Browse Topic: Chassis

Items (14,360)
This research, path planning optimization of the deep Q-network (DQN) algorithm is enhanced through integration with the enhanced deep Q-network (EDQN) for mobile robot (MR) navigation in specific scenarios. This approach involves multiple objectives, such as minimizing path distance, energy consumption, and obstacle avoidance. The proposed algorithm has been adapted to operate MRs in both 10 × 10 and 15 × 15 grid-mapped environments, accommodating both static and dynamic settings. The main objective of the algorithm is to determine the most efficient, optimized path to the target destination. A learning-based MR was utilized to experimentally validate the EDQN methodology, confirming its effectiveness. For robot trajectory tasks, this research demonstrates that the EDQN approach enables collision avoidance, optimizes path efficiency, and achieves practical applicability. Training episodes were implemented over 3000 iterations. In comparison to traditional algorithms such as A*, GA
Arumugam, VengatesanAlagumalai, VasudevanRajendran, Sundarakannan
Electric vehicles represent a shift towards sustainability in the automotive industry, with the Brake-by-Wire (BBW) system as an innovation to enhance safety, and performance. This study proposes an electromagnetic BBW system for Formula SAE vehicles, optimizing an electromagnet with a genetic algorithm as the actuator. Through a selection process from a million individuals, the system was modeled. Integrated with electric motors using CarMaker® software, the optimized electromagnet surpassed the minimum required force of 228.08 N without reaching its nominal current of 12.5 A, achieving a force of 231.1 N for 150 W power, indicating an energy efficiency of 0.706 N/Watt. The system also exhibited a response time of 17.92ms for an 80 bar increase, 1.52 times better than compared systems. Simulation under varying braking intensities demonstrated dynamic behavior, with settling times for slow, moderate, and sharp braking at 193 ms, 62 ms, and 21 ms, respectively. Efficiency during
Salgado, Vinícius Batista AlvesGomes, Deilton GonçalvesAndrade Lima, Cláudio
The SAE Formula prototypes are developed by students, where in the competition, various aspects of project definitions are evaluated. Among the factors evaluated for scoring is the braking system, in which the present work aims to present the development and design of the braking system of a vehicle, prototype of Formula SAE student competition. As it is a project manufactured mostly by students, where the chassis, suspension system, electrical, transmission and powertrain are developed, it is important to first pass the static and safety tests, where the brakes of the four wheels are tested during deceleration at a certain distance from the track. To enable such approval and also to demonstrate, for the competition judges, the veracity of the system’s sizing, all the parameters and assumptions of the choice of the vehicle’s braking system are presented, thus ensuring their reliability, efficiency and safety. Using drawing and simulation software such as SolidWorks and Excel for
Gomes, Lucas OlenskiGrandinetti, Francisco JoséMartins, Marcelo SampaioSouza Soares, Alvaro ManoelReis de Faria Neto, AntônioCastro, Thais SantosAlmeida, Luís Fernando
A serious problem of public healthcare around the world is the number of road vehicle accidents, every year almost 1,3 million people die and approximately 20 to 50 million people suffer a non-fatal accident because of a road vehicle accident [1]. As a result of that, in 2021 the World Health Organization stated the “The Second Decade of Action for Road Safety”, which the goal is to prevent at least 50% of deaths and injuries due traffic by 2030. To achieve this goal, the automobile companies have invested in technology and products that can enhance vehicle safety. Despite exist some control systems able to reduce roll, and consequently the roll over, such as active suspension, semi-active suspension, and stability control systems, none of them have as main purpose reduce the number of rollovers. The following study aims to examine the effects of an active anti roll bar, to improve the vehicle dynamics during corners and reduce the risk of a rollover by reducing the roll of the sprung
Gomes, Pedro CarvalhoTeixeira, Evandro Leonardo SilvaMorais, Marcus Vinicius GirãoFortaleza, Eugenio Liborio FeitoraSantos Gioria, Gustavo
Autonomous driving technology has indeed become a focal point of research globally, with significant efforts directed towards enhancing its key components: environment perception, vehicle localization, path planning, and motion control. These components work together to enable autonomous vehicles to navigate complex environments safely and efficiently. Among these components, environment perception stands out as critical, as it involves the robust, real-time detection of targets on the road. This process relies heavily on the integration of various sensors, making data fusion an indispensable tool in the early stages of automation. Sensor fusion between the camera and RADAR (Radio Detection and Ranging) has advantages because they are complementary sensors, where fusion combines the high lateral resolution from the vision system with the robustness in the face of adverse weather conditions and light invulnerability of RADAR, as well as having a lower production cost compared to the
Cury, Hachid HabibTeixeira, Evandro Leonardo SilvaSilva, Rafael Rodrigues
Autonomous vehicles for mining operations offer increased productivity, reduced total cost of ownership, decreased maintenance costs, improved reliability, and reduced operator exposure to harsh mining environments. A large flow of data exists between the remote operation and the ore haul vehicle, and part of the data becomes information for the maintenance sector which it monitors the operating conditions of various systems. One of the systems deserving attention is the suspension system, responsible for keeping the vehicle running and within a certain vibration condition to keep the asset operational and productive. Thus, this work aims to develop a digital twin-assisted system to evaluate the harmonic response of the vehicle’s body. Two representations were created based on equations of motion that modeled the oscillatory behavior of a mass-damper system. One of the representations indicates a quarter of the ore transport truck’s hydraulic system in a healthy state, called a virtual
Rosa, Leonardo OlimpioBranco, César Tadeu Nasser Medeiros
Road loads, encompassing aerodynamic drag, rolling resistance, and gravitational effects, significantly impact vehicle design and performance by influencing factors such as fuel efficiency, handling, and overall driving experience. While traditional coastdown tests are commonly used to measure road loads, they can be influenced by environmental variations and are costly. Consequently, numerical simulations play a pivotal role in predicting and optimizing vehicle performance in a cost-effective manner. This article aims to conduct a literature review on road loads and their effects on vehicle performance, leveraging experimental data from past studies from other researchers to establish correlations between measured road loads and existing mathematical models. By validating these correlations using real-world measurements, this study contributes to refining predictive models used in automotive design and analysis. The simulations in this study, utilizing five distinct empirical
Pereira, Leonardo PedreiraBraga, Sérgio Leal
This paper aims to describe a quarter-car suspension test bench automation process to be utilized in an academic environment. The project is made up of pneumatic system modeling and control system design. An analysis of the bench’s pneumatic system is carried out. This pneumatic system is composed of a pneumatic actuator and a proportional directional control valve, which are responsible for generating the road profile. It is proposed a model to compensate the non-linearities present in the pneumatic system measurement process and the disturbances caused by the under test suspension system, as well as a control strategy for small displacements of the load through linear control approaches, which provide the necessary flexibility to directly influence the parameters affecting the dynamics of the excitation system platform’s displacement, thereby reducing the complexity of the controller design to be adopted. Furthermore, analyses are conducted on the effectiveness of the control in
Siqueira, Matheus AmaralGomes, Pedro CarvalhoTeixeira, Evandro Leonardo SilvaFortaleza, Eugênio Libório FeitosaMorais, Marcus Vinicius Girão
The fuel economy performance of road vehicles is one of the most important factors for a successful project in the current automotive industry due to greenhouse effect gases reduction goals. Aerodynamics and vehicle dynamics play key roles on leading the automaker fulfill those factors. The drag coefficient and frontal area of the vehicle are affected by several conditions, where the ground height and pitch angle are very relevant, especially for pickup trucks. In this work, we present a combined study of suspension trim heights and aerodynamics performance of a production pickup truck, where three different loading conditions are considered. The three weight configurations are evaluated both in terms of ground height and pitch angle change considering the suspension and tires deflection and these changes are evaluated in terms of drag coefficient performance, using a Lattice-Boltzmann transient solver. Results are compared with the baseline vehicle at road speed condition, where both
Buscariolo, Filipe FabianTerra, Rafael Tedim
The exponential growth of the agribusiness market in Brazil combined with the high receptivity among farmers of new technological solutions has driven the study and implementation of high technology in the field. This work aimed to apply servo-assisted driving technology to enable autonomous mobility in an off-road sugarcane truck responsible for harvesting sugarcane. The technology consists of a conventional hydraulic steering with a motor, ECU and torque and angle sensors responsible for reading input data converted from GPS signals and previously recorded tracking lines. The motor responsible for replacing 100% of the physical force generated by the driver acts in accordance with the required torque demand, and the sensors combined with the ECU correct the course to meet the follow-up line through external communication ports. The accuracy of the system depends exclusively on the accuracy of the GPS signal, in this case reaching 2,5 cm, which is considered extremely high accuracy
Oliveira Santos Neto, AntídioLara, VanderleiSilva, EvertonDestro, DanielMoura, MárcioBorges, FelipeHaegele, Timo
The SAE Formula, a national stage of the international competition, consists of a student project at universities in Brazil that seeks to encourage engineering students to apply the theoretical knowledge obtained in the classroom to practice, dealing with real problems and difficulties in order to prepare them for the job market. The SAE Formula prototype is developed with the intention of competing in the SAE national competition, where teams from various universities in Brazil meet to compete and demonstrate the projects developed during the year. Focusing on the vehicle dynamics subsystem, which can be divided into the braking, suspension, and steering systems of a prototype, the steering system includes main mechanical components such as the front axle sleeves, wheel hub, steering arm, steering column, rack, wheel, and tire. All these components work together with the suspension systems, including suspension arms, “bell crank,” and spring/shock absorber assembly. These components
Rigo, Cristiano Shuji ShimadaNeto, Antonio Dos Reis De FariaGrandinetti, Francisco JoseCastro, Thais SantosDias, Erica XimenesMartins, Marcelo Sampaio
The aerodynamic force produced by external flows over two-dimensional bodies is typically decomposed into two components: lift and drag. In race cars, the lift is known as downforce and it is responsible for increasing tire grip, thereby enhancing traction and cornering ability. Drag acts in the direction opposite to the car’s motion, reducing its acceleration and top speed. The primary challenge for aerodynamicists is to design a vehicle capable of producing high downforce with low drag. This study aims to optimize the shape of a multi-element rear wing profile of a Formula 1 car, achieving an optimal configuration under specific prescribed conditions. The scope of this work was limited to a 2-D model of a rear wing composed of two 4-digit NACA airfoils. Ten control parameters were used in the optimization process: three to describe each isolated profile, two to describe their relative position, and two to describe the angles of attack of each profile. An optimization cycle by finite
Souza Dourado, GuilhermeHayashi, Marcelo Tanaka
This research addresses the pivotal role of active anti-roll bars in mitigating vehicle body roll during cornering, thereby enhancing overall stability, maneuverability, and comfort. The proposed approach integrates two distinct control methodologies—a straightforward error proportional controller and a reinforcement learning (RL)-based controller. Each front and rear active anti-roll bar applies a roll-reducing torque computed by the proportional controller during cornering. However, this torque alone proves insufficient in effectively damping roll oscillations induced by road irregularities. The RL-based controller leverages observations encompassing inertial measurement unit data (roll rate, pitch rate, and vertical acceleration), and wheel vertical displacements and employs the roll as a reward signal. This controller calculates two additional corrective torques. These torques are seamlessly incorporated by both front and rear anti-roll bars alongside the proportional controller
Marotta, RaffaeleStrano, SalvatoreTerzo, MarioTordela , Ciro
Throughout the vehicles industry and electrification, vehicle ride comfort, road holding, and fuel/charge economy have always been important considerations for the design and development of shock absorbers. Vehicle suspension is one of the oscillating power dissipation sources in which the undesired mechanical energy is dissipated into heat waste. Therefore, in this study a regenerative MacPherson strut is modeled and validated to investigate the vehicle vertical dynamics performance as well as the harvestable power that can be used to charge batteries or power vehicle electrical loads. The optimal design parameters of the regenerative MacPherson strut (RE.M.S) is obtained by using multi-object genetic algorithm (MOGA) optimization for a better trade-off between regenerated power, ride comfort, and road holding. The results showed that RE.M.S can function as a semi-active shock absorber as change of duty cycle of charging circuit. Furthermore, the optimal selection of the design
Hegazy, Ahmed H.A.Kaldas, Mina M.Soliman, Aref M.A.Huzayyin, A.S.
Single lane changing is one of the typical scenarios in vehicle driving. Planning an appropriate lane change trajectory is crucial in autonomous and semi-autonomous vehicle research. Existing polynomial trajectory planning mostly uses cubic or quintic polynomials, neglecting the lateral jerk constraints during lane changes. This study uses seventh-degree polynomials for lane change trajectory planning by considering the vehicle lateral jerk constraints. Simulation results show that the utilization of the seventh-degree method results in a 41% reduction in jerk compared to the fifth-degree polynomial. Furthermore, this study also proposes lane change trajectory schemes that can cater to different driving styles (e.g., safety, efficiency, comfort, and balanced performance). Depending on the driving style, the planned lane change trajectory ensures that the vehicle achieves optimal performance in one or more aspects during the lane change process. For example, with the trajectory that
Lai, FeiHuang, Chaoqun
SBW(Steer-by-wire) is a steering system that transmits the driver’s request and gives feedback to the driver through electrical signals. This system eliminates the mechanical connection of the traditional steering system, and can realize the decoupling of the steering wheel and the road wheel. In addition, this system has a perfect torque feedback system, which can accurately and delicately feedback the road surface information to the driver. However, vehicle driving deviation is one of the most common failure modes affecting vehicle performance in the automotive aftermarket, this failure mode can exacerbates tire wear, reducing their life cycle, at the same time, the driver must apply a counter torque to the steering wheel for a long time to maintain straight-line travel during driving. This increases the driver’s operational burden and poses safety hazards to the vehicle’s operation. Based on the steer-by-wire system and vehicle driving deviation characteristics, this paper proposes
Xiangfei, XuQu, Yuan
Path planning in parking scenarios for vehicles with Ackermann steering characteristics is a well studied problem in the literature. However, the recent emergence of four-wheel steering (4WS) chassis has brought new opportunities to the field of motion planning. Compared with front-wheel steering (2WS), 4WS vehicles offer higher flexibility and new maneuver modes such as CrabWalk. To utilize such new potential to further improve parking efficiency, this paper proposes a four-wheel steering oriented planning algorithm for parking scenarios. First, Hybrid A*-4WS is proposed to search for a coarse trajectory from the starting pose to the parking slot, with improved node expansion mechanism to incorporate four-wheel steering characteristics. Then a nonlinear programming (NLP) problem is formulated with four-wheel steering kinematic model to fully utilize the maneuver capability of 4WS vehicles, with OBCA used for collision avoidance constraints. Finally, the two algorithms are sequentially
Song, YufeiLiu, YuanzhiXiong, LuTang, Chen
As a part of an automobile suspension structure, fatigue durability performance of the automotive stabilizer bar linkage is crucial to the safety and reliability of the suspension system. In this study, the modeling and simulation analysis methods of the stabilizer bar linkage were described in detail, especially for the welded positions between the connecting rod and the spherical shells (or sleeves). Based on the equivalent structural stress method and the theory of critical distances, damage values of welded positions in the stabilizer bar linkage were solved. For the spherical shell end, the simulation reproduced the bench test; and for the sleeve end, the analysis approach was determined by comparing in several different modeling ways. Mooney-Rivlin model was adopted to fit the constitutive relationship of rubber material in the bushing. The above methods were applied to predict the fatigue durability performance of the stabilizer bar linkage product, and the effectiveness was
Wang, XuHan, ChaoDeng, Jianjiao
With the technology of electronic chassis control systems of automobile is widely used, the functional interaction between brake system and the other electronic systems may lead to brake boost degradation. Therefore, it is necessary to find out brake boost degradation events in the quite large number of driving scenarios. To solve the difficulty of thoroughly and quickly searching for brake boost degradation conditions in the large number of driving scenarios, based on Mechatronic-Hardware-In-the-Loop (M-HIL) technology, this paper constructs an electrical chassis system M-HIL bench to verify the function and performance of the electronic brake control system under actual chassis system conditions. To search and locate the brake boost degradation conditions rapidly and enhance the searching efficiency of levels boundary of affecting factors for brake boost degradation, firstly, based on pair-wise coverage combinatorial testing, brake boost degradation occurrence rate is estimated and
Guo, XiaotongLi, LunChen, ZhichengZhang, LiliangYan, LupingWang, WeiZh, Bing
The traditional braking system has been unable to meet the redundant safety requirements of the intelligent vehicle for the braking system. At the same time, under the change of electrification and intelligence, the braking system needs to have the functions of braking boost, braking energy recovery, braking redundancy and so on. Therefore, it is necessary to study the redundant braking boost control of the integrated electro-hydraulic braking system. Based on the brake boost failure problem of the integrated electro-hydraulic brake system, this paper proposes a redundant brake boost control strategy based on the Integrated Brake Control system plus the Redundant Brake Unit configuration, which mainly includes fault diagnosis of Integrated Brake Control brake boost failure, recognition of driver braking intention based on pedal force, pressure control strategy of Integrated Brake Control brake boost and pressure control strategy of Redundant Brake Unit brake boost. The designed control
Dexing, LaoLuping, YanQinghai, SuiLong, CaoShang, GaoZhigang, ChenMingxing, RenZhicheng, Chen
Road friction coefficient is an important characteristic parameter of the interaction force between road surface and tire, which plays a crucial role in vehicle dynamics control. At present, it is difficult to measure the road friction coefficient directly. Therefore, it is a challenge to estimate the road adhesion coefficient accurately and reliably. Considering that tire force is an important reflection of road adhesion coefficient, a road adhesion coefficient estimation method based on nonlinear tire force observation is proposed in this paper. First, based on the nonlinear Dugoff tire model, the nonlinear observer of tire longitudinal force is established. Then a 7-degree-of-freedom (DOF) nonlinear vehicle model is established, and the noise adaptive square root cubature kalman filter (ASRCKF) method is used to estimate the lateral force of the front and rear wheels. Finally, based on the ASRCKF algorithm, combined with the longitudinal force and lateral force information, the all
Zhang, XiaotingZhao, QiWu, DongmeiLiu, XingFang, JiamengFu, YuanyiWei, Jian
This paper proposes a path-tracking and direct yaw moment integrated control strategy based on linear matrix inequality (LMI) and terminal sliding mode for autonomous distributed drive electric vehicles (A-DDEVs) equipped with a steer-by-wire (SBW) system. This strategy effectively attenuates the effects of external disturbances and parameter uncertainties on path tracking, thereby enhancing vehicle safety. The control-oriented vehicle model accounts for roll effects, with the system state matrix incorporating mismatched norm bounded uncertainties. Firstly, for overall vehicle motion control, an LMI-based integral sliding mode controller (ISMC) is designed to generate desired front wheel steering angle and additional yaw moment. This aims to converge path-tracking errors and ensure vehicle stability. A sufficient condition for the existence of a sliding surface ensuring asymptotic stability of the sliding mode dynamics is provided, along with a demonstration of the attainability of the
Li, DanyangZhao, YouqunLin, FenZhang, ChenxiYu, Song
The application trend of automated driving is gaining significant concern, making it increasingly crucial to validate automated driving within the stochastic simulated traffic flow environment from both time and cost perspectives. The stochastic traffic flow model attempts to encapsulate the variability inherent in traffic conditions through a stochastic process. This approach is particularly important as it accounts for the unpredictable nature of traffic, which is often not fully captured by traditional deterministic testing scenarios. However, while stochastic traffic flow models have made strides in simulating the behavior of traffic participants, there remains a significant oversight in the simulation of vehicles’ driving trajectories, leading to unrealistic portrayals of their behaviors. The trajectories of vehicles are a critical component in the overall behavior of traffic flow, and their accurate representation is essential for the simulation to reflect real-world driving
Gao, YiboCao, PengYang, Aixi
Learning-based motion planning methods such as reinforcement learning (RL) have shown great potential of improving the performance of autonomous driving. However, comprehensively ensuring safety and efficiency remain a challenge for motion planning technology. Most current RL methods output discrete behavioral action or continuous control action, which lack an intuitive representation of the future motion and then face the problems with unstable or reckless driving behavior. To address these issues, this work proposes an interaction-aware reinforcement learning approach based on hybrid parameterized action space for autonomous driving in lane change scenario. The proposed method can output high-level feasible trajectory and low-level actuator control command to control the vehicle’s motion together. Meanwhile, the reward functions for the local traffic environment are designed to evaluate the effect of the interaction between ego vehicle and surrounding vehicles. The contributions of
Li, ZhuorenJin, GuizheYu, RanLeng, BoXiong, Lu
There is evidence to suggest that males and females respond differently in motor vehicle collisions, making it important to study how both sexes respond to vehicle safety systems. The THOR 5th-percentile female (THOR-05F) anthropomorphic test device (ATD) was developed to represent a small female occupant better than the Hybrid III 5th-percentile female (HIII-05F) ATD. However, there are few studies in which they have been directly compared. Therefore, the objective of this study was to compare the responses of the two ATDs in matched frontal sled tests simulating a realistic driver seat environment. A 7th-generation Toyota Camry driver seat test buck was used with Camry parts (i.e., 3-point belt, modified seat, steering wheel, airbag, and column). The belt was equipped with a 4-kN load limiter and pretensioner. Rigid foam (65 psi) was used to represent the knee bolster. Thirteen tests were conducted using speeds of 30 and 56 kph. Chest bands were used to measure external chest
Boyle, David M.Albert, Devon L.Hardy, Warren N.Kemper, Andrew R.
This study investigates into the mechanical performance of load vehicle brake liners that have been enhanced with nanomaterials, employing Finite Element Analysis (FEA). The analysis involves a detailed investigation of structural, thermal, and wears characteristics to evaluate the overall performance of the brake liners. This research aimed to reduce the stress and pressure exerted on vehicle brakes during braking by conducting a comprehensive stress analysis of the braking system. Finite Element Analysis serves as a powerful tool for simulating and assessing the behavior of complex structures under varying conditions. In this research, the study employs FEA techniques to model and analyze the load vehicle brake liners, considering the incorporation of nanomaterial’s, with a special emphasis on materials like Al2O3.The aim is to gain a profound understanding of how these nanomaterial’s influence and improve the mechanical aspects of the brake liners
Kumar, N. MathanThillikkani, S.Kannan, S.Soundararajan, S.Bharti, Kundan
This SAE standard specifies a method for testing and measuring a normalized elastic constant of brake pad assemblies using ultrasound. This document applies to disc brake pad assemblies and its coupons or segments used in road vehicles
Brake Linings Standards Committee
The parametrized twist beam suspension is a pivotal component in the automotive industry, profoundly influencing the ride comfort and handling characteristics of vehicles. This study presents a novel approach to optimizing twist beam suspension systems by leveraging parametric design principles. By introducing a parameter-driven framework, this research empowers engineers to systematically iterate and fine-tune twist beam designs, ultimately enhancing both ride quality and handling performance. The paper outlines the theoretical foundation of parametrized suspension design, emphasizing its significance in addressing the intricate balance between ride comfort and dynamic stability. Through a comprehensive examination of key suspension parameters, such as twist beam profile, material properties, and attachment points, the study demonstrates the versatility of the parametric approach in tailoring suspension characteristics to meet specific performance objectives. To validate the
Pakala, Pradeep KumarGanesh, Lingadalu
The cumulative accumulation of greenhouse gases (GHGs) historically has resulted in the current problem of global warming. This is further compounded by developed nations, therefore, to fill this gap enhanced global actions are decided. Considering Country’s development need, available resources, government boost for agriculture, A holistic approach for 4W PVs is taken considering well to wheel emissions, as there are other ways to reduce tank to wheel emissions but may not be very effective for overall country’s GHG reduction. Major emissions in vehicle use are calculated based on Carbon intensity of various fuels & optimum pathway for Indian scenario is prepared & discussed in the paper considering all aspects CO2 reduction, development & motorization need. This paper explains multiple pathways for Passenger Vehicle (PV) Sector to be considered to meet country’s GHG needs
Sarna, NishantJaiswal, HarshRani, AbhaDwivedi, VipinVashisth, AjayBhat, AnoopBhat, Anoop
Torque vectoring offers drive flexibility and continuous individual wheel torque regulation, which is unavailable in conventional transmission systems. Electric vehicles with multiple drivetrains and torque-vectoring system can significantly enhance vehicle response and handling, and thus the active safety, efficiency, and performance of the vehicle in all driving conditions. The current methodology of predicting performance characteristics is limited through slip rate calculations and yaw rate calculations. The vehicle dynamic performance evaluations with above said methodologies holds good for dynamic cornering. But in the scenarios where the vehicle moving in straight drive with different wheel traction requirements on either side (split-μ condition) and that requires torque vectoring. These above methods do not help to evaluate the performance of vehicle. Because these methodologies are based on predicting dynamic center-of-gravity values of vehicle. In the proposed methodology
Ramakrishnan, Gowtham RajBaheti, Palash
Heavy-duty vehicles, particularly those towing higher weights, require a continuous/secondary braking system. While conventional vehicles employ Retarder or Engine brake systems, electric vehicles utilize recuperation for continuous braking. In a state where HV Battery is at 100% of SOC, recuperated energy from vehicle operation is passed on to HPR and it converts electrical energy into waste heat energy. This study focuses on identification of routes which are critical for High Power Brake Resistors (HPRs), by analyzing the elevation data of existing charging stations, the route’s slope distribution, and the vehicle’s battery SOC. This research ultimately suggests a method to identify HPR critical vehicle operational routes which can be useful for energy efficient route planning algorithms, leading to significant cost savings for customers and contributing to environmental sustainability
Thakur, ShivamSalunke, OmkarAmbuskar, MandarPandey, Lokesh
Brake disc temperature is a critical factor influencing the performance and wear characteristics of braking systems in automobiles. Hence it is very important to optimize the correlation of brake disc temperature prediction with test. In this study critical parameters of Brake Disc temperature evaluation are identified, and algorithm is used to optimize the critical parameters to achieve the correlation of prediction with experiment data. Through a series of controlled experiments and simulations, disc temperatures are monitored under different braking conditions and simultaneously input parameters for prediction are optimized to achieve the correlation. Statistical methods were applied to evaluate the observed correlations and to model the predictive behavior of brake disc temperatures. Finally, A front-loading tool is developed to optimize the brake disc keeping target thermal capacity via algorithm. The findings of this study are expected to contribute to the enhancement of brake
Negi, Ayush SinghKochhar, Raman
Sports Utility Vehicles (SUVs) Braking performance is a critical parameter, and it is described by the measure of stopping distance & stability of the vehicle at a specified speed. When it comes to electric vehicles, balancing tyre performance parameters like RRc, traction, wear, ride and handling, weight and NVH is challenging due to higher axle weights, higher moment of inertia and high instant torque delivery. This study presents the braking performances of EV-intended tyres at various contact surfaces in both dry & wet conditions. Impact of tyre design attributes like tyre tread pattern, contact patch, tread compound, tyre carcass construction & characteristics studied on 3 different tyres including ultra-high-performance tyres on braking performances. This paper contains the study & analysis of 1) Footprint analysis concerning the shape of the contact patch, pressure distribution, land-sea ratio, and contact area 2)Tyre tread design such as NSD, grooves, ribs & sipes design and
V, PadmasriVellandi, VikramanSundaram, RaghupathiSingh, Ram KrishnanP, PraveenChittibabu, Santhosh
Turning circle diameter (TCD) of vehicle is critical parameter which is used to determine the turning capability of vehicle. TCD is the smallest circular turn that a vehicle can make of given drive track. The TCD depends on vehicle wheel lock angles, wheelbase, and geometric architecture of vehicle. The Regulation certification requirement of steering system, states that the maximum TCD should be less than 24m & TCCD (Turning clearance circle diameter) 25m (M&N category Vehicle). IS 12222:2011 & UN R79 are regulation related to Steering system. This invention relates to measuring the TCD of vehicle. The conclusion of this technical paper proposes new innovative method to overcomes and address the below limitations. It provides accurate and precise results by adjusting room for error. It eliminates the approximation ambiguity. It reduces the manual intervention of human effort to carry out the entire measurement process. It improves the safety of measurement technician, since it
Yadav, SatyendraOjha, VijayChatterjee, AnupamSaikrishna, VNLKarthik, V
The structural integrity of the steering wheel is important for vehicle operations. It is subjected to various load conditions during the vehicle motion. It thus becomes important to understand various aspects of the same which include stiffness, natural frequency, and regulatory requirements i.e. body block test, head form impact test, etc. Simulation plays an important role in understanding the structural integrity and validation requirements of products at the design stage itself. This paper discusses the modeling and simulation of the steering wheel at both the armature level and the complete steering wheel level. As armature is critical from a structural strength and stiffness point of view, certain simulations like modal analysis are performed first at the armature level, and design iterations were done to achieve the natural frequency target. The list of simulations performed includes modal analysis, bending rigidity, static compression, bending stiffness, body block test and
Rathore, Gopal SinghKumar, AnkitChauhan, Adesh KumarDas, A.P.Sahu, Hemanta Kumar
Hydro-pneumatic suspension is widely used because of its desirable nonlinear stiffness and damping characteristics. However, the presence of parameter uncertainties and high nonlinearities in the system, lead to unsatisfactory control performance of the traditional controller in practical applications. In response to this challenge, this paper proposes a novel stability control method for active hydro-pneumatic suspension (AHPS). Firstly, a nonlinear mathematical model of the hydro-pneumatic suspension, considering the seal friction, is established based on the hydraulic principle and the knowledge of Fluid dynamics. On the basis of the established hydro-pneumatic suspension nonlinear model, a vehicle dynamics model is established. Secondly, an active disturbance rejection sliding mode controller (ADRSMC) is designed for the vertical, roll, and pitch motions of the sprung mass. The lumped disturbance caused by the model nonlinearities and uncertainties is estimated by the extended
Niu, ChangshengLiu, XiaoangJia, XingGong, BoXu, Bo
Investigation of clunking noise in a steering system fitted into a test vehicle indicated radial lash in sliding bushings, which are press fitted into housings, as one of the possible causes for clunk. To study the behavior of sliding bush under the influence of assembly clamp loads, manufacturing tolerances and road loads, sliding bushings are modelled in more detail in the steering system finite element models. Further for correlating the bushing measurements from test vehicle to the finite element model, a radial lash output is derived which is not directly available in finite element software. Finally, the correlated model is used to assess the updated design and check for radial lash improvement
Badduri, JaideepPandey, Ashish
Since the inception of battery driven electric vehicles in the automotive world, there has been a constant challenge in maximizing the range of an electric vehicles through various means including battery technology, vehicle weight optimization, low drag coefficients etc. The tires being a viscoelastic composite material have now become a vital to the range performance of an EV. The rolling resistance of a tire is now become a hotter topic than ever. The rolling resistance coefficient (RRC) is the measure of energy loss during rolling due to viscoelastic dissipation in the tire. The viscous dissipation in tire arises due to hysteresis in the various components of a tire including tread, sidewall, inner liner, apex etc rubber compounds. The internal friction between layers of body ply, steel belts and tread crown ply also contribute to the internal heat generation. Therefore, the development of ultra-low RRC tires is a serious challenge for tire engineers. Nevertheless, the recent
Mishra, NitishSingh, Ram Krishnan
In the fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight and cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. It also seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level real world usage pattern simulation methodology to validate and correlate the vehicle level targets for micro strain, wheel forces and displacement on suspension components like optimized Z spring, torque rods, pan hard rod & mounting brackets of newly developed air suspension for buses
Tangade, Atul BanduBabar, SunilBankar, Milind AchyutraoMehendale, RavindraDhumal, KailasBhusari, DeepakSonawane, RavindraShinde, Saurabh
Typically, an automotive passenger car wheel rim can withstand gradual loading contributed from the vehicle during cornering and high-speed maneuvering and as per the standard as well as customer requirements wheel has to withstand some impact forced contributed from radial and inclined loading. But in some cased wheel rim may not withstand the impact forces generated during impact on potholes and curbs with high-speed maneuvering. This Study helps to understand the impact on wheel rim and the forces acting on the rim flanges during pothole impact and high-speed curb impact. For In this study author tends to explain about the design of the rim flanges considering the impact forces the wheel rims are exposed to during pothole impact. Also in this study, road load data for a double pothole impact in electric vehicle with lightest alloy wheel rim in the segment is acquired to understand the loads acting on the rim. Based on the simulation iterations with several design changes and
Thiyagarajan, SriramJithendhar, ASingh, Ram KrishnanSundaram, RaghupathiPaua, Ketan
The SAE J2923 procedure is a recommended practice that applies to on-road vehicles with a GVWR below 4540 kg equipped with disc brakes
Brake Dynamometer Standards Committee
Komatsu introduced its first battery-electric load-haul-dump (LHD) machine, the WX04B, at the MINExpo tradeshow in September. The WX04B is designed specifically for narrow vein mines in underground hard rock mining operations. Komatsu is pairing the electric LHD with its new OEM-agnostic 150-kW battery charger that was also revealed in Las Vegas. The 4-tonne WX04B LHD features what Komatsu claims is best-in-class energy density, offering up to four hours of runtime on a single charge. The Li-ion NMC (nickel-manganese-cobalt) battery from Proterra has a capacity of 165 kWh and nominal voltage of 660 V. Fewer charge cycles are needed compared to competitors, the company claims, which helps to maximize operational efficiency and minimize downtime. Proterra and Komatsu began their collaboration on the LHD's H Series battery system in 2021, long before Komatsu's acquisition of American Battery Solutions (ABS) in December 2023
Gehm, Ryan
Items per page:
1 – 50 of 14360