Browse Topic: Radar
ABSTRACT Localization refers to the process of estimating ones location (and often orientation) within an environment. Ground vehicle automation, which offers the potential for substantial safety and logistical benefits, requires accurate, robust localization. Current localization solutions, including GPS/INS, LIDAR, and image registration, are all inherently limited in adverse conditions. This paper presents a method of localization that is robust to most conditions that hinder existing techniques. MIT Lincoln Laboratory has developed a new class of ground penetrating radar (GPR) with a novel antenna array design that allows mapping of the subsurface domain for the purpose of localization. A vehicle driving through the mapped area uses a novel real-time correlation-based registration algorithm to estimate the location and orientation of the vehicle with respect to the subsurface map. A demonstration system has achieved localization accuracy of 2 cm. We also discuss tracking results
ABSTRACT The complex future battlefield will require the ability for quick identification of threats in chaotic environments followed by decisive and accurate threat mitigation by lethal force or countermeasure. Integration and synchronization of high bandwidth sensor capabilities into military vehicles is essential to identifying and mitigating the full range of threats. High bandwidth sensors including Radar, Lidar, and electro-optical sensors provide real-time information for active protection systems, advanced lethality capabilities, situational understanding and automation. The raw sensor data from Radar systems can exceed 10 gigabytes per second and high definition video is currently at 4 gigabytes per second with increased resolution standards emerging. The processing and memory management of the real time sensor data assimilated with terrain maps and external communication information requires a high performance electronic architecture with integrated data management. GDLS has
Automotive radar plays a crucial role in object detection and tracking. While a standalone radar possesses ideal characteristics, integrating it within a vehicle introduces challenges. The presence of vehicle body, bumper, chassis, and cables in proximity influences the electromagnetic waves emitted by the radar, thereby impacting its performance. To address these challenges, electromagnetic simulations can guide early-stage design modifications. However, operating at very high frequencies around 77GHz and dealing with the large electrical size of complex structures demand specialized simulation techniques to optimize radar integration scenarios. Thus, the primary challenge lies in achieving an optimal balance between accuracy and computational resources/simulation time. This paper outlines the process of radar vehicle integration from an electromagnetic perspective and demonstrates the derivation of optimal solutions through RF simulation
Southwest Research Institute has developed off-road autonomous driving tools with a focus on stealth for the military and agility for space and agriculture clients. The vision-based system pairs stereo cameras with novel algorithms, eliminating the need for LiDAR and active sensors
Researchers at the University of California, Davis, have developed a proof-of-concept sensor that may usher in a new era for millimeter wave radars. They call its design a “mission impossible” made possible
Phased array radar technology has been gaining popularity since its initial introduction in the 1960s and is now being used in a variety of applications, from military and defense to civilian sectors and even space exploration. This cutting-edge technology has revolutionized radar systems by offering unparalleled flexibility, precision, and speed. At the heart of phased array radar lies a sophisticated antenna system composed of numerous individual elements, each capable of independently emitting and receiving radio waves. Unlike traditional radar systems that rely on mechanically rotating antennas, phased array radars electronically steer their beams, enabling rapid and precise target acquisition. This breakthrough is made possible by meticulously controlling the phase of radio waves emitted from each antenna element
Radio frequency (RF) and microwave signals are integral carriers of information for technology that enriches our everyday life – cellular communication, automotive radar sensors, and GPS navigation, among others. At the heart of each system is a single-frequency RF or microwave source, the stability and spectral purity of which is critical. While these sources are designed to generate a signal at a precise frequency, in practice the exact frequency is blurred by phase noise, arising from component imperfections and environmental sensitivity, that compromises ultimate system-level performance
Traditional autonomous vehicle perception subsystems that use onboard sensors have the drawbacks of high computational load and data duplication. Infrastructure-based sensors, which can provide high quality information without the computational burden and data duplication, are an alternative to traditional autonomous vehicle perception subsystems. However, these technologies are still in the early stages of development and have not been extensively evaluated for lane detection system performance. Therefore, there is a lack of quantitative data on their performance relative to traditional perception methods, especially during hazardous scenarios, such as lane line occlusion, sensor failure, and environmental obstructions. We address this need by evaluating the influence of hazards on the resilience of three different lane detection methods in simulation: (1) traditional camera detection using a U-Net algorithm, (2) radar detections using infrastructure-based radar retro-reflectors (RRs
Behrooz Rezvani, founder and CEO of Neural Propulsion Systems, cuts to the chase quickly. “We can improve the performance of any radar and help it see clearer, farther and sooner,” he said. Using a mathematical framework initially discussed in an MIT research paper 14 years ago, Rezvani says his company can take any manufacturer's radar unit and help it: Increase resolution by a factor of 10 for two-dimensional imaging Suppress 10 times the number of false positives Detect targets at twice the current distance with a lidar-like point-cloud density Differentiate notoriously difficult targets, such as pedestrians walking or standing next to parked vehicles NPS Executive Consultant Lawrence Burns, the former head of GM research and development, has seen plenty of advancements during deep involvement with the development of night vision and adaptive cruise control. But he always knew existing radar systems were not yet the answer for the future needs of hands-free driving and other
Northrop Grumman Corporation is developing AN/APG-85, an advanced Active Electronically Scanned Array (AESA) radar for the F-35 Lightning II. Northrop Grumman currently manufactures the AN/APG-81 active electronically scanned array (AESA) fire control radar, the cornerstone to the F-35 Lightning II’s sensor suite
Raytheon Arlington, VA 202-384-2474
Researchers have created a device that enables them to electronically steer and focus a beam of terahertz electromagnetic energy with extreme precision. This opens the door to high-resolution, real-time imaging devices that are hundredths the size of other radar systems and more robust than other optical systems
Provizio promises its 5D Perception stack can safely compete with expensive lidar sensors at a fraction of the cost. “Safety first” is more than a catchphrase. For sensing company Provizio, it's the only way the transportation industry should introduce autonomous vehicles. In Provizio's view, using AV building blocks - technology such as automatic emergency braking and lane-keep assist - can be valuable in ADAS systems, but they should not be used to drive vehicles until the perception problem has been solved. “It's not that we're skeptical about autonomous driving, it's just that we strongly believe that the industry has taken this wrong path,” Dane Mitrev, machine learning engineer at Provizio, told SAE Media at September 2023's AutoSens Brussels conference. “The industry has looked at things the other way around. They tried to solve autonomy first, without looking at accident prevention and simpler ADAS systems. We are building a perception technology which will first eliminate road
A research team at the Illinois Institute of Technology has for the first time demonstrated the use of a novel control method in a tailless aircraft. The technology allows an aircraft to be as smooth and sleek as possible — making it safer to fly in dangerous areas where radar scans the sky for sharp edges
Synthetic Aperture Radar (SAR) images are a powerful tool for studying the Earth’s surface. They are radar signals generated by an imaging system mounted on a platform such as an aircraft or satellite. As the platform moves, the system emits sequentially high-power electromagnetic waves through its antenna. The waves are then reflected by the Earth’s surface, re-captured by the antenna, and finally processed to create detailed images of the terrain below
It is hard to imagine an industry more reliant on seamless, resilient, and secure communication than aerospace and defense (A&D). Communication and electromagnetic signal processing are at the core of advanced systems, which is why the trend towards higher frequencies (and millimeter waves) makes optoelectronic signal transmission a critical topic in this sector as technology advances at a rapid pace and demands better performance. A&D communication networks use a mix of digital and analog transmission, with emphasis on the former, but given the industry's proclivity towards lower latency and higher bandwidth applications, analog transmission will play an even larger role in the future. Passive and active electromagnetic sensing (e.g., radar, radio telescopes, and other listening devices) requires high fidelity signal transport for “remote” processing. It brings transport of radio frequency signals over fiber (RFoF) to the forefront, which is an analog technique of converting radio
Radio is a well-established technology. For over 100 years, it has been widely used: in communication, radar, navigation, remote control, remote sensing, and other respects. It is popular because it works; it is reliable. And yet laser has shown itself to be a superior medium of communication. Indeed, the laser-vs-radio debate is already getting old. What is new – and what will truly change the debate – are the transformations currently taking place in laser telecommunications – transformations which will drive innovation in defense
Radio is a well-established technology. For over 100 years, it has been widely used: in communication, radar, navigation, remote control, remote sensing, and other respects. It is popular because it works; it is reliable. And yet laser has shown itself to be a superior medium of communication. Indeed, the laser-vs-radio debate is already getting old. What is new - and what will truly change the debate - are the transformations currently taking place in laser telecommunications - transformations which will drive innovation in defense. It is perhaps worth pausing to remind ourselves of what laser's existing advantages over radio are. Laser communications offer faster data transfer, and greater data capacity. And by virtue of their structure and size, lasers are almost impossible to detect, intercept, or jam. Interference is also rare. Lasers do not ‘leak’ in the same way radio does, and, as against the broad transmission style of radio, they transfer information along a very narrow beam
An extensive evaluation of the Deep Image Prior (DIP) technique for image inpainting on Synthetic Aperture Radar (SAR) images. Air Force Research Laboratory, Wright Patterson Air Force Base, OH Synthetic Aperture Radar (SAR) images are a powerful tool for studying the Earth's surface. They are radar signals generated by an imaging system mounted on a platform such as an aircraft or satellite. As the platform moves, the system emits sequentially high-power electromagnetic waves through its antenna. The waves are then reflected by the Earth's surface, re-captured by the antenna, and finally processed to create detailed images of the terrain below. SAR images are employed in a wide variety of applications. Indeed, as the waves hit different objects, their phase and amplitude are modified according to the objects' characteristics (e.g., permittivity, roughness, geometry, etc.). The collected signal provides highly detailed information about the shape and elevation of the Earth's surface
Kongsberg Defence & Aerospace selected a radar test setup from Rohde & Schwarz based on the R&S SMW200A vector signal generator for multi-channel phase-coherent radar signal generation. Kongsberg is Norway’s premier supplier of defense and aerospace-related technologies. The joint strike missile (JSM) is a fifth generation long range precision strike missile. Using advanced sensors, the JSM can locate targets based on their electronic signature. Qualification of the JSM is under way with the Royal Norwegian Air Force (RNoAF
Kongsberg Defence & Aerospace selected a radar test setup from Rohde & Schwarz based on the R&S SMW200A vector signal generator for multi-channel phase-coherent radar signal generation. Kongsberg is Norway's premier supplier of defense and aerospace-related technologies. The joint strike missile (JSM) is a fifth generation long range precision strike missile. Using advanced sensors, the JSM can locate targets based on their electronic signature. Qualification of the JSM is under way with the Royal Norwegian Air Force (RNoAF). Kongsberg's JSM must operate autonomously in highly contested environments. To increase mission success, the missile has a passive RF sensor that can locate and identify radio frequency emitters. To test and verify this RF direction finding capability in a laboratory, Kongsberg required a multi-channel phase coherent vector signal generator that could be linked to existing test environments
Boeing San Antonio, TX 572-522-7508
The Current Icing Product (CIP; Bernstein et al. 2005) and Forecast Icing Product (FIP; Wolff et al. 2009) were originally developed by the United States’ National Center for Atmospheric Research (NCAR) under sponsorship of the Federal Aviation Administration (FAA) in the mid 2000’s and provide operational icing guidance to users through the NOAA Aviation Weather Center (AWC). The current operational version of FIP uses the Rapid Refresh (RAP; Benjamin et al. 2016) numerical weather prediction (NWP) model to provide hourly forecasts of Icing Probability, Icing Severity, and Supercooled Large Drop (SLD) Potential. Forecasts are provided out to 18 hours over the Contiguous United States (CONUS) at 15 flight levels between 1,000 ft and FL290, inclusive, and at a 13-km horizontal resolution. CIP provides similar hourly output on the same grid, but utilizes geostationary satellite data, ground-based radar data, Meteorological Terminal Air Reports (METARS), lightning data, and voice pilot
Items per page:
50
1 – 50 of 894