide fast feedback on passive exterior treatments for exterior noise control. In the particular case of Lightyear vehicles, the main contributors to pass-by noise are tires and in-wheel motors. Considering that, a contribution of each of these two sources of noise to pass-by noise will be described. Tire noise sources and motor noise sources will be replaced by simple monopole sources. The best monopole source location for both tires and motors is discussed. Actran vibro-acoustic Finite Element
When an emergency vehicle is approaching but its blaring siren isn't heard by nearby motorists, all are at risk. Engineers at Harman International have developed novel sensor technology that detects both the sound and its direction, in effect piping that screaming siren into vehicles so-equipped, to alert the driver. “What we're in essence doing is turning the vehicle into a giant microphone,” Mitul Jhala, senior director of automotive embedded audio for Harman, explained in an SAE Media interview
A new auditory sensor will be useful for healthcare devices that diagnose respiratory diseases. The skin-attachable device will also be useful as a sensor in microphones to aid in facilitating communication in disaster situations. It can clearly detect voices even in harsh noisy environments
Smart speakers have proven adept at monitoring certain healthcare issues at home including detecting cardiac arrest or monitoring babies’ breathing. Now, the speakers can be used to track the minute motion of individual heartbeats in a person sitting in front of the speaker
Technology for automotive active noise cancellation (ANC) such as HARMAN’s Engine Order Cancellation (EOC) system help reduce in-cabin noise levels using a set of error microphones and the vehicle’s built-in audio system to generate anti-noise signals. A major benefit of these systems is that significant reduction in unwanted noise levels in the 20 - 400 Hz range can be achieved without the addition of extra noise control material. However, in the instances where the frequencies of anti-noise signals and music signals overlap, a degradation in the overall music reproduction quality is possible. In this paper, we study the effects of EOC on music playback by applying signal processing and statistical methods to objectively measure degradation in audio content when EOC is active. This study is carried out using production EOC software in a simulation environment. The simulation models the cabin acoustic response from measured vehicles and uses recordings of vehicle noise and music as
This paper presents experimental investigations of determining and analyzing low-frequency, low-SNR (Signal to Noise Ratio) noise sources of an automobile by using a new technology known as Sound Viewer. Such a task is typically very difficult to do especially at low or even negative SNR. The underlying principles behind the Sound Viewer technology consists of a passive SODAR (Sonic Detection And Ranging) and HELS (Helmholtz Equation Least Squares) method. The former enables one to determine the precise locations of multiple sound sources in 3D space simultaneously over the entire frequency range consistent with a measurement microphone in non-ideal environment, where there are random background noise and unknown interfering signals. The latter enables one to reconstruct all acoustic quantities such as the acoustic pressure, acoustic intensity, time-averaged acoustic power, radiation patterns, etc. By combining a passive SODAR and modified HELS methods, engineers will be able to
Ear infections occur when fluid builds up in the middle ear behind the eardrum and is infected. This buildup is also common in another condition called otitis media with effusion. Any kind of fluid buildup can be painful and make it hard for children to hear. A new smartphone app can detect fluid behind the eardrum by simply using a piece of paper and a smartphone’s microphone and speaker
The extreme low-frequency infrasonic hydrophone, with associated software, is capable of sensing down to .0001 Hz — a 4.999-Hz improvement from current similar systems. This ultra-low-power-consuming hydrophone also isolates and removes significant amounts of background noise inherent to the electret-type microphone not previously introduced into hydrophone applications
Researchers have developed an acoustic fabric so sensitive to vibrations that it can detect impacts from microscopic high-velocity space particles. A terrestrial application of these fabrics could be for blast detection and in the future, to act as sensitive microphones for directional gunshot detection
Think about what your cellphone was like 15 years ago. Most likely, it could be used only for telephone calls — no texting, no photos, no videos, and no music. Think about your business trips then with your carry-on bag crammed with a camera, a portable CD player, a travel alarm, maybe a GPS, possibly a tape recorder, a day planner, a calculator, and more
Psychoacoustics parameters are widely employed in automotive field for objective evaluation of Sound Quality (SQ) of vehicle cabins and their components. The standard approach relies on binaural recordings from which numerical values and curves are calculated. In addition, head-locked binaural listening playback can be performed. The Virtual Reality (VR) technology recently started to diffuse also in automotive field, bringing new possibilities for enhanced and immersive listening sessions, thanks to the usage of massive microphone arrays instead of binaural microphones. In this paper, we combine both solutions: the principal SQ parameters are derived from multichannel recordings. This allows computing a map of direction-dependent values of SQ parameters. The acquisition system consists in a spherical microphone array with 32 capsules and a multiple-lens camera for capturing a panoramic equirectangular background image. The audio recording is encoded into High Order Ambisonics (HOA
The woofer in a car should be large to cover the low frequencies, so it is heavy and needs an ample space to be installed in a passenger car. The geometry of the woofer should conform to the limited available space and layout in general. In many cases, the passengers feel that the low-frequency contents are not satisfactory although the speaker specification covers the low frequencies. In this work, a thin panel is installed between the roof liner and the roof panel, and it is used as the woofer. The vibration field is controlled by many small actuators to create the speaker and baffle zones to avoid the sound distortion due to the modal interaction. The generation of speaker and baffle zones follows the inverse vibro-acoustic rendering technique. In the actual implementation, a thin acrylic plate of 0.53x0.2 m2 is used as the radiator panel, and the control actuator array is composed of 16 moving-coil actuators. The shape of the desired speaker zone is an ellipse, and the required
This paper focuses on the analysis and evaluation of acoustical design criteria to produce a plausible 3D sound field solely via headrest with integrated loudspeakers at the driver/passenger seats in the car cabin. Existing audio systems in cars utilize several distributed loudspeakers to support passengers with sound. Such configurations suffer from individual 3D audio information at each position. Therefore, we present a convincing minimal setup focusing sound solely at the passenger’s ears. The design itself plays a critical role for the optimal reproduction and control of a sound field for a specific 3D audio application. Moreover, the design facilitates the 3D audio reproduction of common channel-based, scene-based, and object-based audio formats. In addition, 3D audio reproduction enables to represent warnings regarding monitoring of the vehicle status (e.g.: seat belts, direction indicator, open doors, luggage compartment) in spatial accordance. Furthermore, individual sound
Current developments in the automotive industry such as electrification and consistent lightweight construction increasingly enable the application of active control systems for the further reduction of noise in vehicles. As different stochastic noise sources such as rolling and wind noise as well as noise radiated by the ventilation system are becoming more noticeable and as passive measures for NVH optimization tend to be heavy and construction-space intensive, current research activities focus on active reduction of noise caused by the latter mentioned sources. This paper illustrates the development, implementation and experimental investigation of an active noise control system integrated into the ventilation duct system of a passenger car. Making use of a model-based design process, the development is based upon a holistic numerical simulation model integrating a reduced order acoustic model derived from finite element simulations as well as simplified loudspeaker and microphone
The Mars 2020 mission duplicates most of Curiosity’s entry, descent, and landing (EDL) system and much of its rover design. The mission advances several innovations that include sensors to measure the atmosphere, cameras, and a microphone. Perseverance will have the ability to land in more challenging terrain than Curiosity, making more rugged sites eligible as safe landing candidates
In the air conditioning system, flow-induced noise is very disturbing, including the noise generated in the expansion device and the heat exchangers. In the past few decades, most researches related to flow-induced noise focused on the relationship between the flow regimes near the expansion device and the amplitude of flow-induced noise when the measurements are not synched. In this paper, an experimental approach is used to explore the simultaneous relationships between flow-induced noise characteristics and flow regimes at the inlet of TXV of evaporators used in automobiles. A pumped R134a loop with microphones and transparent visualization sections is used to simulate the vapor compression system. Also, the paper evaluates the severity of flow-induced noise from not only the amplitude of noise but also the frequency of noise with a parameter called psychoacoustic annoyance (PA). One of the most disturbing flow-induced noise types near the TXV is called gurgling noise and
Cadillac has unveiled the 2021 Escalade and will differentiate the full-size SUV from its Tahoe/Yukon platform-mates with a large dose of exclusive technologies including Super Cruise, audio systems from new partner AKG and the industry's slickest display-screen integration. Gaining similar mechanical benefits as its platform siblings, including wheelbase stretches and the new independent rear suspension (IRS) that should improve dynamics along with seating/cargo space, the all-new 2021 Escalade leverages the platform's new digital network architecture (see p.10) to raise the bar for integrated infotainment technology. The 2021 Cadillac Escalade makes use of GM's new GMT T1XX platform that began underpinning its pickup trucks in 2019, and serves as the basis of the upcoming MY2021 Chevy Tahoe/Suburban and GMC Yukon/Yukon XL full-size SUVs. In the fifth generation of Cadillac's longest-running nameplate, this equates to the same notable passenger space and interior volume gains for the
This SAE Recommended Practice provides laboratory test procedures, requirements, and guidelines for electronic siren systems with a single loudspeaker, and electromechanical sirens for use on authorized emergency vehicles, which call for the right-of-way. Test procedures and performance requirements for individual system components are not included in this version. Results obtained for a siren system with a speaker array that is greater than 0.5 m in any dimension shall apply to the system only when the array is in the same spatial configuration as tested (i.e., the same speaker separation and orientation
A paper-thin, flexible device was created that can generate energy from human motion, and can act as a loudspeaker and microphone. The transducer is ultrathin, flexible, scalable, and bidirectional, meaning it can convert mechanical energy to electrical energy, and vice-versa
Items per page:
50
1 – 50 of 112