Browse Topic: Integrated circuits
McGill University researchers have made a breakthrough in diagnostic technology, inventing a ‘lab on a chip’ that can be 3D-printed in just 30 minutes. The chip has the potential to make on-the-spot testing widely accessible
FPGA based electronic systems have the potential to support zeroization and sanitization of sensitive information without resorting to kinetic destruction. However, careful consideration needs to be given to the data remanence effects of both the FPGA and the attached storage media that form a complete system. SRAM, DRAM, and different forms of flash memory all have distinct data remanence characteristics that must be accounted for in the design of zeroization solutions. In this paper, we survey these characteristics across typical FPGA system media types and present a framework to enable the rapid integration of complete zeroization and sanitization capabilities in FPGA systems
Light measurement devices called optical frequency combs have revolutionized metrology, spectroscopy, atomic clocks, and other applications. Yet challenges with developing frequency comb generators at a microchip scale have limited their use in everyday technologies such as handheld electronics
As the integrated circuits that power our electronic devices get more powerful, they are also getting smaller. This trend of microelectronics has only accelerated in recent years as scientists try to fit increasingly more semiconducting components on a chip
Automatically controlling equipment, and providing users with visualization of the operation, are two distinct but closely related functions. Specialized microcontrollers or commercial off-the-shelf (COTS) programmable logic controllers (PLCs) are workhorses for implementing control, while a variety of dedicated or PC-based human-machine interface (HMI) options are available
Unsteady pressure fluctuations in launch vehicles can induce aerodynamic instabilities, potentially resulting in vibration, structural fatigue, and even catastrophic failure. These risks undermine structural integrity and jeopardize payload delivery, threatening mission success and crew safety. Therefore, precise measurements of unsteady pressure are vital for understanding dynamic pressure distribution and flow behaviour caused by phenomena like shock waves, vortices, boundary layer interactions, and flow separation. While ground-based wind tunnel tests have conventionally provided these insights, this paper presents an on-board system designed for real-time unsteady pressure data acquisition. The system addresses the challenge of accurately resolving high-frequency pressure variations over very high base pressure values. It can be integrated into re-entry vehicles and stage recovery experiments, providing confidence in acquiring data for complex geometrical shapes. Moreover, the
In recent decades, innovative System-on-Chip (SoC) design has become a critical area of research, driven by emerging trends and complex application demands. SoCs, which integrate analog, digital, and mixed-signal components, along with software, present significant design and verification challenges. Modeling and Simulation constitutes a powerful method for designing and evaluating these complex systems, enabling system designers in concept realization, experimentation, optimization, and validation. This paper introduces a ‘Synergized SoC design flow with Modeling and Simulation’ applied in the design and development of SoC for a radar target emulator application. This synergized flow uniquely integrates system-level modeling and simulation with the traditional SoC design and development process to effectively address design and verification needs. Our approach not only accelerates the SoC design cycle time but also provides a comprehensive framework for future innovations in the SoC
Developed by engineers at the University of Bath, the prototype LoCKAmp device uses innovative Lab-on-a-Chip technology and has been proven to provide rapid and low-cost detection of COVID-19 from nasal swabs. The research team said the technology could easily be adapted to detect other pathogens such as bacteria — or even conditions like cancer
Researchers at Delft University of Technology, led by Assistant Professor Richard Norte, have unveiled a remarkable new material with potential to impact the world of material science: amorphous silicon carbide (a-SiC). Beyond its exceptional strength, this material demonstrates mechanical properties crucial for vibration isolation on a microchip. It is therefore particularly suitable for making ultra-sensitive microchip sensors
Graphene is a two-dimensional carbon material made of carbon by covalent bonds, where carbon atoms are arranged in a honeycomb lattice. Graphene has promising electronic and mechanical properties. There are many processes available for the formation of the graphene. CVD (Chemical Vapor Deposition) process for the formation of graphene over the metal surface is most compatible. Graphene is being investigated for its application in space electronics. In space, there are many irradiation particles and waves like x-rays, gamma rays, alpha particles, and beta particles. Single particle like neutron can create single event upset in electronic devices. Graphene can work as a radiation shielding material. Graphene-metal, graphene and epsilon near zero metamaterials structure can be used for electromagnetic wave absorbent
Two-dimensional transition metal dichalcogenides (2D-TMDs) have been proposed as novel optoelectronic materials for space applications due to their relatively light weight. MoS2 has been shown to have excellent semiconducting and photonic properties. Here, we report the effect of gamma irradiation on the structural and optical properties of a monolayer of MoS2. Louisiana State University, Baton Rouge, Louisiana Graphene is a two-dimensional carbon material made of carbon by covalent bonds, where carbon atoms are arranged in a honeycomb lattice. Graphene has promising electronic and mechanical properties. There are many processes available for the formation of the graphene. CVD (Chemical Vapor Deposition) process for the formation of graphene over the metal surface is most compatible. Graphene is being investigated for its application in space electronics. In space, there are many irradiation particles and waves like x-rays, gamma rays, alpha particles, and beta particles. Single
A research team has developed diamond quantum sensors that can be used to improve resolution in magnetic imaging. In order to test the method, the scientists placed a microchip with microscopic water-filled channels on the diamond quantum sensor. This allowed the researchers to simulate microstructures of a cell. They were able to successfully analyze the diffusion of water molecules within the microstructure
Researchers from the Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP) and the Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Groups (IRG) of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, have developed the world’s smallest LED. It enables the conversion of existing mobile phone cameras into high-resolution microscopes. Smaller than the wavelength of light, the new LED was used to build the world’s smallest holographic microscope, paving the way for existing cameras in everyday devices such as mobile phones to be converted into microscopes with modifications to the silicon chip and software. This technology also represents a significant step forward in the miniaturization of diagnostics for indoor farmers and sustainable agriculture
Recent advances in the operation of advanced CMOS processes for extremely high-speed and high dynamic range analog-to-digital (ADC) and digital-to-analog (DAC) data converters has led to their use in directly sampling microwave and even millimeter wave signals. Typically, in these applications, minimal pre or post-conditioning stages separate the ADCs and DACs from the antenna or, for Active Electronically Steered Arrays (AESA) antenna elements. This results in an extremely compact and flexible system solution and this has enabled a generation of fully digital phased arrays that are capable of being dynamically reconfigured to perform a multitude of functions
Recent advances in the operation of advanced CMOS processes for extremely high-speed and high dynamic range analog-to-digital (ADC) and digital-to-analog (DAC) data converters has led to their use in directly sampling microwave and even millimeter wave signals. Typically, in these applications, minimal pre or post-conditioning stages separate the ADCs and DACs from the antenna or, for Active Electronically Steered Arrays (AESA) antenna elements. This results in an extremely compact and flexible system solution and this has enabled a generation of fully digital phased arrays that are capable of being dynamically reconfigured to perform a multitude of functions
The challenge faced by flight software engineers at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder became evident when tasked with developing the onboard software for NASA's new Climate Absolute Radiance and Refractivity Observatory (CLARREO) Pathfinder Reflected Solar mission. The goal of measuring Earth-reflected sunlight with an accuracy of 0.3 percent (k=1), surpassing existing sensors by five to tenfold, from an instrument mounted beneath the International Space Station (ISS), produced a complex set of requirements. The avionics needed to balance multiple functions, including a high-rate control law, numerous hard real-time deadlines, interfaces with half a dozen external subsystems, and management of commands, telemetry and fault protection, all while capturing high-resolution science images at 15 frames per second. Ensuring uninterrupted operation within the unforgiving environment of low-Earth orbit necessitated the software run on
A team at Delft University of Technology has built a new technology on a microchip by combining two Nobel Prize-winning techniques for the first time. This microchip could measure distances in materials at high precision — e.g., underwater or for medical imaging. The work is now published in Nature Communications. Because the technology uses sound vibrations instead of light, it is useful for high-precision position measurements in opaque materials. The instrument could lead to new techniques to monitor the Earth’s climate and human health
While the promise of smaller, better, faster, lighter devices enabled by integrated photonics technologies is indeed the ultimate goal for the work being done at AIM Photonics, the actual path to high-volume manufacturing isn’t necessarily a smooth ride for photonic integrated circuit (PIC) designers, developers and engineers
Semiconductor chips, micropatterned surfaces, and electronics all rely on microprinting, the process of putting precise but minuscule patterns millionths to billionths of a meter wide onto surfaces to give them new properties. Traditionally, these tiny mazes of metals and other materials are printed on flat wafers of silicon. But as the possibilities for semiconductor chips and smart materials expand, these intricate, tiny patterns need to be printed on new, unconventional, non-flat surfaces
A Rutgers-led team of researchers has developed a microchip that can measure stress hormones in real time from a drop of blood. The study appears in the journal Science Advances
One chip, multiple benefits. That's the claim made by U.S. semiconductor company Qualcomm Technologies Inc. about its new, scalable system-on-a-chip (SoC) product family, called Snapdragon Ride Flex. Unveiled at CES2023 and due to enter the market in early 2024, Snapdragon Flex is the auto industry's first scalable family of SoCs that can run a digital cockpit and ADAS features simultaneously, according to the company. Snapdragon Ride Flex is the latest member of the Snapdragon SoC family. Qualcomm's first-generation Ride Platforms are currently available in commercialized vehicles. Newer generations, which include the Ride Vision stack that can handle ADAS applications, are being tested by Tier 1s. They are expected to arrive on MY2025 vehicles from various OEMs, according to Qualcomm
Aerospace and defense (A&D) electronic systems are being made smaller but more functional. This is possible because of industry-wide efforts to reduce the size, weight, and power as well as cost (SWaP-C) of electronic components, especially though heterogeneous integration such as by combining analog, digital, and mixed-signal circuits, and components. Intelligent integration can provide A&D systems and subsystems in the forms of system-in-package (SiP) and system-on-chip (SoC) devices that help meet challenging SWaP-C goals without compromising functionality and/or performance. While SiP devices may not provide all SWaP-C solutions, they can help add A&D electronic functionality to a growing number of applications designed to fit smaller sizes, such as portable mission-critical communications and unmanned aerial system (UAS) applications. Integrated circuits (ICs) have historically played important roles in shrinking the size of circuits for A&D systems and many other electronic
Will the U.S. Army's attempt to define a universal framework for modular interoperability stifle industry innovation? Answering the challenge of increasingly complex military systems that are harder to upgrade, the U.S. Army has released a set of open system architecture standards. Ensuring an open and common approach to systems architecture, these are the standards that will define the prototypes being built for operational assessment: Command, Control, Computers, Communications, Cyber, Intelligence, Surveillance and Reconnaissance (C5ISR) C5ISR/EW Modular Open Suite of Standards (CMOSS) CMOSS Mounted Form Factor (CMFF) While these initiatives attempt to define this universal framework for module interoperability, there's a trade-off between mandating commonality and promoting innovation. As the momentum around CMOSS/CMFF builds, how much room will be left to develop innovative new capabilities and business practices
Scientists, including an Oregon State University materials researcher, have developed a better tool to measure light, contributing to a field known as optical spectrometry in a way that could improve everything from smartphone cameras to environmental monitoring
The development of microfluidic systems for lab-on-a-chip (LoC) and organ-on-a-chip (OoC) applications require precise fluid flow control. Typically, on-chip flows are controlled by integrating a microfluidic chip with external pumps that deliver fluid flow at the microscale (typically on the order of mL/min) through the microchannels. To this end, commercially available flow devices such as extrusion syringe pumps, peristaltic pumps, and pneumatic pumps have been widely used
Rohde & Schwarz's (Munich, Germany) R&S ATS1500C automotive radar test chamber now offers a new temperature test option and a new feed antenna. According to the company, these additional features enable temperature-controlled measurements in a wide range, as well as parallel access to both polarizations, increasing test efficiency and flexibility. The ARC-TEMP temperature test supports a range from −40 °C to +85 °C (−40° to 185° F). The heated or cooled air is provided by an external thermal air stream system that supplies the air to the temperature bubble mounted on the positioner. The new ARC-FX90 universal-feed antenna supports 60 GHz to 90 GHz and includes an orthomode transducer, which reportedly enables parallel access to vertical and horizontal polarizations. For more information, visit http://info.hotims.com/84487-400
The Grainger College of Engineering at the University of Illinois at Urbana–Champaign was established in 1868. The department has historically spearheaded worldwide innovation in technology with inventions such as the transistor, the integrated circuit, the LED, the first web browsers (Mosaic and Netscape), and (JavaScript) — all produced by students, faculty, or alumni of the college
Developers of aerospace and defense systems need RF power amplifiers (PAs) to perform much better across both existing and emerging applications such as military 5G and satellite communication. Systems need to meet higher gain targets but not if it comes with any increases in cost and complexity, or size and weight. As systems move to higher-order modulation schemes, they also must deliver adequate linearity and efficiency in an environment that is even more susceptible to distortion than was the case with earlier schemes. Reducing board space is another critical issue that has required challenging peak-to-average power ratio (PAPR) tradeoffs
A research team has developed a new microfluidic chip for diagnosing diseases that uses a minimal number of components and can be powered wirelessly by a smartphone. The University of Minnesota — Twin Cities innovation opens the door for faster and more affordable at-home medical testing
Photonic integrated circuits that use light instead of electricity for computing and signal processing promise greater speed, increased bandwidth, and greater energy efficiency than traditional circuits using electricity. But they’re not yet small enough to compete in computing and other applications where electric circuits continue to reign
AS81969 covers the general requirements for installing and removal tools for use in installing and removing electrical contacts used in connectors and other electrical and electronic components (see section 6
Items per page:
50
1 – 50 of 861