Browse Topic: Anti-roll

Items (71)
A serious problem of public healthcare around the world is the number of road vehicle accidents, every year almost 1,3 million people die and approximately 20 to 50 million people suffer a non-fatal accident because of a road vehicle accident [1]. As a result of that, in 2021 the World Health Organization stated the “The Second Decade of Action for Road Safety”, which the goal is to prevent at least 50% of deaths and injuries due traffic by 2030. To achieve this goal, the automobile companies have invested in technology and products that can enhance vehicle safety. Despite exist some control systems able to reduce roll, and consequently the roll over, such as active suspension, semi-active suspension, and stability control systems, none of them have as main purpose reduce the number of rollovers. The following study aims to examine the effects of an active anti roll bar, to improve the vehicle dynamics during corners and reduce the risk of a rollover by reducing the roll of the sprung
Gomes, Pedro CarvalhoTeixeira, Evandro Leonardo SilvaMorais, Marcus Vinicius GirãoFortaleza, Eugenio Liborio FeitoraSantos Gioria, Gustavo
This research addresses the pivotal role of active anti-roll bars in mitigating vehicle body roll during cornering, thereby enhancing overall stability, maneuverability, and comfort. The proposed approach integrates two distinct control methodologies—a straightforward error proportional controller and a reinforcement learning (RL)-based controller. Each front and rear active anti-roll bar applies a roll-reducing torque computed by the proportional controller during cornering. However, this torque alone proves insufficient in effectively damping roll oscillations induced by road irregularities. The RL-based controller leverages observations encompassing inertial measurement unit data (roll rate, pitch rate, and vertical acceleration), and wheel vertical displacements and employs the roll as a reward signal. This controller calculates two additional corrective torques. These torques are seamlessly incorporated by both front and rear anti-roll bars alongside the proportional controller
Marotta, RaffaeleStrano, SalvatoreTerzo, MarioTordela , Ciro
As a part of an automobile suspension structure, fatigue durability performance of the automotive stabilizer bar linkage is crucial to the safety and reliability of the suspension system. In this study, the modeling and simulation analysis methods of the stabilizer bar linkage were described in detail, especially for the welded positions between the connecting rod and the spherical shells (or sleeves). Based on the equivalent structural stress method and the theory of critical distances, damage values of welded positions in the stabilizer bar linkage were solved. For the spherical shell end, the simulation reproduced the bench test; and for the sleeve end, the analysis approach was determined by comparing in several different modeling ways. Mooney-Rivlin model was adopted to fit the constitutive relationship of rubber material in the bushing. The above methods were applied to predict the fatigue durability performance of the stabilizer bar linkage product, and the effectiveness was
Wang, XuHan, ChaoDeng, Jianjiao
ABSTRACT With the particular passage capability, all-terrain vehicle (ATV) has been widely used for off-road scenarios. In this research, we conduct a lateral sway stability analysis for the suspension mechanism of a general vehicle and establish a mathematical model of static and dynamic stability based on the maximum lateral sway angle and lateral sway acceleration, by considering the combined angular stiffness of independent suspension, angular stiffness of the lateral stabilizer bar and vertical stiffness of tires. 3D point cloud data of a terrain environment is collected using an RGB-Depth camera, and a triangular topography map is constructed. The results in ADAMS show that the proposed stability model can accurately predict the critical tipping state of the vehicle, and the method deployed for real-world terrain modeling and simulation analysis is generalizable for the stability assessment of the interaction between ATV and real-world terrain. Citation: H. Luo, Z. Chen, A
Luo, HaitaoChen, ZhiminNaveen, AryanLi, Bing
The cost of fuels used for automobile are rising in India on account of high global crude oil prices. The fuel cost constitutes major portion of total cost of operation for Heavy commercial vehicles. Hence, the trend is to carry the goods transport through higher payload capacity rigid/straight trucks that offer lower transportation cost per unit of goods transported. This is driving the design of multi-axle heavy trucks that have lift axles. In addition, improved network of highways and road infrastructure is leading to increase in average operating speed of heavy commercial vehicles. It has made increased focus on occupant as well as road safety while designing the heavy trucks. Hence, the analysis of lift axle suspension from the point of view of vehicle handling and stability is essential. There are two basic kinds of lift axle designs used in heavy commercial vehicles: self-steered lift axle having single tire on each side and non-steered lift axle with dual tires on each side
Vichare, Chaitanya AshokRaval, ChetanPatil, Sudhir
The active suspension system has strong application potential in electric vehicles (EV) due to its superior controllability. However, the feedback delay of vehicle status information will degrade the control performance of active suspension. This paper investigates the multi-objective control of preview active suspension based on forward-looking information perception. An integrated model including the forward-looking system, vehicle dynamics system and control switching system is established. First, a multi-degree-of-freedom vehicle dynamics model including the input-output system is created, then, an LQR active suspension controller is designed, secondly, a pareto solution set with multiple different target solutions is obtained by calculation, finally, a forward-looking preview mode-switching controller that can select different control strategies according to the road conditions ahead is designed. The results show that the controller can intelligently switch the control strategy of
Wan, MaWan, KechangHu, Yiming
Improvements in component/system design is a daily challenge these days, always looking for high performance, reduced mass and low costs. The source for the best fit between these factors, coupled with adequate durability performance, is crucial to the success of a given product and this is what motivates engineering teams around the world. The demand for efficient projects with short deadlines for validation and certification is huge and simulation tools focused on accelerated durability and virtual validation are increasingly being used. When developing a new spring for commercial vehicles, lessons learned from the actual loads applied to the suspension are the “key” to a successful project. The loads/stresses from the ground (vertical loads, lateral loads, longitudinal and braking loads) are quite high and, consequently, relevant to the proper definition of the design of the suspension components. The objective of this work is to describe the main development activities faced during
de Oliveira dos Reis, Rodrigodos Santos, Raphael Otavio Silvade Souza, Vitor Braga FerreiraManenti, Vangelo CardosoLessa, Fabricio FaicalSaveljevas, Igor Rodriguesda Silva Santiago, CaioBanba, Claudio MitsuoPfeifer, Luciano
The new corner-based architecture of electrified road vehicles requires a redesign of vehicle suspension components. The design protocol must satisfy the target parameters derived from dynamics requirements. The roll stiffness of the anti-roll bar is a crucial parameter for the handling performance of a vehicle. During the development of a new suspension, the design of the anti-roll bar needs to be modified. To this aim, two-dimensional beam theory models can quickly provide a preliminary design of this component. However, the simplified models might be inaccurate due to the three-dimensional and complex shapes of the bars. The present study aims to overcome this limitation. An analytical beam model based on the spline description of the bar has been developed, which is accurate even for complex geometries of the bars. Assuming a hollow and closed circular cross-section, the model returns the average diameter and the radial thickness needed to achieve the stiffness performance. Three
Chiari, AlessandroMantovani, SaraSkrickij, ViktorBoulay, Emilie
The objective of the study was to evaluate the quasi-static and fatigue performance of automotive anti-roll bars (ARBs) under extreme environmental conditions. Flexural quasi-static and fatigue tests of SAE 1040 steel were conducted above and below the ductile-to-brittle transition temperature (DBTT) in flexure and compared with their room temperature performance. The flexural strength increased by decreasing the temperature to −40°C. The fatigue lives are determined for stress levels of 87%, 60%, and 30% of their flexural strength under displacement mode in constant amplitude loading. Experimental stress versus the number of cycles (S-N) curves of SAE 1040 steel state that all tube specimens have fatigue limits that were more than 100,000 cycles at −40°C. The fatigue life of the SAE 1040 tube exhibited infinite life below the ductile-to-brittle transition (DBT). The finite element (FE) model of ARB was used to determine the quasi-static strength, as well as in the calculation of
Bhanage, AmolKrishnan, Padmanabhan
A single-vehicle crash involving an SUV led to the study of the failure of the anti-sway bar linkage and tire pressure and their relative effects on the handling characteristics of the vehicle. The SUV, having been involved in a rollover, was found with the anti-sway bar drop link disconnected from the suspension lower A-arm assembly. Also, after the crash, the tire pressure in the front tires on the subject vehicle was measured to be above the value specified by the SUV manufacturer; however, the pressure for one of the rear tires was measured to be roughly half of the SUV manufacturer’s recommended pressure. The other rear tire was deflated. The testing described herein addresses the question of what effects the anti-sway bar drop link disconnection or reduced rear axle tire pressure would have on the SUV’s pre-accident handling and driveability. A procedure for evaluating vehicle understeer and oversteer characteristics as specified by SAE J266 was employed to evaluate the yaw and
Dunn, AshleyGuenther, DennisArnett, Michael
Roll stability is an important attribute which must be accounted for in heavy trucks. In order to analyze the anti-roll performance of the suspension in the early period of development, engineers will generally use Multi Body Dynamics (MBD) simulation software which can save time in the product development cycle. However, air suspension employs levelling valves to adjust the height by charging and discharging air springs. The air spring is typically modeled as a closed container in the simulation; the stiffness change of the air spring caused by the levelling valve is not considered. In this paper, an air suspension with levelling valves model integrated into the multi-body dynamic model of a 6�4 heavy truck is built with a co-simulation technique to investigate the influence of three types of levelling valves arrangement on the roll performance of the suspension under two typical conditions. Type 1 air suspension is equipped with two levelling valves which are respectively arranged on
Yin, KangHuang, YuShangguan, WenbinZhen, RanWang, MinghuiJiang, Yongfeng
The anti-roll bar is an important structural component of the automobile, which can effectively prevent the automobile from rolling and improve the safety of the automobile during steering. In the design of the current anti-roll bar, the stiffness is determined by empirical or oversimplified mathematical models, often not reaching the optimal value. In this paper, eight parameters are used to determine the structure of the anti-roll bar. Combining the Deformation Energy theorem and Castigliano’s theorem, a mathematical model of the stiffness is established. The optimal solution and corresponding parameter values of the mathematical model are obtained by nonlinear programming and genetic algorithm. The influence of structural parameters on the anti-roll bar stiffness is analyzed, and the regular pattern of design is obtained. In addition, the finite element method is used to verify the stiffness solution model. In the experiment, the anti-roll bar designed by the regular pattern is
Wang, ZhenyuGuo, DonghuaWang, HaoyuTan, GangfengJiang, YifengLi, MingHou, Xiaoge
Aiming at improving safety (anti-roll performance) with consideration of ride comfort of vehicles during cornering and over road irregularities, magnetorheological (MR) fluid-based semi-active anti-roll bar is investigated in this article. The vehicle roll model with both roll stiffness and roll damping of the vehicle body influenced by the MR anti-roll bar is established to analyze the impact of the torsional stiffness and torsional damping. Combining with the Pareto front of the lateral load transfer ratio (LTR) of the front axle, the optimal roll stiffness and roll damping of a vehicle are determined, and correspondingly the torsional stiffness and torsional damping of the anti-roll bar are determined. And then the mathematical model and multibody dynamic model of the anti-roll bar are established, and the simulation of the MR semi-active anti-roll bar model is carried out via MATLAB/Simscape Multibody. CarSim vehicle model equipped with the MR anti-roll bar is built and a fuzzy
Tang, ChaoBai, Xian-XuXu, Shi-Xu
This article presents a robustness analysis study for the model reference controller (“MRC”) of active suspension system. The MRC employs both suspension look-ahead preview and wheelbase preview concepts. The methodology of the MRC is based on the ideal hybrid skyhook-groundhook scheme. A 13 degree of freedom full vehicle model is developed and validated. The engine mass, driver seat, and anti-roll bar are considered in the model. The MRC strategy uses eight proportional-integral-derivative (PID) controllers for both body and wheel control. A gradient based on optimization algorithm is applied to obtain the controller parameters using a cost function including both ride comfort and road holding performance. The robustness analysis of the controller is performed by evaluating the MRC controller performance under different driving conditions, including different road profiles, different vehicle speeds, and different vehicle loading. Furthermore, the effect of the variable design
Kaldas, Mina M.Soliman, Aref M.A.Abdallah, Sayed A.Amien, Fomel F.
The active anti-roll bar (AARB) system in vehicles has recently become one of the research hotspots in the field of vehicle technology to improve the vehicle’s active safety. In most off-road vehicles, high ground clearance is required while keeping all wheels in contact with the ground in order to improve traction and maintain load distribution among the wheels. A problem however arises in some types of the off-road vehicles when the vehicle is operated at high speeds on smooth roads. In such condition, the combination of the vehicle’s center of gravity position, large suspension stroke, and soft spring construction creates a stability problem, which could make the vehicle liable to rollover. This article analyzes a comparison of stability performance between passive and active anti-roll bar systems to improve rolling resistance. For active systems, two control strategies will be investigated. The conventional Proportional Integral Derivative (PID) controller is firstly investigated
Khalil, Mohamed MostafaAtia, Mostafa R.A.Mabrouk, Mohamed H.
There are many variables involved in the design of a front suspension, such as hardpoints' coordinates, steering geometry or even an anti-roll bar, which could make design difficult and time consuming. The MacPherson strut, due to the simplicity of its construction, less occupied space and low manufacturing cost, is widely used in vehicles in contrast to double wishbone and multi-link suspensions. Although its tuning process still demands time, it can be done with the aid of multibody dynamics simulations, by testing several configurations in a virtual way. In this work, a front suspension model with MacPherson strut is studied, so that the influence of variation of its parameters is analyzed in its elastokinematics behavior and in handling performance of a vehicle
Morales, Eduardo Domingo
This study presents a hybrid optimization approach of TOPSIS-based Taguchi method and entropy measurement for the determination of the optimal suspension parameters to achieve an enhanced compromise among ride comfort, road friendliness which means the extent of damage exerted on the road by the vehicles, and handling stabilities of a self-dumping truck. Firstly, the full multi-body dynamic vehicle model is developed using software ADAMS/Car and the vehicle model is then validated through ride comfort road tests. The performance criterion for ride comfort evaluation is identified as root mean square (RMS) value of frequency weighted acceleration of cab floor, while the road damage coefficient is used for the evaluation of the road-friendliness of a whole vehicle. The lateral acceleration and roll angle of cab were defined as evaluation indices for handling stability performance. The spring stiffness and shock absorber damping of the front suspension, spring stiffness of the rear
Jiang, RongchaoWang, Dengfeng
Development of a passive anti-pitch anti-roll hydraulically interconnected suspension (AAHIS) with the advantage of improving vehicle directional stability and handling quality is presented. A 7 degrees-of-freedom full car model and a 20 degrees-of-freedom anti-pitch anti-roll hydraulically interconnected suspension model dynamically coupled together through boundary conditions are developed and used to evaluate vehicle handing dynamic responses under steering/braking maneuvers. The modeling of mechanical subsystem is established based on the Newton’s second law and the fluid subsystem is modelled using a nonlinear finite-element approach. A motion-mode energy method (MEM) based on the calculation of the motion-mode energy is employed to investigate the effects of an anti-pitch anti-roll hydraulically interconnected suspension (AAHIS) system on vehicle body-wheel motion-mode energy distribution. The performance of AAHIS system and its contribution to the vehicle body-wheel motion-mode
Shao, XinxinDu, HaipingNaghdy, Fazel
Vehicle dynamics is the study of response of the vehicle to driver’s input. Various parameters like location of center of gravity (CG), suspension spring stiffness, wheel alignment parameters, etc. determine the handling behavior of the vehicle. This is a study to investigate the effects of aforesaid parameters on handling characteristics of an intercity bus using MSC ADAMS software tool. Handling performance is determined by evaluating various parameters such as understeer gradient, roll gradient, etc. Understeer gradient is influenced by various parameters like location of CG, tire cornering stiffness, etc. Roll gradient of a vehicle depend on various parameters like vertical stiffness of tires, anti-roll bars (ARB) diameter, location of CG, etc. As a part of this study, four different configurations of MBD models were built to investigate the effect of location of ARB on handling behavior of bus. Several vehicle dynamic tests are virtually conducted on the MBD model of the bus. It
Murthy, Santosh ShankaraGowda, Monish M. H.Venna, Hima Kiran
Hydraulic suspension systems with different interconnected configurations can decouple suspension mode and improve performance of a particular mode. In this paper, two types of interconnected suspensions are compared for off-road vehicle trafficability. Traditionally, anti-roll bar, a mechanically interconnected suspension system, connecting left and right suspension, decouples roll mode from the bounce mode and results in a stiff roll mode and a soft bounce mode, which is desired. However, anti-roll bars fail to connect the front wheel motions with the rear wheels', thus the wheels' motions in the warp mode are affected by anti-roll bars and it results an undesired stiffened warp mode. A stiffened warp mode limits the wheel-ground contact and may cause one wheel lift up especially during off-road drive. In contrast with anti-roll bars, two types of hydraulic suspensions which interconnect four wheels (for two-axis vehicles) can further decouple articulation mode from other modes
Zhou, MinWang, LifuZhang, JieZhang, Nong
In order to improve the handling and stability of a light bus at high speed, a virtual model was established in Adams-Car and its anti-roll bar and bushing parameters were virtually optimized. The tyre mechanical characteristics were firstly tested by using a plate-type tyre tester and the Magic Formula parameters of the tyre were obtained. Then the virtual bus model's handling performance were studied by the simulation of central steering test and steady static circular test. An optimal matching method was put forward. By using genetic algorithm to conduct optimization, the optimised parameters were obtained. After that the anti-roll bar and bushing samples were respectively manufactured. At last, the comparative trials were performed in an automotive proving ground, and the subjective evaluation of the light bus's handling and stability was taken by three specialized assessors. The evaluation result showed that the score of subjective evaluation was 8.6, which was 31% higher than the
Shi, WenkuWang, ChangxinLi, Zan
In this paper, design methodology of antiroll bar bush is discussed. Typical antiroll bar bushes have slide or slip mechanism, to facilitate the relative motion between ARB and bush. Inherently, this relative motion causes wear and noise of bush. To eliminate stated failure modes, the next generation bushes have been developed, which are using torsion properties instead of slip function. These bushes are already being used in various vehicles. This paper focuses on developing the simple mathematical model, design approach and optimization of ARB bushes. Also, comparison study is presented exploring, the differences and design criteria's between conventional and new generation anti-roll bar bushes
Sharma, DeepakAtal, AbhishekShah, Abhay
To integrate the energy-recovery characteristic of the Hydraulic electromagnetic shock absorber (HESA) and the anti-roll characteristic and anti-pitch characteristic of Hydraulic Interconnected Suspension(HIS), a Hydraulic Interconnected Suspension system based on Hydraulic Electromagnetic Shock Absorber (HESA-HIS) is presented. HESA-HIS has three operating modes: energy-recovery priority mode, dynamic performance priority mode and energy-recovery and dynamic performance balance mode. The working principle of HESA-HIS in the three operating modes is introduced, a full vehicle model is built by using the software AMESim, and some simulation tests are conducted by using the vehicle model. The simulation results show that the system can effectively reduce the roll angle of the vehicle, while maintaining good ride performance. Fishhook test results show that the roll angle of the HESA-HIS vehicle is reduced by 80%, compared to the traditional vehicle. Sinusoidal excitation tests show that
Guo, SijingChen, ZhenfuGuo, XuexunZhou, QuanZhang, Jie
Nowadays, a lightweight component design plays a significant role in both cost of a vehicle and fuel economy in competitive heavy duty truck industry. This paper describes the optimization study of an Anti-Roll Bar (ARB) bracket used in a heavy duty truck. ARB system is used to avoid rolling of a vehicle. In order to measure real forces acting on ARB links, calibration study is performed in laboratory conditions. According to this study, measured strains are correlated with theoretical strain-force curve. After the correlation study, fatigue based topology optimization is made on ARB cast iron bracket according to correlated Road Load Data (RLD) which is performed at Proving Ground. Most of the optimization studies in the literature depend on maximum static loading condition. However, many components or structures in the industry subjected to fluctuating loads when they are in service condition. Small loads in a fluctuating load domain may cause potential danger in the design because
Kosar, FatihYegin, Mehmet BurakDogru, OkanAkarsu, Cüneyt
Better ride and comfort, enhanced safety, reliability and durability, lower running cost as well as cost of ownership continue to be challenges for automotive OEMs. Higher fuel efficiency is considered as USP not only for lower running cost but also is hygiene factor from sustainability point of view. This has necessitated the need for Augmenting Light weighting horizon in automotive OEMs. Augmenting this leads to invention of innovative materials and processes for emerging cost competitive market. This paper focuses on technology efforts towards augmenting light weighting Horizon in Automotive. Light weighting concepts being explored by OEMs with the help of automotive component manufacturers from Powertrain - Engines & Transmission, Chassis and Suspension are discussed. The Innovative concepts and case studies covered include Hollow Crankshaft and Camshafts, PM gears, composite / bimetallic brake drum, steering knuckle & leaf spring, hollow Anti Roll Bar (ARB) & Front Axle Beams (FAB
Raghvendra, GShende, DeodattaPathak, Udayan
In this paper, a passive anti-pitch anti-roll hydraulically interconnected suspension is proposed for compromising the control between the pitch and roll mode of the sprung mass. It has the advantage in improving the directional stability and handling quality of vehicles during steering and braking manoeuvres. Frequency domain analysis of a 7-DOF full-car model with the proposed system is presented. The modeling of mechanical subsystem is established based on the Newton's second law. Then the mechanical-hydraulic system boundary conditions are developed by incorporating the hydraulic strut forces into the mechanical subsystem as externally applied forces. The hydraulic subsystem is modelled by using the impedance method, and each circuit are determined by the transfer matrix method. And then the modal analysis method is employed to perform the vibration analysis between the vehicle with the conventional suspension and the proposed HIS. Comparison analysis focuses on natural frequencies
Shao, Xinxin
The objective of this work is to analyze the main geometric variables that alter the stiffness of the anti-roll bar, which consequently influence the charge transfer between the wheels of the axle, while in a curve, and the body roll. The study was based on the application of this component in a vehicle of simplified construction, but the methodology can also be applied to commercial vehicles. To calculate the stiffness a software, based on the Finite Element Method, was used. In the numerical model was applied a unit force at the ends of the anti-roll bar and was observed the response of the system in terms of deformation. It was verified the change in stiffness caused by varying the position of the bushings that are used to hold the bar, profile cross-section and the change of the opening angle of the arms. Equations from the literature were used to determine the action of centrifugal force on the roll angle of the body, however they do not take into account all the characteristics
Ribeiro, Sérgio YuriSilveira, Márcio Eduardo
Numerical parameters describing suspension stiffness and damping are required for 3D simulation of vehicle trajectories, but may not be available. This paper outlines a simple, portable method of measuring these properties with a coefficient of variation of 5% on stiffness. 24 of 26 vehicles tested were significantly stiffer in roll than pitch, complicating analyses with models that don't include anti-roll. Suspension parameters did not correlate with static wheel load distribution, and damping coefficient did not correlate with natural frequency. Computer simulations of the speed required to initiate rollover in an S-curve were highly sensitive to the suspension parameters used. When pre-impact tire marks and rollover distance were considered, the simulations became almost insensitive to suspension parameters
Heinrichs, Bradley E.Goulet, Jean-FrancoisFix, RyanKing, Mathieu
A detailed experimental study to quantitatively compare a roll-plane hydraulically interconnected suspension with anti-roll bar in articulation (warp) mode is presented in this paper. Anti-roll bar as part of conventional vehicle suspension system is a standard configuration widely used in road vehicles to provide the essential roll-stiffness to enhance vehicle handling and safety during fast cornering. However the drawback of anti-roll bar is apparent that they limit the wheels' travel on uneven road surface and weaken the wheel/ground holding ability, particularly in articulation mode. Roll-plane Hydraulically Interconnected Suspension (HIS) system, as a potential replacement of anti-roll bar, could effectively increase vehicle roll-stiffness and provide the tunable damping effect, without compromising vehicle's flexibility in articulation mode. This paper presents the finding of an experimental analysis of roll-plane HIS system in comparison with anti-roll bar on a sport utility
Wang, LifuXu, GuangzhongZhang, NongRoser, Holger
Mainly motivated by developing cost-effective vehicle anti-roll systems, hydraulically interconnected suspension has been studied in the past decade to replace anti-roll bars. It has been proved theoretically and practically that hydraulic suspensions have superior anti-roll ability over anti-roll bars, and therefore they have achieved commercial success in racing cars and luxury sports utility vehicles (SUVs). However, since vehicle is a highly coupled complex system, it is necessary to investigate/evaluate the hydraulic-suspension-fitted-vehicle's dynamic performance in other aspects, apart from anti-roll ability, such as ride comfort, lateral stability, etc. This paper presents an experimental investigation of a SUV fitted with a hydraulically interconnected suspension under a severe steady steering maneuver; the result is compared with a same type vehicle fitted with anti-roll bars. Furthermore, an insight of how the hydraulic suspension response to extreme maneuvers has been
Wang, LifuZhang, NongDu, Haiping
In this study, a three-axle vehicle model established with ADAMS/Car is first correlated with field test data from quasi-static tilt table and highly dynamic NATO double lane change maneuver tests, respectively. It is then applied to predict the vehicle static rollover threshold (SRT) and dynamic rollover threshold (DRT). With the optimization approach proposed in this study it is possible to efficiently tune the anti-roll bar stiffness at each axle, to either maximize SRT or DRT, or balance both. The sensitivity results derived from the optimization iteration process can be applied to effectively size the three anti-roll bars that balance the static and dynamic roll stability performances. The proposed method can be potentially applied to include other parameters to address the roll stability issues and beyond
Yang, Xiaobo
This paper describes dimensional synthesis, analysis and performance optimization of a three-link rigid-axle suspension system. This suspension architecture has two longitudinal links and panhard rod as a transverse link. In case of rigid axle with three links, roll stiffness is primarily governed by springs, anti-roll bar, suspension link dimensions and its orientations. Because of suspension architecture, the bushings connecting the longitudinal link to axle will also contribute to the suspension roll stiffness. Typically, this contribution is comparable to the contribution due to the suspension springs. Hence, this paper explores the process of reducing roll stiffness of three-link rigid-axle suspension by identifying and changing high impact parameters. In the multi-step process, the first step is to evaluate the kinematics and compliance performance. This analysis is performed using "ADAMS®" - the multibody dynamics analysis software. Out of all kinematics performance parameters
Paluskar, PrajaktaVaidya, Rohit
Because of package constraints the anti-roll bar link (ARB-link) of a rear axle stabilizer had to be designed with a very short length. When the rear suspension is in extreme opposite wheel travel conditions - as it happens when driving on parking garage ramps - this design results in a toggling effect of the ARB-link. The toggling starting point depends strongly on the location of the upper and lower attachment point of the ARB-link. Therefore, a nominal optimization based on MB S simulations of the critical ramp driving load case is applied to find within the given package space an optimized position of the attachment points, where no toggling occurs. Indeed, such attachment points can be found, but a robustness analysis reveals that the nominal optimum is located at a bifurcation edge and that - consequently - the result is not robust. To solve the robustness problem, two methods are applied and compared: Firstly a Kriging based approach and secondly a simple “pushing-away” strategy
Harzheim, LotharWarnecke, Ulrike
A 4t off-road military application vehicle was offered to the customers for assessment. During the evaluation adverse feedback of 1) harsh ride in off-road terrain, particularly during hump-crossing and 2) issues during high mobility were reported. Vehicle configuration was front and rear rigid axle suspension with leaf spring anti-roll bar, 4×4 and all terrain tyres. Vehicle application was “on-road” [GS (General-services)], as well as “off-road” (Reconnaissance purpose). The feedback was critically analyzed on the vehicle with the simulation of field conditions. Since the vehicle was still under customer evaluation, solution for the feedback required was quick and within boundary condition (maximum possible allowable limits of modification) of no major change in the suspension design as it was affects homologation cycle. Present paper describes the detailed analysis of the influence of each parameter on system. The above parameters were studied in isolation as well as in combination
Upadhyay, VinayT. M., Arun PrakashKarampurwala, ZoebNandkeolyar, Kamaljeet
A truck-trailer combination is modeled using ADAMS/Car from MSC Software for handling and ride comfort performance simulations. The handling events include a double lane change and lateral roll stability. The ride comfort performance events include several sized half-rounds and various RMS courses. The variables for handling performance evaluation include lateral acceleration, roll angles and tire patch normal loads. The variables for ride performance evaluation are absorbed power and peak acceleration. This study considers the trailer spring stiffness, anti-roll bar and jounce bumper gap as the design variables. Through DOE simulations, we derived the response surface models of various performance variables so that we could consider the performance sensitivities to the design variables
Yang, XiaoboGander, Jesse
This work details the process employed to design the 2009 Cooper Union FSAE® suspension system, spanning the overarching design philosophy, configuration selection, analysis, fabrication, and implementation, while offering recommendations to those especially new to the field. The design methodology illustrated here provides a systematic approach to suspension geometry, material selection, packaging, and construction. Though this paper serves as a starting point for FSAE® suspension designers, it provides a succinct overview for those interested in general suspension design fundamentals. The design process began with the selection of a suspension configuration, geometries, and kinematics, which were driven in part by tire data, desired bulk vehicle dynamics characteristics, and overall geometric variability. The springs and adjustable dampers were then selected as the front and rear anti-roll bar properties were concurrently designed. The uprights were defined by reconciling a series of
Robertson, DennisDelagrammatikas, George J.
The characteristics of suspension elastic elements (i.e., spring, damper and anti-roll bar) are directly related to the handling and ride comfort performances, how to tune the characteristics of suspensions' elastic elements is always a big issue in developing the chassis of a vehicle. In this paper, a multi-body dynamics model of a passenger car within MSC.ADAMS® is integrated with iSight FD®, an optimization tool, to carry out a multi-objective optimization for improving the behavior of vehicle handling and ride comfort. The characteristics of suspension elastic elements (i.e., spring, damper and anti-roll bar) are considered as design variables. For handling, the objectives are defined by the measurements from multi-body dynamics simulation of typical double lane change according to ISO3888 standard. For ride comfort, the frequency-weighted RMS (Root Mean Square) value of vertical acceleration of the front seat rail according to ISO2631 standard is set as the objective. The
Rongshan, YangHuang, XiangdongKegang, Zhao
This study refers to the dynamic stabilities of pitching and rolling of our manufactured Formula SAE vehicle by numerical analysis and dynamic experiments. Formula SAE Competitions are the events of design and manufacture of the Formula SAE vehicles for university students under the auspices of SAE (Society of Automotive Engineers in U.S.A.). This competition consists of static and dynamic events. The abilities for the engineering design, cost and presentation of the students are judged in the static events. The driving reliability and durability of the competition vehicle are judged in the dynamic events. For the higher winning prize at this competition, it is to get high score in not only the static events but also the dynamic events. The competition vehicle is required excellent acceleration performance, turning performance and durability in the dynamic events[1],[2],[3]. Therefore, light weight, low center of gravity and a little yaw moment is required for the competition vehicle[4
Oda, HiroyukiFurumido, TakanoriOhira, YusukeKodama, TomoakiHonda, YasuhiroWakabayashi, Katsuhiko
Items per page:
1 – 50 of 71