Browse Topic: Suspension systems
The parametrized twist beam suspension is a pivotal component in the automotive industry, profoundly influencing the ride comfort and handling characteristics of vehicles. This study presents a novel approach to optimizing twist beam suspension systems by leveraging parametric design principles. By introducing a parameter-driven framework, this research empowers engineers to systematically iterate and fine-tune twist beam designs, ultimately enhancing both ride quality and handling performance. The paper outlines the theoretical foundation of parametrized suspension design, emphasizing its significance in addressing the intricate balance between ride comfort and dynamic stability. Through a comprehensive examination of key suspension parameters, such as twist beam profile, material properties, and attachment points, the study demonstrates the versatility of the parametric approach in tailoring suspension characteristics to meet specific performance objectives. To validate the
December is a good time to reflect on the past year - to celebrate successes and consider opportunities for improvement - but it is also an opportune time to look to the future. As I think about the year ahead and appraise the tradeshow landscape that'll provide significant content for this magazine, mobilityengineeringtech.com, our e-newsletters and other multimedia products, none is bigger than Bauma in Munich, Germany, particularly in terms of the global construction and mining vehicle industries. The triennial event will cover an area that's equivalent to 86 soccer fields, according to Stefan Rummel, CEO of Messe München GmbH. Speaking to the press during an October virtual preview of Bauma 2025, which takes place from April 7-13, Rummel said that the number of exhibitors - expected to be about 3,600 - will be closer to the 2019 event versus the post-COVID-19 edition that was pushed back from its usual spring timeslot to the fall of 2022
ABSTRACT A unique laboratory suspension testing capability has been developed which, for the first time, enables rapid evaluation of tracked vehicle suspension components. The testing capability was stood up in the Durability Test Lab (DTL) in conjunction with the materials division, both organizations within GVSC. Testing has been ongoing, and the results of that testing are presented, current to the time of publication. Historically, laboratory component testing has been very limited due to the lack of a capability to provide relevant loading conditions. Previous testing capabilities not only were deficient in their vertical speed capability, but more importantly, lacked the ability to apply the corning forces. Further reasoning and details associated with the development of this test system are presented. This capability was developed as part of an ongoing campaign in the materials division of GVSC. The purpose of this campaign is to demonstrate and establish design standards, and
ABSTRACT Conceptual design of automotive structures has received substantial research attention in recent years in order to speed up vehicle development and innovation. Although several structural optimization methods have been employed in concept design, there still exists lack of efficient design tools to produce initial design shapes with less problem dependency, less computation-intensive analysis and more design flexibility. In this paper, an innovative Computer Aided Engineering (CAE) approach based on an integrated Genetic Algorithms(GA) and Finite Element (FE) optimization system has been studied and implemented for efficient conceptual design of automotive suspension system related structural part. Integration of GA provides the method a great amount of design flexibility and robustness that increases possibility of finding more efficient and innovative design shapes of the structure
ABSTRACT High life cycle costs coupled with durability and environmental challenges of tracked vehicles in South West Asia (SWA) have focused R&D activities on understanding failure modes of track components as well as understanding the system impacts on track durability. The durability limiters for M1 Abrams (M1, M1A1, and M1A2) T-158LL track systems are the elastomeric components. The focus of this study is to review test methodology utilized to collect preliminary data on the loading distribution of a static vehicle. Proposed design changes and path forward for prediction of durability of elastomers at the systems level from component testing will be presented
ABSTRACT This paper addresses some aspects of an on-going multiyear research project of GP Technologies for US Army TARDEC. The focus of the research project has been the enhancement of the overall vehicle reliability prediction process. This paper describes briefly few selected aspects of the new integrated reliability prediction approach. The integrated approach uses both computational mechanics predictions and experimental test databases for assessing vehicle system reliability. The integrated reliability prediction approach incorporates the following computational steps: i) simulation of stochastic operational environment, ii) vehicle multi-body dynamics analysis, iii) stress prediction in subsystems and components, iv) stochastic progressive damage analysis, and v) component life prediction, including the effects of maintenance and, finally, iv) reliability prediction at component and system level. To solve efficiently and accurately the challenges coming from large-size
ABSTRACT Model based design techniques are being used increasingly to predict vehicle performance before building prototype hardware. Tools like ADAMS and Simulink enable very detailed models of suspension components to be developed so vehicle performance can be accurately predicted. In creating models of vehicle systems, often there is a question about how much component detail or model fidelity is required to accurately model system performance. This paper addresses this question for modeling shock absorber performance by comparing a low fidelity and high fidelity shock absorber model. A high fidelity and low fidelity mathematical model of a shock absorber was developed. The low fidelity shock absorber model was parameterized according to real shock absorber hardware dimensions. Shock absorber force vs. velocity curves were calculated in Simulink. The results from the low fidelity and high fidelity model were compared to shock absorber force vs. velocity test results. New vehicle
ABSTRACT The need for up-armored vehicles has increased over the years. This has put a greater emphasis on suspensions that can provide improved ride and handling capabilities while facing the additional weight. One of the challenges with these vehicles traditionally has been increased likelihood of rollover. Increased rollover is due to high center of gravity, kinematics of the overloaded suspension, and the low damping that is needed to satisfy 6-Watt ride speed performance criteria. The Lord magneto-rheological (MR) suspension system addresses these issues by improving the ride quality and handling characteristics thereby increasing safety and mission effectiveness. During handling maneuvers, algorithms inside the controller unit apply corrective forces to minimize peak roll angle and peak roll rate. The benefit of this has been tested on a vehicle comparing the stock passive dampers to the MR dampers over NATO Lane change events. Furthermore, the controller has the capability to
ABSTRACT GenShock is an energy-harvesting, semi-active shock absorber. The device converts vertical travel of a vehicle suspension system to useful electricity. On defense platforms, this power ranges from a few hundred watts to several kilowatts. Conventional shock absorbers provide damping by dissipating suspension energy as heat, while GenShock provides damping by generating electricity. For an internal combustion engine (ICE) vehicle, the energy harvested by GenShock is used for reducing alternator load. The energy can also be conditioned for battery charging to address vehicle hotel loads. GenShock is also semi-active capable, in which each unit can stiffen or loosen in concert with the terrain, vehicle speed and load conditions for improved maneuverability. This paper presents a characterization of GenShock technology in its form and function of a direct replacement shock absorber that has regenerative and semi-active capabilities
ABSTRACT Reconnaissance of distant targets with long reaching sensor technology demands a stable platform upon which to operate. Traditionally this requires vehicles deploying mast mounted sensors to remain stationary while collecting data. Pairing electronically controlled active Electromechanical Suspension System (EMS) technology developed by The University of Texas Center for Electromechanics (UT-CEM) with current reconnaissance vehicle platforms creates highly mobile intelligence gathering systems capable of operating on the move over rough and unimproved terrain. This report documents the establishment of criteria by which to judge sensor platform stabilizing performance of EMS and then uses these metrics to evaluate performance improvements over conventional passive vehicles. Based on this analysis it may be possible to operate effectively over cross-country terrains at speeds of 10 to 15 mph while collecting useful reconnaissance data
ABSTRACT Vehicle prognostics are used to estimate the remaining useful life of components or subsystems, based on measured vehicle parameters. This paper presents an overview of a vehicle prognostic system, including the critical tasks associated with configuring such a system. The end user of a vehicle prognostic system focuses on the reports generated by the system that provide indications of vehicle readiness, condition and remaining useful life. These reports are based on measurements recorded from sensors on the vehicle and analyzed either on the vehicle or remotely by a “back office” information management system; the latter also provides usage severity trends. To implement such a system, an engineer must first define the vehicle components of interest and determine “damage correlates”: the relationship between damage occurring on key component(s) and key vehicle parameters that can be obtained from vehicle “bus data”. These “damage correlates” and the associated analysis methods
Abstract Active and semi-active suspension systems are mechatronic systems that require a disciplined approach to synergistically combine the traditional engineering fields of mechanical, electronic, controls, power, systems, automotive, and suspension. Integrating suspension design is particularly challenging because it strongly interfaces with safety issues and driver perceptions, which are not easily optimized. Since 1993, the University of Texas Center for Electromechanics (UT-CEM) has successfully developed high performance active suspension technology and systems for a wide range of military vehicles, including small tactical trucks (e.g., HMMWV), medium tactical trucks (e.g., LMTV), and hybrid electric tanks (e.g., BAE’s Lancer prototype). In addition to developing active suspension technology, UT-CEM has developed, refined, and validated an integrated simulation based design approach for controlled suspension systems that is the topic of this paper
Abstract RedRAVEN is a pioneered autonomous robot utilizing the innovative Linked-Bogie dynamic frame, which minimizes platform tilt and movement, and improves traction while maintaining all the vehicle’s wheels in contact with uneven surfaces at all times. Its unique platform design makes the robot extremely maneuverable since it allows the vehicle’s horizontal center of gravity to line up with the center of its differential-drive axle. Where conventional differential-drive vehicles use one or more caster wheels either in front or in the rear of the driving axle to balance the vehicle’s platform, the Linked-Bogie design utilizes caster wheels both in the front and in the rear of the driving axle. Without using any springs or shock absorbers, the dynamic frame allows for compensation of uneven surfaces by allowing each wheel to move independently. The compact and lightweight ground vehicle also features a driving-wheel neutralizing mechanism, a rigid aluminum frame, and a translucent
ABSTRACT This paper discusses the semi-active suspension system developed by A.M. General to provide mobility and maneuverability for tactical, wheeled vehicles
With the advent of electric and hybrid drivetrain in the commercial vehicle industry, electrically driven reciprocating compressors have gained widespread prominence. This compressor provides compressed air for key vehicle systems such as brakes, suspension systems and other auxiliary applications. To be a market leader, such an E-compressor needs to meet a myriad of design requirements. This includes meeting the performance by supplying air at required pressure and flow rate, durability requirements and having a compact design while maintaining cost competitiveness. The reed valve in such a compressor is a vital component, whose design is critical to meet the aforementioned requirements. The reed valves design has several key parameters such as the stiffness, natural frequency, equivalent mass, and lift distance which must be optimized. This reed valve also needs to open and close rapidly in response to the compressor operating speed. Since it is the order of milliseconds, the valve
Items per page:
50
1 – 50 of 3579