Browse Topic: Passive suspension systems

Items (74)
This study proposes a multi-mode switching control strategy based on electromagnetic damper suspension (EMDS) to address the different performance requirements of suspension systems on variable road surfaces. The working modes of EMDS are divided into semi-active damping mode and energy harvest mode, and the proposed mode switching threshold is the weighted root mean square value of acceleration. For the semi-active damping mode, a controller based on LQR(Linear Quadratic Regulator) was designed, and a variable resistance circuit was also designed to meet the requirements of the semi-active mode, which optimized the damping effect relative to passive suspension. For the energy harvest mode, an energy harvest circuit was designed to recover vibration energy. In order to reduce the deterioration of suspension performance caused by frequent mode switching in the mode switching strategy, as frequent system switching can lead to system disorder, deterioration of damping effect, and
Zeng, ShengZhang, BangjiTan, BohuanQin, AnLai, JiewenWang, Shichen
To address the issue of PID control for automotive vibration, this paper supplements and develops the evaluation of automotive vibration characteristics, and proposes a vibration response quantity for evaluating the energy dissipation characteristics of automotive vibration. A two-degree-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined. This paper uses the Adaptive Differential Evolution (ADE) algorithm to tune the PID control parameters and introduces an adaptive mutation factor to improve the algorithm's adaptability. Several commonly used adaptive mutation factors are summarized in this paper, and their effects on algorithm improvement are compared. Design a simulation test plan for commonly used B-class road surfaces and a common speed of 60 km/h under
Jie, LiDou, LeiZhao, QiQiao, BinLiu, JiayongZhang, Wei
The performance of suspension system has a direct impact on the riding comfort and smoothness. For the traditional suspension can not effectively alleviate the impact of road surface and the poor anti-vibration performance, The dynamics model of vehicle suspension system is established, and the control model of vehicle four-degree-of-freedom active suspension is designed with fuzzy control strategy. On this basis, a comprehensive simulation model of the control model of vehicle active suspension coupled with road excitation is established. and the ride comfort of vehicles under different types of suspension are tested through Simulink. The simulation results show that compared with the passive suspension, the reduction of vehicle acceleration and dynamic deformation of the active suspension controlled by fuzzy PID can reach 33.76% and 22.45%. and the reduction of pitch Angle speed and dynamic load of the active suspension controlled by fuzzy PID can reach 16.18% and 10.72%. Under fuzzy
Jing, Li Jing
The purpose of this paper is to investigate the efficiency of a quarter car semi-active suspension system with the state-derivative feedback controller using the Bouc-Wen model for magneto-rheological fluids. The magnetorheological (MR) dampers are classified as adaptive devices because of their characteristics can be easily modified by applying a controlled voltage signal. Semi-active suspension with MR dampers combines the benefits of active and passive suspension systems. The dynamic system captures the basic performance of the suspension, including seat travel distance, body acceleration, passenger acceleration, suspension travel distance, dynamic tire deflection and damping force. With minimal reliance on the use of sensors, the investigation aims to improve ride comfort and vehicle stability. In this study, the state derivative feedback controller and Genetic algorithm (GA) is utilized to improve the performance of semi-active suspension system. Moreover, the cost is reduced
M.Faragallah, MohamedMetered, HassanAbdelaziz, Taha H.
Semi-active suspension system (SASS) could enhance the ride comfort of the vehicle across different operating conditions through adjusting damping characteristics. However, current SASS are often calibrated based on engineering experience when selecting parameters for its controller, which complicates the achievement of optimal performance and leads to a decline in ride comfort for the vehicle being controlled. Linear quadratic constrained optimal control is a crucial tool for enhancing the performance of semi-active suspensions. It considers various performance objectives, such as ride comfort, handling stability, and driving safety. This study presents a control strategy for determining optimal damping force in SASS to enhance driving comfort. First, we analyze the working principle of the SASS and construct a seven-degree-of-freedom model. Next, the damping force optimal control strategy is designed by comprising of the Genetic Algorithm (GA) and the Linear Quadratic Regulator (LQR
Zhao, JianLi, WantingZhu, BingChen, ZhichengDing, ShuweiLi, JunweiHao, WenquanZhang, Yong
The accuracy of chassis control for intelligent electric vehicles (IEVs), especially in road-based IEVs control for improving road holding and ride comfort, is a challenging task for the intelligent transport system. Due to the high fatality rate caused by inaccurate road-based control algorithms, how to precisely and effectively choose a reasonable road-based control algorithm become a hot topic in both academia and industry. To address and improve the performance of road holding and ride comfort of IEVs by using a semi-active suspension system, an adaptive sliding mode control (ASMC) algorithm-based road information is proposed to realize the overall performance of the intelligent vehicle chassis system in the paper. Firstly, the models of road excitation and equivalent hybrid control of a quarter semi-active suspension system are established. Secondly, connecting with the minimum redundancy maximum relevance (MRMR) approach and probability neural network (PNN) theory, the method of
Wang, ZhenfengLiao, YinshengZhang, ZhijieHu, ZhimingZhao, GaomingHuang, TaishuoZhang, Lei
This work aims to present the application of mode coupling to a Formula Student racing vehicle and propose a solution. The major modes of a vehicle are heave, pitch, roll, and warp. All these modes are highly coupled – which means changing suspension rates or geometry will affect all of them – while alleviating some and making others worse characteristics. Decoupling these modes, or at least some of them, would provide more control over suspension setup and more refined race car dynamics for a given layout of the racetrack. This could improve mechanical grip and yield significant performance improvements in closed-circuit racing. If exploited well, this approach could also assist in the operation of the vehicle at an optimal kinematic state of the suspension systems, to gain the best wheel orientations and maximize grip from the tires under the high lateral accelerations and varied excitations seen on a typical road course. Previous strategies used by other researchers to achieve
Panchal, TanmayBastiaan, Jennifer
A time domain analysis method of ride comfort and energy dissipation characteristics is proposed for automotive vibration proportional–integral–derivative (PID) control. A two-degrees-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined, and the Routh stability criterion method was introduced to assess the impact of PID control on vehicle stability. The PID control parameters are tuned using the differential evolution algorithm, and to improve the algorithm’s adaptive ability, an adaptive operator is introduced, so that the mutation factor of differential evolution algorithm can change with the number of iterations. The PID control parameter optimization method presented in this article is versatile and can be used to optimize PID control parameters under different
Li, JieDou, LeiZhao, QiQiao, BinLiu, JiayongZhang, Wei
Potholes are a major cause of discomfort for riders and vehicle damage. The passive suspension systems which are used in the passenger vehicles are primarily reaction based. These can’t adapt to the changing road conditions which means the best ride quality and handling characteristics cannot be ensured for different driving situations. Passive suspension system also needs more maintenance due to its inability to reduce the impact of the road irregularities. In recent years, semi-active suspension systems have been developed to improve ride comfort and vehicle safety. This paper covers the integration of a semi-active suspension system with a road preview mechanism with a TATA car model to investigate its impact on ride comfort, handling characteristics and component loads in digital domain. A quarter car vehicle model is used to compare different active damping control strategies. The best strategy is selected and integrated in a full vehicle MBS model to gain deeper insight on ride
Mishra, SatyakamPrasad, TejMaruenda Sanz, Javier
Electromagnetic suspension systems have increasingly gained widespread attention due to their superiority in improving ride comfort while providing fast response, excellent controllability and high mechanical efficiency, but their applications are limited due to the accuracy of the underlying control actuation tracking. For addressing this problem, this study presents a novel hierarchical control strategy for an electromagnetic active suspension (EMAS) system equipped with an electromagnetic actuator (EMA) structure. The structure of the EMA device and the working principle of the motion conversion model are introduced in detail first, and the motion conversion equation is derived based on the force-torque relationship. Based on this, a linear quadratic regulator (LQR) control method is proposed to be applied to a half-vehicle suspension system to improve the vibration isolation performance of the vehicle and ensure the ride comfort. Then, the underlying layer control of the permanent
Lai, JiewenZhang, BangjiQin, AnZeng, ShengWang, Shichen
This article proposes an electromagnetic damper (EMD) based on a ball screw mechanical structure actuator. To prove the damping effect of the new damper proposed in this paper. In this paper, the EMD suspension is validated on a quarter vehicle suspension. A mathematical model of quarter vehicle suspension is developed and a sliding mode variable structure controller is designed. This sliding mode controller enables vibration control of the suspension and improves ride comfort. To make the EMD track the ideal current effectively, a variable resistance circuit that can change the electromagnetic damping force is proposed to achieve the graded adjustment of resistance. A semi-active vehicle vibration control strategy was designed, and experiments were conducted using a quarter-vehicle test platform to verify the vibration-damping performance of this EMD suspension. The energy transfer to the road was analyzed and the higher the variable resistance, the more energy is transferred to the
Zhou, XiangruLiu, PengfeiNing, DonghongYu, JianqiangDu, Haiping
In order to further improve the influence of the electrically interconnected suspension (EIS) on the ride-comfort, a four-port electrical network (EN) is established in the SIMULINK environment based on the existing EIS research and applied to the passive model of the cabin system. This model is a passive suspension model composed of the road surface excitation, the main suspension, and the cabin suspension. The electrical network of EIS is connected with the cabin suspension section so that the interconnection is completely achieved in the cabin suspension system. The simulation results indicated that the four-port EIS is able to decouple the cabin motion in the three directions of heave, pitch, and roll, and improved the ride comfort and handling stability by adjusting the parameters of the circuit components. Based on the current achievement, Road profiles of a class A according to ISO 8608 was utilized as the excitation in the modelling stage to study the ride quality of light
Gao, ZishanXia, XiangjunLiao, YulinNing, DonghongLiu, PengfeiDu, Haiping
Many vehicles have been equipped with air springs as elastic elements to get better performance in comfort, but absorbers may not work in an optimal state due to the variation of suspension stiffness. While the function of semi-active suspension is to enable the absorber damping to be adjusted according to different road roughness levels and to coordinate between comfort and handling. To solve the problem of matching the damping coefficient of variable stiffness suspensions represented by air springs, this paper proposed a method for calculating the optimal damping ratio of a semi-active suspension system in real-time with sprung mass acceleration and dynamic tire load to establish the objective function and suspension dynamic deflection as the constraint to reflect the unification of comfort and handling. The effectiveness of the proposed damping calculated method is validated by comparing it with classical methods including passive suspension and shy-hook control on straight roads
Zhu, QingxiaoChen, ZixuanYu, DongLao, ZhenhaiZhang, Yunqing
Electromagnetic damper (EMD), which has shown good vibration isolation and energy harvesting potential, has received much attention in recent years. In addition, the harvested energy of EMD systems can be used to further suppress severe vibration. When the harvested energy of the suspension system is more than the consumed energy, the suspension system can realize self-powered functions. However, the integration of the above three functions is a challenge for the design of EMD systems. In this paper, a novel multi-function electromagnetic damper (MFEMD) system, which integrates the semi-active vibration control mode, energy-harvesting mode, and self-powered mode, is introduced first. The MFEIS system applies an H-bridge circuit to control the multi-directional flow of circuit energy flow, and the supercapacitor is used as the energy storage device because of its high-power density and rapid response speed. Since vehicles are driving in complex road conditions in the real world, road
Xia, XiangjunNing, DonghongLiao, YulinLiu, PengfeiDu, Haiping
The present article analyses a 7 degrees of freedom full car model of a light four-wheel wheeler formulated analytically and using the bond graph/Simulink technique. A full car model formulated using the Bond graph/Simulink technique is fed with the bump, pothole, harmonic, and random excitations to analyze the vehicle’s dynamic behavior. The bond graph/Simulink model is validated by comparing its results with that of the analytical model when subjected to circular bump inputs and comparing its results with that of the field test when subjected to random inputs. The vehicle model is fitted with a skyhook control strategy on the axles and the response of the semi-active system is compared with the passive system. The present analysis suggests that a vehicle system with semi-active suspension shows improved vibration isolation characteristics as compared with passive suspension system when subjected to different types of excitations
Sharma, Rakesh ChandmalPalli, SrihariGopala Rao, L. V. V.Duppala, AzadSharma, Sunil Kumar
Letter from the Special Issue Editors
Kaldas, MinaTrimboli, SergioRecker, DarrelHoersken, Christian
In this article, the nonlinear pneumatic magnetorheological (MR) suspension system is designed to improve vehicle characteristics in both ride comfort and dynamic stability. The four-degree-of-freedom (4-DOF) half-vehicle suspension system that is described based on bounce and pitch motions is derived. Both interval type-1 (T-1) and interval type-2 (T-2) of fuzzy models are applied as alternative controllers for the pneumatic MR suspension system. Both a controlled force of air spring and tracking ability of desired damping force are generated for each wheel of alternative controllers. In order to apply voltages for both the front and rear MR dampers, the tracks of desired damping forces are incorporated with the front MR damper controller and rear MR damper controller, respectively. The conventional damping case of the passive suspension system is used as a baseline for comparisons. The control performance criteria are presented in the frequency and time domains to quantify the
Shehata Gad, AhmedEl-Demerdash, Samir M.
The aim of this study is to develop an Add-On Feature that could support the semi-active suspension system controller during longitudinal dynamics maneuvers. The Add-On Feature called Initial Pitch Control (IPC) is activated during launching, shifting, and braking to enhance the pitch motion characteristics and road-holding capability. A sixteen degrees-of-freedom (DoF) vehicle mathematical model represents the vertical and longitudinal dynamics developed and validated via laboratory and road tests. A hydraulic four-poster test rig is used to carry out the laboratory tests for the vertical dynamics verification, while the longitudinal dynamic verification is achieved through the performed tests on a highway track. In order to design the IPC algorithm, the Rule-Optimized (RO) semi-active suspension controller, an Anti-lock Braking System (ABS) controller, and seven gears Dual-Clutch Transmission (DCT) controller are implemented in the vehicle model. An optimization routine has been
Kaldas, Mina M.Rivas, JorgeSoliman, Aref M.A.
In large vehicles, controlled suspension systems play a vital role in balancing the trade-off between ride comfort and vehicle stability. This article attempts to improve the semi-active stability augmentation system (S-SAS) to provide enhanced passenger comfort and vehicle stability irrespective of the road terrain. A type-1 (T1) fuzzy attitude control strategy is developed to mitigate the loop interactions and limitations in optimizing control gains between the heave and pitch with roll motions. The inner loop called ride control uses a Mamdani interval type-2 (IT2) fuzzy logic control (FLC) to accommodate the system uncertainties and nonlinearities. Semi-active type voice-oil-actuated electrohydraulic (EH) dampers are used to provide controlled damping to suspension systems. The algorithm is deployed in a microcontroller-based hardware, and its performance is tested outdoor for bumpy road conditions at different speeds. A realistic model of the large van in CarSim is also used to
Rajasekharan Unnithan, Anand RajSubramaniam, Senthilkumar
The objective of the present article is to design a nonlinear passive suspension system for an automobile subjected to random road excitation which generates a performance as close to a fully active suspension system as possible. Linear Quadratic Regulator (LQR) control is used to synthesize an active suspension system. The control forces corresponding to the nonlinear passive suspension and the active suspension are equated, and the parameters are optimized as the performance error between the two systems is reduced. The nonlinear equations of motion are reduced to equivalent linear equations, where the system states are a function of the vehicle response statistics, by using the equivalent linearization method. The performance of the optimized nonlinear model and the linear model are compared with the performance of the LQR control active suspension system. The nonlinear model performs better than the linear system with chosen parameters. The optimized system achieves almost an equal
Satyanarayana, V. S. V.Sharma, Rakesh ChandmalSateesh, B.Gopala Rao, L. V. V.Mohan Rao, N.Palli, Srihari
In this paper, the performance of a controlled air suspension system is integrated with the controlled braking system. In order to improve both ride comfort and dynamic stability, the neural network (NN)-predictive control is designed as a system controller for the air suspension system to minimize vertical, pitch, and roll motions. The rate of controlled force generated by the air suspension system is changed according to external excitation transmitted from road roughness to the vehicle body. PID controller is designed for the antilock braking system (ABS) to improve braking performance. Interval type-2 fuzzy control system (IT-2FCS) is also designed as an integrated controller to generate desired paths for both the NN-predictive controller and PID controller. Desired paths are achieved based on tuned dynamic responses of the vehicle suspension system and the relative skid ratio. Pneumatic suspension system with tuned desired paths is compared with both pneumatic suspension system
Shehata Gad, Ahmed
Electric vehicles driven by in-wheel-motor have the advantages of compact structure and high transmission efficiency, which is one of the most ideal energy-saving, environmentally friendly, and safe driving forms in the future. However, the addition of the in-wheel-motor significantly increases the unsprung mass of the vehicle, resulting in a decrease in the mass ratio of the vehicle body to the wheel, which will deteriorate the ride comfort and safety of the vehicle. To improve the vibration performance of in-wheel-motor driven vehicles, a semi-active inerter-spring-damper (ISD) suspension with in-wheel-motor (IWM) dynamic vibration absorber (DVA) of the electric wheel is proposed in this paper. Firstly, a structure of in-wheel-motor DVA is proposed, which converts the motor into a dynamic vibration absorber of the wheel to suppress the vibration of the unsprung mass. Secondly, based on a damper-inerter integrated device, a tandem ISD suspension was introduced into the electric
Zhang, KaidiWu, JinglaiZhang, Yunqing
A tandem axle suspension is an important system to the ride comfort and vehicle stability of and road damage experience from commercial vehicles. This article introduces an investigation into the use of a controlled active tandem axle suspension, which for the first time enables more effective control using two fuzzy logic controllers (FLC). The proposed controllers compute the actuator forces based on system outputs: displacements, velocities, and accelerations of movable parts of tandem axle suspension as inputs to the controllers, in order to achieve better ride comfort and vehicle stability and extend the lifetime of road surface than the conventional passive suspension. A mathematical model of a six-degree-of-freedom (6-DOF) tandem axle suspension system is derived and simulated using Matlab/Simulink software. Control performance criteria such as vertical body acceleration (VBA), front suspension working space (FSWS), rear suspension working space (RSWS), front dynamic tire force
Metered, HassanIbrahim, Ibrahim Musaad
A full vehicle of a preview control semi-active suspension system based on an interval type-2 fuzzy controller design using a magnetorheological (MR) damper to improve ride comfort is investigated in this paper. It is integrated with the force distribution system to obtain the optimal rate of road adhesion during braking and handling. The nonlinear suspension model is derived by considering vertical, pitch, and roll motions. The preview interval type-2 fuzzy technique is designed as a system controller, and it is attached with a Signum function method as a damper controller to turn on the voltage for the MR damper. This voltage is adjusted for each wheel based on the external excitation generated by road roughness in order to enhance ride comfort. To describe the effectiveness and adaptable responses of the preview controlled semi-active system, the performance is compared with both the passive and MR passive suspension systems during time and frequency domains. The mathematical models
Shehata Gad, Ahmed
The article examines quarter-car dynamics with the possible separation of its tire from the road. A set of nondimensionalized differential equations has been proposed to minimize the involved parameters. Time and frequency response investigation of the system has been analyzed insightfully considering tire-road separation. To measure the separation of the tire, a time fraction index is defined, indicating the fraction of separation time in a cycle at steady-state conditions. Minimizing the index is assumed as the objective of the optimized system. An actuator is applied to the vehicle suspension in parallel with the mainspring and damper of the suspension. Particle Swarm Optimization (PSO) is used to properly tune a Proportional-Integral-Derivative (PID) controller for the active suspension system excited by a harmonic excitation. To verify the effectiveness of the control proposed, the controlled result compared with a passive suspension system illustrates the design, achieving a more
Nguyen, Quy DangMilani, SinaMarzbani, HormozJazar, Reza Nakahie
1 Rear wheel drive vehicles have a long driveline using a propeller shaft with two universal joints. Consequently, in this design usage of universal joints within vehicle driveline is inevitable. However, the angularity of the driveshaft resulting from vertical oscillations of the rear axle causes many torsional and bending fluctuations of the driveline. Unfortunately, most of the previously published research work in this area assume the propeller inclination angle is constant under all operating conditions. As a matter of fact, this assumption is not accurate due to the vehicle body attitudes either in pitch or bounce motions. Where the vehicle vibration due to the suspension flexibility, either passive or active type, exists. Moreover, the relative motion between the body and the wheel make this virtualization is so far from the realty in real ground vehicles In this research work, the hydro-pneumatic limited bandwidth active suspension system with wheelbase preview control is
Aly, Mahmoud AtefAwad, Eid Ouda
The suspension system of a vehicle has the main objective of dampening the transmission of irregularities in the terrain to the chassis. This is necessary to preserve the vehicle's internal components and to ensure greater comfort for the occupants of the car. For that, several studies were carried out in the area, proposing modifications in the passive and active suspensions, resulting in a greater dynamic stability of the vehicle. In military vehicles, the importance of these studies grows as they have larger dimensions and a greater mass, making damping more difficult. Analyzing this damping will be the basis for analyzing of this paper. Whose main analysis tool will be the improvement in performance by replacing the traditional passive suspension by a magnetorhelogic active suspension. For this, a MATLAB / Simulink model will be used by means of a block diagram
de Miranda, MatheusCosta Neto, Ricardo Teixeira da
In order to achieve the high capability of the ride comfort and regulating the tire slip ratio, a preview of a nonlinear semi-active vibration control suspension system using a magnetorheological (MR) fluid damper is integrated with traction control in this paper. A controlled semi-active suspension system, which consists of the system controller and damper controller, was used to develop ride comfort, while the traction controller is utilized to reduce a generated slip between the vehicle speed and rotational rate of the tire. Both Fractional-Order Filtered Proportional-Integral-Derivative ( P¯IλDμ) and Fuzzy Logic connected either series or parallel with P¯IλDμ are designed as various methodologies of a system controller to generate optimal tracking of the desired damping force. The signum function method is modified as a damper controller to calculate an applied input voltage to the MR damper coil based on both preview signals and the desired damping force tracking. The fuzzy self
Gad, Ahmed ShehataMohamed, Eid S.El-Demerdash, Samir M.
This article presents the suspension performance and the energy harvesting capabilities of a hydraulic regenerative suspension system. A regenerative shock absorber is designed based on a hydraulic transmission mechanism. The proposed regenerative shock absorber is implemented in a quarter-car model to replace the conventional passive damper. The nonlinear damping force of the regenerative shock absorber, which depends on the pressure in the shock absorber chambers, is derived. Using the continuity equation and Kirchhoff’s law, the flow of oil through the valves is described including the oil compressibility. The variation of the check valve opening as a function of pressure difference is also considered in the mathematical modeling. The amount of the harvested power and the efficiency of the regenerative system are introduced to assess the effectiveness of the new suspension system compared to the traditional passive suspension system. Suspension performance indices such as ride
Samn, Anas A.Abdelhaleem, A.M.M.Kabeel, Abdallah M.Gad, Emil H.
This article presents a semi-active vibration control suspension system using a preview Model Predictive Control (MPC) linked with a magnetorheological (MR) damper to improve vehicle stability during handling dynamics, consequently confidently achieving both maneuverability and lateral dynamic motion. The mathematical model (4DOF) described by bounce and pitch motions for sprung mass and two bounce motions for the un-sprung masses, which consists of a preview half-vehicle suspension system and MR dampers at the front and rear axles, is derived. A nonpreview case of the linear quadratic regulator (LQR), a preview case of the LQR, and a preview case of the MPC as alternative methods are applied to design the system controller in combination with a signum function method as a damper controller for both the front and rear MR dampers. The vehicle handling model based on the look-ahead distance of the road, which includes yaw and lateral motions, is linked with the driver model. Magic
Shehata Gad, Ahmed
In this paper, a quarter-car suspension system has been investigated for the International Organization for Standardization (ISO)-classified road profile with various control strategies. The vehicle suspension system provides ride comfort and handling by reducing the transfer of road disturbances or irregular road profile to the passenger and cargo materials. The suspension also retains the road and tire contact, stabilizing the vehicle’s movements. A combination of fuzzy logic and neural network, i.e., adaptive neuro-fuzzy inference system (ANFIS), is deployed as a control strategy to control the quarter-car semi-active suspension model. Quarter-car suspension models with a passive control and semi-active controller with different control strategies, viz., Skyhook, Fuzzy Logic (FLC), and ANFIS, are designed and modeled in MATLAB/SIMULINK®. Numerical simulations were performed on developed quarter-car models for an ISO-classified road profile disturbance, and the performance was
Mulla, Ansar AllauddinUnune, Deepak Rajendra
The accuracy of state estimation and optimal control for controllable suspension system is a challenging task for the vehicle suspension system under various road excitations. How to effectively acquire suspension states and choose the reasonable control algorithm become a hot topic in both academia and industry. Uncertainty is unavoidable for the suspension system, e.g., varying sprung or unsprung mass, suspension damping force or spring stiffness. To tackle the above problems, a novel observer-based control approach, which combines adaptive unscented Kalman filter (AUKF) observer and model predictive control (MPC), is proposed in the paper. A quarter semi-active suspension nonlinear model and road profile model are first established. Secondly, using the road classification identification method based on system response, an AUKF algorithm is employed to estimate accurately the state of suspension system. Due to the nonlinear of semi-active suspension damping force in the movement
Wang, ZhenfengXu, ShengjieLi, FeiWang, XinyuYang, JiansenMiao, Jing
To achieve the simultaneous improvement in ride comfort of the passenger as well as the stability of the vehicle, a second-order sliding mode controller is proposed in this study. Super twisting algorithm attenuates the chattering effect present in the conventional sliding mode controller without affecting the stability of the system. The Lyapunov stability analysis is carried out to verify the stability of the controller. The effectiveness of the designed super twisting algorithm used second-order sliding mode controller is validated in a semiactive quarter car suspension with seat model. Modified Bouc-wen magnetorheological (MR) damper model is used as a semiactive damper and the voltage that has to be supplied to the magnetorheological damper is controlled by a super twisting algorithm and sliding mode controller. Continuous modulation filtering algorithm is adopted to convert the force signal of a controller into the equivalent voltage input to the MR damper. The entire system is
Soosairaj, Arockia SuthanK, Arunachalam
This paper introduces an optimum design for a feedback controller of a fully active vehicle suspension system using the combined multi-objective particle swarm optimization (CMOPSO) in order to minimize the actuator power consumption while enhancing the ride comfort. The proposed CMOPSO algorithm aims to minimize both the vertical body acceleration and the actuator power consumption by searching about the optimum feedback controller gains. A mathematical model and the equations of motion of the quarter-car active suspension system are considered and simulated using Matlab/Simulink software. The proposed active suspension is compared with both active suspension system controlled using the linear quadratic regulator (LQR) and the passive suspension systems. Suspension performance is evaluated in time and frequency domains to verify the success of the proposed control technique. The simulated results reveal that the proposed controller using CMOPSO grants a significant enhancement of ride
Elsawaf, AhmedMetered, H.Abdelhamid, A.
The objective of this paper is to study the influence of a suspension system on the human body with the effect of the controller behavior. For this work, 2-Degree of Freedom (DoF) quarter car suspension system with 4 DoF seated human body is modeled. The mathematical equation is developed by using a lumped mass parameter method. Governing equations of motions are generated by Newton’s Law of motion. Random road profile is also considered for this study. MATLAB/SIMULINK software is used to simulate the system results and system analysis is limited to a Proportional Integral Derivative (PID) controller with hydraulic actuator. Seat to Head transmissibility ratio of the active suspension system is analyzed and compared with the passive suspension system. Finally, to illustrate the effectiveness of the proposed active system, simulated results are compared with ISO 2631 comfort curves. Therefore the result shows that the PID based active suspension system improves the ride comfort of the
Anandan, ArivazhaganK, Arunachalam
A non-linear mathematical model of a semi-active (2DOF) vehicle suspension using a magnetorheological (MR) damper with information concerning the road profile ahead of the vehicle is proposed in this paper. The semi-active vibration control system using an MR damper consists of two nested controllers: a system controller and a damper controller. The fuzzy logic technique is used to design the system controller based on both the dynamic responses of the suspension and the Padé approximation algorithm method of a preview control to evaluate the desired damping force. In addition, look-ahead preview of the excitations resulting from road irregularities is used to quickly mitigate the effect of the control system time delay on the damper response. Adaptive neuro-fuzzy inference system (ANFIS) inverse model without preview, ANFIS inverse model with preview, and ANFIS inverse model with preview and optimization strategies are used to design the damper controller to evaluate different values
Shehata Gad, AhmedEl-Zoghby, HelmyOraby, WalidMohamed El-Demerdash, Samir
The design of passive suspension systems is being improved since the early days of the automotive industry in order to obtain the best tradeoff between ride comfort and handling. In this context, passenger cars tend to prioritise ride comfort whilst racing cars tend to focus on handling. On the other hand, Formula SAE is a series of undergraduate competitions in which the students design, build and compete with small, formula-style, mono-seated vehicles. As part of the competition events, the vehicle experiences tight corners and short-length slaloms. The minimum turning diameter and the shortest length of slalom period conducted by Formula SAE prototypes are 9 m and 7.6 m, respectively. Therefore, high controllability of vehicle dynamic behaviour is required in order to enhance the cornering speed, this is achievable by working on the dampers to optimise the rates of load transfer in cornering. This paper describes the development of semiactive control algorithms to optimise the
dos Santos, Marcos Gabriel DiodatoChrysakis, GeorgiosWillmersdorf, Ramiro BrittoAlves, Luiz Otávio Ferrão Teixeira
Proportional integral derivative (PID) control method is an effective, easy in implementation and famous control technique applied in several engineering systems. Also, Genetic Algorithm (GA) is a suitable approach for optimum searching problems in science, industrial and engineering applications. This paper presents the usage of GA for determining the optimal PID controller gains and their implementation in the active quarter-vehicle suspension system to achieve good ride comfort and vehicle stability levels. The GA is applied to solve a combined multi-objective (CMO) problem to tune PID controller gains of vehicle active suspension system for the first time. The active vehicle suspension system is modeled mathematically as a two degree-of-freedom mechanical system and simulated using Matlab/Simulink software. The performance of the proposed suspension system controlled using the optimized PID GA is compared to both controlled system using the classical PID (C PID) controller and the
Metered, H.Abbas, W.Emam, A. S.
Proportional integral derivative (PID) control technique is the most common control algorithm applied in various engineering applications. Also, particle swarm optimization (PSO) is extensively applied in various optimization problems. This paper introduces an investigation into the use of a PSO algorithm to tune the PID controller for a semi-active vehicle suspension system incorporating magnetorheological (MR) damper to improve the ride comfort and vehicle stability. The proposed suspension system consists of a system controller that determine the desired damping force using a PID controller tuned using PSO, and a continuous state damper controller that estimate the command voltage that is required to track the desired damping force. The PSO technique is applied to solve the nonlinear optimization problem to find the PID controller gains by identifying the optimal problem solution through cooperation and competition among the individuals of a swarm. A mathematical model of a two
Metered, H.Elsawaf, A.Vampola, T.Sika, Z.
Idealized mathematical models, also known as lumped parameter models (LPMs), are widely used in analyzing vehicles for ride comfort and driving attributes. However, the limitations of some of these LPMs are sometimes not apparent and a rigorous comparative study of common LPMs is necessary in ascertaining their suitability for various dynamic situations. In the present study, the mathematical descriptions of three common LPMs, viz. quarter, half and full car models, are systematically presented and solved for the appropriate response parameters such as body acceleration, body displacement, and, pitch and roll angles using representative passive suspension system properties. By carrying out a comparison of the three stated LPMs for hump-type road profiles, important quantitative insights, not previously reported in the literature, are generated into their behaviors so that their applications can be judicious and efficient
Mahala, ManojDeb, AnindyaChou, Clifford
This paper presents a new and effective control concept for semi-active suspension systems. The proposed controller uses a Fuzzy Logic scheme which offers new opportunities in the improvement of vehicle ride performance. The Fuzzy Logic scheme tunes the controller to treat the conflict requirements of ride comfort and road holding parameters within a specified range of the suspension deflection. An eleven degree of freedom full vehicle ride dynamics model is constructed and validated through laboratory tests performed on a hydraulic four-poster shaker. A new optimization process for obtaining the optimum Fuzzy Logic membership functions and the optimum rule-base of the proposed semi-active suspension controller is proposed. Discrete optimization has been performed with a Genetic Algorithm (GA) to find the global optima of the cost function which considers the ride comfort and road holding performance of the full vehicle. The proposed Fuzzy Logic semi-active controller is compared to
Kaldas, Mina M.S.Çalışkan, KemalHenze, RomanKüçükay, Ferit
The paper deals with a theoretical study to present a new sort of the buses suspension systems employs a hydraulic connection between the front and rear dampers together with active suspension actuator at the front axle. The theoretical investigation based on a half vehicle model of the bus suspension system includes the engine mounting system. The hydraulic connection between the front and rear dampers is created according to the capillary tubes theory. Furthermore, the active suspension system control algorithm based on the optimal control theory is derived. The Genetic Algorithm optimization routine is applied to generate the active suspension control algorithm parameters. A comparison between the connected dampers suspension system, active suspension system, active-connected dampers suspension system, and the passive suspension system in terms of ride comfort and road holding at constant suspension working space is performed. The results showed that, the proposed active-connected
Kaldas, Mina M.S.Soliman, Aref M.A.
Semi-active suspension systems for ground vehicles have been the focus of research for several years as they offer improvements in vehicle comfort and handling. This kind of suspension has attracted more interest compared to active suspension systems especially due to lower cost and energy consumption. In this paper the capabilities of a semi-active front axle suspension are investigated for a commercial vehicle. A half-truck model of a 4x2 tractor and semitrailer combination is developed in Matlab/Simulink for this purpose. Also, a 2 DOF roll plane model is considered to capture the roll motion of the vehicle body mass. Employing the above-mentioned models, results from on-off and continuous variable semi-active damping systems are compared to the ones from the passive suspension system according to ride comfort and handling safety characteristics. Simulations are performed in the time domain with realistic road-induced excitations, namely random road and single/double-sided bump
Yarmohamadi, HodaBerbyuk, Viktor
This paper discusses research conducted by the U.S. Army Research Laboratory (ARL) - Vehicle Technology Directorate (VTD) on advanced suspension control. ARL-VTD has conducted research on advanced suspension systems that will reduce the chassis vibration of ground vehicles while maintaining tire contact with the road surface. The purpose of this research is to reduce vibration-induced fatigue to the Warfighter as well as to improve the target aiming precision in-theater. The objective of this paper was to explore the performance effectiveness of various formulations of the Generalized Predictive Control (GPC) algorithm in a simulation environment. Each version of the control algorithm was applied to an identical model subjected to the same ground disturbance input and compared to a baseline passive suspension system. The control algorithms considered include a GPC with Implicit Disturbances, GPC with Explicit Disturbances, and GPC with Preview Control. A two-axle tactical vehicle with
Brown, RossMazza, MarcusLe, DyMurugan, Muthuvel
Items per page:
1 – 50 of 74