Browse Topic: Integrated circuits
In the race toward practical quantum computers and networks, photons — fundamental particles of light — hold intriguing possibilities as fast carriers of information at room temperature. Photons are typically controlled and coaxed into quantum states via waveguides on extended microchips, or through bulky devices built from lenses, mirrors, and beam splitters. The photons become entangled — enabling them to encode and process quantum information in parallel — through complex networks of these optical components. But such systems are notoriously difficult to scale up due to the large numbers and imperfections of parts required to do any meaningful computation or networking.
Cornell researchers have developed a low-power microchip they call a “microwave brain,” the first processor to compute on both ultrafast data signals and wireless communication signals by harnessing the physics of microwaves.
Researchers have developed a portable device capable of detecting rare genetic mutations from a single drop of blood. The instrument was shown in lab experiments to quickly and accurately test for a genetic condition called hereditary transthyretin amyloidosis, which can cause heart problems. The disease is caused by a genetic mutation in the transthyretin gene. This mutation can lead to heart failure, especially in people of West African ancestry. The device, which amplifies nucleic acid segments and detects mutations using a microchip aims to bring a device equal to the performance and accuracy of a polymerase chain reaction (PCR) test, typically confined to laboratories, into doctors’ offices, homes, and community centers.
In the race toward practical quantum computers and networks, photons — fundamental particles of light — hold intriguing possibilities as fast carriers of information at room temperature. Photons are typically controlled and coaxed into quantum states via waveguides on extended microchips, or through bulky devices built from lenses, mirrors, and beam splitters. The photons become entangled – enabling them to encode and process quantum information in parallel – through complex networks of these optical components. But such systems are notoriously difficult to scale up due to the large numbers and imperfections of parts required to do any meaningful computation or networking.
Researchers have developed a 3D microprinted sensor for highly sensitive on-chip biosensing. The sensor, which is based on a polymer whispering-gallerymode microlaser, opens new opportunities for developing high-performance, cost-effective lab-on-a-chip devices for early disease diagnosis.
The mass production of conventional silicon chips relies on a successful business model with large “semiconductor fabrication plants” or “foundries.” New research by KU Leuven and imec shows that this “foundry” model can also be applied to the field of flexible, thin-film electronics. Adopting this approach would give innovation in the field a huge boost.
An invention that uses microchip technology in implantable devices and other wearable products such as smart watches can be used to improve biomedical devices including those used to monitor people with glaucoma and heart disease.
In a world grappling with a multitude of health threats — ranging from fast-spreading viruses to chronic diseases and drug-resistant bacteria — the need for quick, reliable, and easy-to-use home diagnostic tests has never been greater. Imagine a future where these tests can be done anywhere, by anyone, using a device as small and portable as your smartwatch. To do that, you need microchips capable of detecting minuscule concentrations of viruses or bacteria in the air.
United States microchip fab plants can cram billions of data-processing transistors onto a tiny silicon chip, but the “clock,” which times the transistors’ operations, must be made separately, which creates a flaw in chip security as well as the supply line. However, a new approach uses commercial chip fab materials and techniques to fabricate specialized transistors to serve as the building block of the timing device.
McGill University researchers have made a breakthrough in diagnostic technology, inventing a ‘lab on a chip’ that can be 3D-printed in just 30 minutes. The chip has the potential to make on-the-spot testing widely accessible.
Smaller than a coin, this optical device could enable rapid prototyping on the go. Massachusetts Institute of Technology, Cambridge, MA Imagine a portable 3D printer you could hold in the palm of your hand. The tiny device could enable a user to rapidly create customized, low-cost objects on the go, like a fastener to repair a wobbly bicycle wheel or a component for a critical medical operation. Researchers from MIT and the University of Texas at Austin took a major step toward making this idea a reality by demonstrating the first chip-based 3D printer. Their proof-of-concept device consists of a single, millimeter-scale photonic chip that emits reconfigurable beams of light into a well of resin that cures into a solid shape when light strikes it.
Lasers developed at the University of Rochester offer a new path for on-chip frequency comb generators. University of Rochester, Rochester, NY Light measurement devices called optical frequency combs have revolutionized metrology, spectroscopy, atomic clocks, and other applications. Yet challenges with developing frequency comb generators at a microchip scale have limited their use in everyday technologies such as handheld electronics. In a study published in Nature Communications, researchers at the University of Rochester describe new microcomb lasers they have developed that overcome previous limitations and feature a simple design that could open the door to a broad range of uses.
Light measurement devices called optical frequency combs have revolutionized metrology, spectroscopy, atomic clocks, and other applications. Yet challenges with developing frequency comb generators at a microchip scale have limited their use in everyday technologies such as handheld electronics.
In recent decades, innovative System-on-Chip (SoC) design has become a critical area of research, driven by emerging trends and complex application demands. SoCs, which integrate analog, digital, and mixed-signal components, along with software, present significant design and verification challenges. Modeling and Simulation constitutes a powerful method for designing and evaluating these complex systems, enabling system designers in concept realization, experimentation, optimization, and validation. This paper introduces a ‘Synergized SoC design flow with Modeling and Simulation’ applied in the design and development of SoC for a radar target emulator application. This synergized flow uniquely integrates system-level modeling and simulation with the traditional SoC design and development process to effectively address design and verification needs. Our approach not only accelerates the SoC design cycle time but also provides a comprehensive framework for future innovations in the SoC
Unsteady pressure fluctuations in launch vehicles can induce aerodynamic instabilities, potentially resulting in vibration, structural fatigue, and even catastrophic failure. These risks undermine structural integrity and jeopardize payload delivery, threatening mission success and crew safety. Therefore, precise measurements of unsteady pressure are vital for understanding dynamic pressure distribution and flow behaviour caused by phenomena like shock waves, vortices, boundary layer interactions, and flow separation. While ground-based wind tunnel tests have conventionally provided these insights, this paper presents an on-board system designed for real-time unsteady pressure data acquisition. The system addresses the challenge of accurately resolving high-frequency pressure variations over very high base pressure values. It can be integrated into re-entry vehicles and stage recovery experiments, providing confidence in acquiring data for complex geometrical shapes. Moreover, the
Automatically controlling equipment, and providing users with visualization of the operation, are two distinct but closely related functions. Specialized microcontrollers or commercial off-the-shelf (COTS) programmable logic controllers (PLCs) are workhorses for implementing control, while a variety of dedicated or PC-based human-machine interface (HMI) options are available.
As the integrated circuits that power our electronic devices get more powerful, they are also getting smaller. This trend of microelectronics has only accelerated in recent years as scientists try to fit increasingly more semiconducting components on a chip.
Developed by engineers at the University of Bath, the prototype LoCKAmp device uses innovative Lab-on-a-Chip technology and has been proven to provide rapid and low-cost detection of COVID-19 from nasal swabs. The research team said the technology could easily be adapted to detect other pathogens such as bacteria — or even conditions like cancer.
Researchers at Delft University of Technology, led by Assistant Professor Richard Norte, have unveiled a remarkable new material with potential to impact the world of material science: amorphous silicon carbide (a-SiC). Beyond its exceptional strength, this material demonstrates mechanical properties crucial for vibration isolation on a microchip. It is therefore particularly suitable for making ultra-sensitive microchip sensors.
A research team has developed diamond quantum sensors that can be used to improve resolution in magnetic imaging. In order to test the method, the scientists placed a microchip with microscopic water-filled channels on the diamond quantum sensor. This allowed the researchers to simulate microstructures of a cell. They were able to successfully analyze the diffusion of water molecules within the microstructure.
Graphene is a two-dimensional carbon material made of carbon by covalent bonds, where carbon atoms are arranged in a honeycomb lattice. Graphene has promising electronic and mechanical properties. There are many processes available for the formation of the graphene. CVD (Chemical Vapor Deposition) process for the formation of graphene over the metal surface is most compatible. Graphene is being investigated for its application in space electronics. In space, there are many irradiation particles and waves like x-rays, gamma rays, alpha particles, and beta particles. Single particle like neutron can create single event upset in electronic devices. Graphene can work as a radiation shielding material. Graphene-metal, graphene and epsilon near zero metamaterials structure can be used for electromagnetic wave absorbent.
Two-dimensional transition metal dichalcogenides (2D-TMDs) have been proposed as novel optoelectronic materials for space applications due to their relatively light weight. MoS2 has been shown to have excellent semiconducting and photonic properties. Here, we report the effect of gamma irradiation on the structural and optical properties of a monolayer of MoS2. Louisiana State University, Baton Rouge, Louisiana Graphene is a two-dimensional carbon material made of carbon by covalent bonds, where carbon atoms are arranged in a honeycomb lattice. Graphene has promising electronic and mechanical properties. There are many processes available for the formation of the graphene. CVD (Chemical Vapor Deposition) process for the formation of graphene over the metal surface is most compatible. Graphene is being investigated for its application in space electronics. In space, there are many irradiation particles and waves like x-rays, gamma rays, alpha particles, and beta particles. Single
Researchers from the Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP) and the Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Groups (IRG) of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, have developed the world’s smallest LED. It enables the conversion of existing mobile phone cameras into high-resolution microscopes. Smaller than the wavelength of light, the new LED was used to build the world’s smallest holographic microscope, paving the way for existing cameras in everyday devices such as mobile phones to be converted into microscopes with modifications to the silicon chip and software. This technology also represents a significant step forward in the miniaturization of diagnostics for indoor farmers and sustainable agriculture.
The challenge faced by flight software engineers at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder became evident when tasked with developing the onboard software for NASA's new Climate Absolute Radiance and Refractivity Observatory (CLARREO) Pathfinder Reflected Solar mission. The goal of measuring Earth-reflected sunlight with an accuracy of 0.3 percent (k=1), surpassing existing sensors by five to tenfold, from an instrument mounted beneath the International Space Station (ISS), produced a complex set of requirements. The avionics needed to balance multiple functions, including a high-rate control law, numerous hard real-time deadlines, interfaces with half a dozen external subsystems, and management of commands, telemetry and fault protection, all while capturing high-resolution science images at 15 frames per second. Ensuring uninterrupted operation within the unforgiving environment of low-Earth orbit necessitated the software run on
Recent advances in the operation of advanced CMOS processes for extremely high-speed and high dynamic range analog-to-digital (ADC) and digital-to-analog (DAC) data converters has led to their use in directly sampling microwave and even millimeter wave signals. Typically, in these applications, minimal pre or post-conditioning stages separate the ADCs and DACs from the antenna or, for Active Electronically Steered Arrays (AESA) antenna elements. This results in an extremely compact and flexible system solution and this has enabled a generation of fully digital phased arrays that are capable of being dynamically reconfigured to perform a multitude of functions.
Recent advances in the operation of advanced CMOS processes for extremely high-speed and high dynamic range analog-to-digital (ADC) and digital-to-analog (DAC) data converters has led to their use in directly sampling microwave and even millimeter wave signals. Typically, in these applications, minimal pre or post-conditioning stages separate the ADCs and DACs from the antenna or, for Active Electronically Steered Arrays (AESA) antenna elements. This results in an extremely compact and flexible system solution and this has enabled a generation of fully digital phased arrays that are capable of being dynamically reconfigured to perform a multitude of functions.
While the promise of smaller, better, faster, lighter devices enabled by integrated photonics technologies is indeed the ultimate goal for the work being done at AIM Photonics, the actual path to high-volume manufacturing isn’t necessarily a smooth ride for photonic integrated circuit (PIC) designers, developers and engineers.
A team at Delft University of Technology has built a new technology on a microchip by combining two Nobel Prize-winning techniques for the first time. This microchip could measure distances in materials at high precision — e.g., underwater or for medical imaging. The work is now published in Nature Communications. Because the technology uses sound vibrations instead of light, it is useful for high-precision position measurements in opaque materials. The instrument could lead to new techniques to monitor the Earth’s climate and human health.
FPGA based electronic systems have the potential to support zeroization and sanitization of sensitive information without resorting to kinetic destruction. However, careful consideration needs to be given to the data remanence effects of both the FPGA and the attached storage media that form a complete system. SRAM, DRAM, and different forms of flash memory all have distinct data remanence characteristics that must be accounted for in the design of zeroization solutions. In this paper, we survey these characteristics across typical FPGA system media types and present a framework to enable the rapid integration of complete zeroization and sanitization capabilities in FPGA systems.
Semiconductor chips, micropatterned surfaces, and electronics all rely on microprinting, the process of putting precise but minuscule patterns millionths to billionths of a meter wide onto surfaces to give them new properties. Traditionally, these tiny mazes of metals and other materials are printed on flat wafers of silicon. But as the possibilities for semiconductor chips and smart materials expand, these intricate, tiny patterns need to be printed on new, unconventional, non-flat surfaces.
A Rutgers-led team of researchers has developed a microchip that can measure stress hormones in real time from a drop of blood. The study appears in the journal Science Advances.
One chip, multiple benefits. That's the claim made by U.S. semiconductor company Qualcomm Technologies Inc. about its new, scalable system-on-a-chip (SoC) product family, called Snapdragon Ride Flex. Unveiled at CES2023 and due to enter the market in early 2024, Snapdragon Flex is the auto industry's first scalable family of SoCs that can run a digital cockpit and ADAS features simultaneously, according to the company. Snapdragon Ride Flex is the latest member of the Snapdragon SoC family. Qualcomm's first-generation Ride Platforms are currently available in commercialized vehicles. Newer generations, which include the Ride Vision stack that can handle ADAS applications, are being tested by Tier 1s. They are expected to arrive on MY2025 vehicles from various OEMs, according to Qualcomm.
Will the U.S. Army's attempt to define a universal framework for modular interoperability stifle industry innovation? Answering the challenge of increasingly complex military systems that are harder to upgrade, the U.S. Army has released a set of open system architecture standards. Ensuring an open and common approach to systems architecture, these are the standards that will define the prototypes being built for operational assessment: Command, Control, Computers, Communications, Cyber, Intelligence, Surveillance and Reconnaissance (C5ISR) C5ISR/EW Modular Open Suite of Standards (CMOSS) CMOSS Mounted Form Factor (CMFF) While these initiatives attempt to define this universal framework for module interoperability, there's a trade-off between mandating commonality and promoting innovation. As the momentum around CMOSS/CMFF builds, how much room will be left to develop innovative new capabilities and business practices?
Items per page:
50
1 – 50 of 873