Browse Topic: Semiconductor devices
This ARP covers three common light sources, incandescent, electroluminescent and light emitting diode that, when NVG filtered, can be used to illuminate NVG compatible aerospace crew stations. It is recognized that many other different light sources can also be used for this purpose. Also see 2.1.1 for other SAE documents that cover particular applications within the crew station environment. This ARP sets forth recommendations for the design of NVG compatible lighting, utilizing these light sources, that will meet the requirements of MIL-L-85762 Lighting, Aircraft, Interior, Night Vision Imaging System (NVIS) Compatible. This also includes the replacement document MIL-STD-3009: Lighting, Aircraft, Night Vision Imaging System (NVIS) Compatible. Although this ARP concentrates on lamp light sources for illumination, the information contained within this ARP may be directly applied to incandescent, electroluminescent and light emitting diode information display devices. Regardless of the
ABSTRACT Silicon carbide (SiC) semiconductor devices offer several advantages to power converter design when compared with silicon (Si). An increase in power density can be achieved with SiC thanks to the reduced conduction and switching losses and to the ability to withstand higher temperatures [1]. The main system level benefits of using SiC devices on mobile hybrid power systems include large reductions in the size, weight, and cooling of the power conditioning. In this paper, the authors describe the Wide-bandgap-enabled Advanced Versatile Energy System (WAVES) with a focus on the design and testing of a SiC prototype of a WAVES power inverter. The prototype is a 10 kW three-phase AC/DC inverter that is air-cooled, IP-67 rated, bi-directional, operates down to a power factor of 0.4, and designed to have overload capability up to 350% for up to 250µs of nominal rating. Because the inverter is bidirectional, it may be used as an AC input to DC output battery charger or as a DC input
ABSTRACT Silicon carbide (SiC) semiconductor devices have demonstrated promise in increasing power density by offering reduced continuous and switching losses compared to traditional silicon (Si) semiconductors. SiC can also withstand higher temperatures than Si devices. This presents an opportunity to achieve higher power density for vehicle inverters by using SiC. In this work, we describe the design and testing of a prototype SiC three-phase inverter that can achieve higher temperatures and power density than any off-the-shelf offerings, while fitting in a package roughly the size of a shoebox. This will enable future ground vehicle platforms to deliver greater power without needing to increase space claim or vehicle-level cooling compared to traditional Si inverters, enabling greater capabilities for a given platform to support future Warfighter capabilities (such as directed energy weapons, silent mobility, high power radar/communications/jamming on-the-move, and vehicle to grid
Unsteady pressure fluctuations in launch vehicles can induce aerodynamic instabilities, potentially resulting in vibration, structural fatigue, and even catastrophic failure. These risks undermine structural integrity and jeopardize payload delivery, threatening mission success and crew safety. Therefore, precise measurements of unsteady pressure are vital for understanding dynamic pressure distribution and flow behaviour caused by phenomena like shock waves, vortices, boundary layer interactions, and flow separation. While ground-based wind tunnel tests have conventionally provided these insights, this paper presents an on-board system designed for real-time unsteady pressure data acquisition. The system addresses the challenge of accurately resolving high-frequency pressure variations over very high base pressure values. It can be integrated into re-entry vehicles and stage recovery experiments, providing confidence in acquiring data for complex geometrical shapes. Moreover, the
A multi-institutional project led by a Penn State researcher is focused on developing an all-in-one semiconductor device that can both store data and perform computations. The project recently received $2 million in funding over three years as part of the new National Science Foundation Future of Semiconductors (FuSe) program, a $45.6 million investment to advance semiconductor technologies and manufacturing through 24 research and education projects across the United States
The ability to control light using a semiconductor device could allow low-power, relatively inexpensive sources like LEDs or flashlight bulbs to replace more powerful laser beams in new technologies such as holograms, remote sensing, self-driving cars, and high-speed communication
Semiconductor makers invest significant resources in the development and manufacture of their devices, including packaging and assembly techniques that accommodate their material, mechanical, electrical, reliability, and footprint specifications. They must meet very tight time-to-market windows as cost-effectively as possible
This standard defines the requirements for fully replacing undesirable surface finishes using robotic hot solder dip. Requirements for qualifying and testing the refinished piece parts are also included. This standard covers the replacement of pure tin and Pb-free tin alloy finishes with SnPb finishes with the intent of subsequent assembly with SnPb solder. This dipping is different from dipping to within some distance of the body for the purposes of solderability; solder dipping for purposes other than full replacement of pure tin and Pb-free tin alloy finishes are beyond the scope of this document. It covers process and testing requirements for robotic dipping process and does not cover semi-automatic or purely manual dipping processes. This standard does not apply to piece-part manufacturers who build piece parts with a hot solder dip finish. It applies to refinishing performed by a robotic hot solder dip service supplier or production facilities at the customer, whenever the intent
“Think production!” Perhaps that advice should be posted on the wall of every design office, R&D lab and advanced technology center in the auto industry. Although obeying that warning is clearly not cost-effective in some instances, others are ostensibly perfect to take their place in volume manufacture. An example is 3D printing (aka additive manufacturing, or AM), but despite a broadening scope that now embraces rapid prototyping and tooling by entire houses, it could do better in series production of auto components, particularly in the new world of EVs. Prof. Peter Wilson of the U.K.'s newly established Institute for Advanced Automotive Propulsion Systems (IAAPS) at the University of Bath, noted the growing adoption of high-speed SiC (silicon carbide) and other wide-band-gap semiconductor devices demonstrates the benefits that 3D printing could have in the production of EV inverters. “SiC devices offer so much opportunity to improve inverter performance,” Wilson said. “But system
This document applies to the development of Plans for integrating and managing COTS assemblies in electronic equipment and Systems for the commercial, military, and space markets; as well as other ADHP markets that wish to use this document. For purposes of this document, COTS assemblies are viewed as electronic assemblies such as printed wiring assemblies, relays, disk drives, LCD matrices, VME circuit cards, servers, printers, laptop computers, etc. There are many ways to categorize COTS assemblies1, including the following spectrum: At one end of the spectrum are COTS assemblies whose design, internal parts2, materials, configuration control, traceability, reliability, and qualification methods are at least partially controlled, or influenced, by ADHP customers (either individually or collectively). An example at this end of the spectrum is a VME circuit card assembly. At the other end of the spectrum are COTS assemblies whose design, internal parts, materials, configuration control
This SAE Recommended Practice applies to functions of motor vehicle signaling and marking lighting devices which use light emitting diodes (LEDs) as light sources. This report provides test methods, requirements, and guidelines applicable to the special characteristics of LED lighting devices. This Recommended Practice is in addition to those required for devices designed with incandescent light sources. This report is intended to be a guide to standard practice and is subject to change to reflect additional experience and technical advances
Silicon is a naturally occurring material commonly used as a semiconductor in electronic devices; however, researchers have exhausted the potential of devices with semiconductors made of silicon only. These devices are limited by silicon’s carrier mobility — the speed at which a charge moves through the material — and indirect bandgap, which limits its ability to release and absorb light
This SAE Recommended Practice identifies graphic symbols used in electrical circuit diagrams. The symbols aid troubleshooting electrical systems
This document is intended for use by designers, reliability engineers, and others associated with the design, production, and support of electronic sub-assemblies, assemblies, and equipment used in AADHP applications to conduct lifetime assessments of microcircuits with the potential for early wearout; and to implement mitigations when required; and by the users of the AADHP equipment to assess those designs and mitigations. This document focuses on the LLM wearout assessment process. It acknowledges that the AADHP system design process also includes related risk mitigation and management; however, this document includes only high-level reference and discussion of those topics, in order to show their relationship to the LLM assessment process
This document covers the general recommendations for cabin lighting in order to provide satisfactory illumination for, but not limited to, commercial transport aircraft: a Boarding and deplaning b Movement about the cabin c Reading d Use of lavatories e Use of work areas f Using stowage compartments, coat rooms, and closets g Using interior stairways and elevators (lifts) h Use of crew rest areas
The solid state power controller (SSPC) is one of the most important power electronic components of the aircraft electrical power distribution (EPS) systems. This paper presents an architecture of the DC SSPC and provides the mitigation techniques for transient voltage overshoot during its turn-off. The high source side inductance carries breaking current (9xnominal current) just before turnoff and induces large voltage transient across the semiconductor devices. Therefore, the stored inductive energy needs to be dissipated in order to prevent semiconductor switches from over-voltage/thermal breakdown. Three different transient voltage suppression (TVS) devices to reduce voltage stress across switches are included in the paper for detail study. The comprehensive comparison of the TVS devices is presented. In addition, the thermal impact of the TVS devices on the semiconductor switches is also analyzed. Later, the transient simulation model of the SSPC is built in LT-Spice and the
To present the results of a survey taken concerning future applications for high-temperature electronics and sensors
This document applies to the development of Plans for integrating and managing electronic components in equipment for the military and commercial aerospace markets; as well as other ADHP markets that wish to use this document. Examples of electronic components, as described in this document, include resistors, capacitors, diodes, integrated circuits, hybrids, application specific integrated circuits, wound components, and relays. It is critical for the Plan owner to review and understand the design, materials, configuration control, and qualification methods of all “as-received” electronic components, and their capabilities with respect to the application; identify risks, and where necessary, take additional action to mitigate the risks. The technical requirements are in Clause 3 of this standard, and the administrative requirements are in Clause 4
The IGBTs are dominantly used in traction inverters for automotive applications. Because the Si-based device technology is being pushed to its theoretical performance limit in such applications during recent years, the gate driver design is playing a more prominent role to further improve the traction inverter loss performance. The conventional gate driver design in traction inverter application needs to consider worst case scenarios which adversely limit the semiconductor devices' switching speed in its most frequent operation regions. Specifically, when selecting the gate resistors, the IGBT peak surge voltage induced by fast di/dt and stray inductance must be limited below the device rated voltage rating under any conditions. The worst cases considered include both highest dc bus voltage and maximum load current. However, the traction inverter operates mainly in low current regions and at bus voltage much lower than the worst case voltage. This paper proposes a low-cost and simple
Items per page:
50
1 – 50 of 188