Browse Topic: Chassis
In traditional four-wheeled automobiles, the imbalance between the roll moment, which is the product of the centrifugal force during a turn acting on the center of gravity and the height of the center of gravity, and roll stiffness, which is the product of the left-right difference in tire vertical load and the tread width and commonly used among automotive suspension engineers, of the front and rear sections necessitates body torsional rigidity. However, there is a lack of specific cases and guidelines for constructing the body structure of three-wheeled PMVs (Personal Mobility Vehicles) with a tilting mechanism from the perspective of vehicle dynamics characteristics. In this paper, the basic considerations related to the dynamics of such three-wheeled PMVs are investigated. We use the term “torsional rigidity” to refer to the stiffness as the torsional deformation of the body itself, and the term “roll stiffness” to refer to the moment that counteracts the roll moment during a turn
The rear swing arm, a crucial motorcycle component, connects the frame and wheel, absorbing the vehicle’s load and various road impacts. Over time, these forces can damage the swing arm, highlighting the need for robust design to ensure safety. Identifying potential vulnerabilities through simulation reduces the risk of failure during the design phase. This study performs a detailed fatigue analysis of the swing arm across different road conditions. Data for this research were collected from real-vehicle experiments and simulation analyses, ensuring accuracy by comparing against actual performance. Following CNS 15819-5 standards, road surfaces such as poorly maintained, bumpy, and uneven roads were tested. Using Motion View, a comprehensive multi-body dynamic model was created for thorough fatigue analysis. The results identified the most stress-prone areas on the swing arm, with maximum stress recorded at 109.6N on poorly maintained roads, 218.3N on bumpy surfaces, and 104.8N on
Most electric 2-wheelers on the market today seek to replace combustion engine vehicles from 50cc to 150cc which equates to an electric motor power between 2 and 12 kW. The traction voltage level of these vehicles is mostly between 44V and 96V. However, the actual choice of voltage on a specific vehicle seems to be arbitrary and higher voltage does not necessarily correlate with higher motor power. This paper seeks to highlight considerations and tradeoffs which feed the choice of traction voltage levels. Important criteria are electrical safety standards and their impact on vehicle electrical architecture, the performance and availability of key electronics parts such as capacitors, MOSFETs, and gate drivers, while also highlighting functional safety aspects. This paper shows by a comprehensive analysis of the motor drive that for the vehicle class mentioned above the traction voltage level can be kept below 60V without any performance impact, while also ensuring electrical and
This SAE Aerospace Information Report (AIR) provides information on the parking brake system design for a variety of aircraft including part 23, 25, 27, and 29. The document includes a discussion of key technical issues with parking brakes. This document does NOT provide recommended practices for parking brake system design.
This SAE Aerospace Recommended Practice (ARP) establishes a procedure for disposition of aircraft wheels that have been involved in accidents/incidents or have been exposed to overheat conditions or overload conditions from loss of adjacent tire pressure (paired wheels) or wheel tie bolts.
Automotive signal processing is dealt with in several contributions that propose various techniques to make the most out of the available data, typically for enhancing safety, comfort, or performance. Specifically, the accurate estimation of tire–road interaction forces is of high interest in the automotive world. A few years ago the T.R.I.C.K. tool was developed, featuring a vehicle model processing experimental data, collected through various vehicle sensors, to compute several relevant virtual telemetry channels, including interaction forces and slip indices. Following years of further development in collaboration with motorsport companies, this article presents T.R.I.C.K. 2.0, a thoroughly renewed version of the tool. Besides a number of important improvements of the original tool, including, e.g., the effect of the limited slip differential, T.R.I.C.K. 2.0 features the ability to exploit advanced sensors typically used in motorsport, including laser sensors, potentiometers, and
This article analyses the fundamental curving mechanics in the context of conditions of perfect steering off-flanging and on-flanging. Then conventional, radial, and asymmetric suspension bogie frame models are presented, and expressions of overall bending stiffness kb and overall shear stiffness ks of each model are derived to formulate the uniform equations of motion on a tangent and circular track. A 4 degree of freedom steady-state curving model is formulated, and performance indices such as stability, curving, and several parameters including angle of attack, tread wear index, and off-flanging performance are investigated for different bogie frame configurations. The compatibility between stability and curving is analyzed concerning those configurations and compared. The critical parameters influencing hunting stability and curving ability are evaluated, and a trade-off between them is analyzed. For the verification, the damped natural frequencies and mean square acceleration
Following the current need of the automotive sector on reducing secondary emissions coming from non-exhaust sources, this paper presents an innovative zero-emissions magneto-rheological braking system, specifically designed to reach future brake emission targets while maintaining safety brake performance. In particular, the article focusses on the experimental setup design to evaluate a full-sized brake prototype under real load conditions and it presents the first experimental results. The zero-emission braking prototype has been developed for reaching performance compatible with the automotive application, specifically a segment-A vehicle, being able to generate enough braking torque as to perform an emergency brake maneuver without any other traditional braking system. A central aspect to confirm the system’s performance is the development of a test bench engineered for assessing the magneto-rheological braking technology. Detailed insights into the comprehensive strategy
Objective: This study aims to evaluate the biofidelity of the Advanced Chinese Human Body Model (AC-HUMs) by utilizing a generic sedan buck model and post-mortem human surrogates (PMHS) test data. Methods: The boundary conditions of the simulation were derived from the PMHS test with the buck vehicle. The methodology involved the pose adjustment of the upper and lower extremities of AC-HUMs, executed through a pre-simulation approach. Subsequently, a 200 milliseconds whole body pedestrian crash simulation was conducted using the buck vehicle and the AC-HUMs pedestrian model. The trajectories of AC-HUMs during the period from initial position to head impact were recorded, including the Head CG, T1, T8 and pelvis. Based on the knee joint, the corridors of trajectories from the PMHS test were scaled to match the Chinese 50th percentile male to evaluate the biofidelity of AC-HUMs's kinematic response. Furthermore, the biomechanical responses were compared with the PMHS tests, including
Taking a commercial vehicle cab suspension system as the research focus, a rigid-flexible coupled dynamics model was established based on the nonlinear characteristics of the integrated damper air spring and bushings. Time-domain vibration acceleration signals were acquired at the connection points between the frame, cab, and suspension. The vibration signals at the frame and suspension connection points were input into the simulation model, where the vibration responses at the cab and suspension connection points were calculated and analyzed using the established cab suspension system model. The accuracy of the model was verified by comparing the simulation results with experimental data. The established cab suspension system model was further used to evaluate human vibration comfort within the cab, following national standards for subjective human perception. A piecewise polynomial function was employed to fit the stiffness-damping characteristics of the integrated damper air spring
Magnetorheological (MR) dampers, known for their remarkable dependability and cost-effectiveness, have established themselves as prime semi-active vibration control devices in engineering systems. MR dampers are categorized as adaptive devices because their features may be readily adjusted by applying a regulated voltage signal. Their ability to offer superior performance while mitigating the drawbacks of fully active actuators underscores their practical significance. This research is to investigate some system hybrid controllers using a combination state derivative feedback and a linear-quadratic regulator for use in conjunction with the damper controller of a semi-active suspension of a Quarter vehicle model to improve ride comfort and vehicle stability. The mathematical model of 3 degrees of freedom for semi-active suspension using MR dampers will be derived and simulated using MATLAB and SIMULINK software. In order to quantify the effectiveness of the suggested control strategies
When the aircraft towbarless towing vehicle (TLTV) drives on road surfaces that are wet, icy, oily, or covered with debris, as well as under conditions such as overloaded towing, uneven distribution of aircraft weight, sudden acceleration and sharp turns, brake system failures, or severe tire wear, it may slip due to a mismatch between traction force and ground adhesion. As a key piece of ground support equipment at airports, the anti-slip performance of TLTV is crucial for ensuring safe and efficient ground movement of aircraft. With continuous advancements in control technology, extensive research has been conducted on anti-slip control strategies for TLTV. This paper reviews relevant literature in the field of anti-slip control for TLTV in recent years, focusing on the current status of anti-slip control technology development, control strategies, and the application of co-simulation technology in anti-slip control. Based on co-simulation using Matlab and Adams software, this paper
The suspension system could transmit and filter the forces between the body and road surface, which affects vehicle ride comfort and road maintenance capability. Compared to traditional passive and semi-active suspension, Active Suspension Systems (ASS) could automatically adjust the suspension stiffness, damping force, and body height according to changes in the vehicle's load distribution, travelling speed, and braking action through the addition of a power source such as a linear motor. Although the existing advanced control methods could help to effectively improve the driving quality of vehicles equipped with ASS, the conflict between ride comfort and road maintenance capacity is still a difficult problem to be solved. Therefore, an Active Suspension System optimal control strategy considering vehicle ride comfort and road maintenance capability is proposed in this paper. Firstly, a quarter ASS model and a road model are respectively developed based on the system dynamics
With the continuous development of automotive intelligence, there is an increasing demand for vehicle chassis systems to become more intelligent, electronically controlled, integrated, and lightweight. In this context, the steer-by-wire system, which is electronically controlled, offers high precision and fast response. It provides greater flexibility, stability, and comfort for the vehicle, thus meeting the above requirements and has garnered widespread attention. Unlike traditional systems, the steer-by-wire system eliminates mechanical components, meaning the road feel cannot be directly transmitted to the steering wheel. To address this, the road feel, which is derived from the vehicle's state or integrated with environmental driving data, must be simulated and transmitted to the steering wheel through a road feel motor. This motor generates feedback that mimics the road feel, similar to that experienced in a conventional steering system. This simulation enhances the driver's
Novel experimental and analytical methods were developed with the objective of improving the reliability and repeatability of coast-down test results. The methods were applied to coast-down tests of a SUV and a tractor-trailer combination, for which aerodynamic wind-tunnel data were available for comparison. The rationale was to minimize the number of unknowns in the equation of motion by measuring rolling and mechanical resistances and wheel-axle moments of inertia, which was achieved using novel experimental techniques and conventional rotating-drum tests. This led to new modelling functions for the rolling and mechanical resistances in the equation of motion, which was solved by regression analysis. The resulting aerodynamic drag coefficient was closer to its wind-tunnel counterpart, and the predicted low-speed road load was closer to direct measurements, than the results obtained using conventional methods. It is anticipated that applying the novel techniques to characterize the
The research object of this project is the anti-slip and lateral stability control technique for a distributed three-axis drive vehicle. What differs from the traditional four-motor power system layout is that the third axle has two motors, while the second axle only has one motor. Compared with the traditional design, this layout can reduce dependence on battery performance and maintain motor operation in a high-efficiency range by switching between different operating modes. For example, when driving at high speeds, only the motor on the second axle works, which can improve motor efficiency. When accelerating or climbing, all motors work to provide a large power output. In the research, the vehicle model was first established in Simulink, and then co-simulated with TruckSim. The drive anti-slip control first identified the optimal slip rate for the road, and then used the sliding mode control to determine the driving torque for each wheel, achieving good control effects under various
With the continuous advancement of automotive intelligence, new energy vehicles are becoming increasingly popular. These vehicles demand a steering system independent of the engine, offering better control and enhanced steering performance. The steer by wire (SBW) system, known for its high precision and fast response, fulfills these requirements by providing improved flexibility, stability, and comfort. Consequently, SBW systems have attracted significant attention in both research and application domains. As the mechanical structure of the steer-by-wire system is canceled, the road feel can not be directly transmitted to the steering wheel, and it is necessary to apply the road feel obtained according to the state of the vehicle or combined with the planning of the driving environment to the steering wheel through the road feel motor to complete the road feel simulation so that the driver can feel the feedback similar to that of the traditional steering vehicles, which can not only
The propulsion system design of GM-Cadillac’s first electric vehicle Lyriq uses an optimized drive unit comprising interior permanent magnet (IPM) motors and silicon traction inverters. The main objective behind the drive unit design was to minimize energy losses and cost while maximizing hardware consolidation, range, performance, power density, and scalability. Two IPM motors with different length and number of stator turns are designed, while their rotor design and stator-conductor profile are kept the same. A high-speed rotor is designed to achieve higher power density. AC winding effect at higher speeds is mitigated by using a bar-conductor with much smaller cross section. The rotor surface has a special notch design to minimize acoustic noise, without use of rotor or stator skew. Also, the traction inverters in the Lyriq EV are engineered with a significant emphasis on being scalable and adaptable for various vehicle architectures while considering a broad range of requirements.
This paper introduces a novel approach to optimize battery power usage and optimal engine torque for Axle disconnect device engagement under power constrained scenarios for range extended hybrid vehicles. Range extended hybrid architecture provides benefits of BEV architecture and relief the range anxiety that BEV drivers often have. The Axle disconnect device helps improve the efficiency of the battery power usage when it is disconnected and provides better drivability and performance to fulfill driver demand when it is connected [1]. Under power constraint scenario, the disconnect device engagement could take too long or eventually fail to engage and result in degradation for drivability and vehicle level performance. This novel approach is utilizing the engine to either generate more power to spin up the disconnect motor faster under discharge limited case or generate less power to allow the disconnect motor to spin down under charge limited case. The effectiveness of this approach
The unicycle self-balancing mobility system offers superior maneuverability and flexibility due to its unique single-wheel grounding feature, which allows it to autonomously perform exploration and delivery tasks in narrow and rough terrains. In this paper, a unicycle self-balancing robot traveling on the lunar terrain is proposed for autonomous exploration on the lunar surface. First, a multi-body dynamics model of the robot is derived based on quasi-Hamilton equations. A three-dimensional terramechancis model is used to describe the interaction between the robot wheels and the lunar soil. To achieve stable control of the robot's attitude, series PID controllers are used for pitch and roll attitude self-balancing control as well as velocity control. The whole robot model and control strategy were built in MATLAB and the robot's traveling stability was analyzed on the lunar terrain.
Advancements in sensor technologies have led to increased interest in detecting and diagnosing “driver states”—collections of internal driver factors generally associated with negative driving performance, such as alcohol intoxication, cognitive load, stress, and fatigue. This is accomplished using imperfect behavioral and physiological indicators that are associated with those states. An example is the use of elevated heart rate variability, detected by a steering wheel sensor, as an indicator of frustration. Advances in sensor technologies, coupled with improvements in machine learning, have led to an increase in this research. However, a limitation is that it often excludes naturalistic driving environments, which may have conditions that affect detection. For example, reductions in visual scanning are often associated with cognitive load [1]; however, these reductions can also be related to novice driver inexperience [2] and alcohol intoxication [3]. Through our analysis of the
A new method for bearing preload measurement has shown potential for both high accuracy and fast cycle time using the frequency response characteristics of the power transmission system. One open problem is the design of the production controller, which relies on a detailed sensitivity study of the system frequency response to changes in the bearing and system design parameters. Recently, an analytical model was developed for multi-row tapered roller bearings that includes all appropriate bearing and power transmission system design parameters. During the assembly process, some of the parameters related to the roller positions cannot be controlled. These parameters include the actual position of the first roller compared to the vertical axis, the relative position of the rollers between the bearing rows, and others. This work presents a sensitivity analysis of the effects of those uncontrollable parameters on the analytical model. The sensitivity study determines the percentage change
The braking performance of newer anti-lock braking system (ABS) equipped vehicles on roads with varying wetness levels is not well studied. Two late-model ABS-equipped vehicles were used to perform ABS-engaged braking tests on dry and wet asphalt and concrete surfaces from which vehicle speed and deceleration as a function of time were calculated. Tests were initially conducted on a dry surface before a water truck distributed water onto the road to create a wet road condition. A continuous series of tests were then performed until the road dried and the cycle was repeated multiple times. Across all tests of both vehicles on both road surfaces, deceleration levels generally decreased when the road was wet and returned to dry levels only when less than 25% of the road surface remained wet. Also, wet deceleration levels were high compared to the historical values used for wet roads. These findings provide a useful and readily identifiable boundary between what can be considered a dry and
Adverse weather conditions such as rain and snow, as well as heavy load transportation, can cause varying degrees of damage to road surfaces, and untimely road maintenance often results in potholes. Perception sensors equipped on intelligent vehicles can identify road surface conditions in advance, allowing each wheel’s suspension to actively adjust based on the road information. This paper presents an active suspension control strategy based on road preview information, utilizing a newly designed dual-chamber active air suspension system. It addresses the issue of point cloud stratification caused by vehicle body vibrations in onboard LiDAR data. The point cloud is processed through segmentation, filtering, and registration to extract real-time road roughness information, which serves as preview information for the suspension control system. The MPC algorithm is applied to actively adjust the nonlinear stiffness and damping of the suspension’s dual-chamber air springs, enhancing
To ensure the safety and stability of road traffic, autonomous vehicles must proactively avoid collisions with traffic participants when driving on public roads. Collision avoidance refers to the process by which autonomous vehicles detect and avoid static and dynamic obstacles on the road, ensuring safe navigation in complex traffic environments. To achieve effective obstacle avoidance, this paper proposes a CL-infoRRT planning algorithm. CL-infoRRT consists of two parts. The first part is the informed RRT algorithm for structured roads, which is used to plan the reference path for obstacle avoidance. The second part is a closed-loop simulation module that incorporates vehicle kinematics to smooth the planned obstacle avoidance reference path, resulting in an executable obstacle avoidance trajectory. To verify the effectiveness of the proposed method, four static obstacle test scenarios and four RRT comparison algorithms were designed. The implementation results show that all five
Hydro-pneumatic suspension is widely used due to its favorable nonlinear stiffness and damping characteristics. However, with the presence of parameter uncertainties and high nonlinearities in the hydro-pneumatic suspension system, the effectiveness of the controller is often suboptimal in practical applications. To mitigate the influence of these issues on the control performance, an adaptive sliding mode control method with an expanded state observer (ESO) is proposed. Firstly, a nonlinear mathematical model of hydro-pneumatic suspension, considering seal friction, is established based on the hydraulic principle and the knowledge of fluid mechanics. Secondly, the ESO is designed to estimate the total disturbance caused by the nonlinearities and uncertainties, and it is incorporated into the sliding mode control law, allowing the control law to adapt to the operating state of the suspension system in real time, which solves the effect of uncertainties and nonlinearities on the system
This study analyzes feedback and control methods for road feel simulation in automotive steer-by-wire front steering systems based on bidirectional control. Unlike traditional road feel design methods, this research employs a force-direct feedback-position type bidirectional control structure for the SBW system. It explores the mechanism of road feel generation in Electric Power Steering systems and designs a road feel simulation algorithm based on bidirectional control. Compared to conventional methods, the force direct feedback-position type bidirectional control method enables faster and more stable simulation of road feel torque. In low-speed driving, this approach provides higher steering ease, while at high speeds, the driving stability is enhanced, and both scenarios achieve an improved road feel. In the research, a complete vehicle model is established in Simulink at first, followed by a co-simulation with CarSim. A magic formula tire model and a nonlinear two-degree-of-freedom
To provide an affordable and practical platform for evaluating driving safety, this project developed and assessed 2 enhancements to an Unreal-based driving simulator to improve realism. The current setup uses a 6x6 military truck from the Epic Games store, driving through a pre-designed virtual world. To improve auditory realism, sound cues such as engine RPM, braking, and collision sounds were implemented through Unreal Engine's Blueprint system. Engine sounds were dynamically created by blending 3 distinct RPM-based sound clips, which increased in volume and complexity as vehicle speed rose. For haptic feedback, the road surface beneath each tire was detected, and Unreal Engine Blueprints generated steering wheel feedback signals proportional to road roughness. These modifications were straightforward to implement. They are described in detail so that others can implement them readily. A pilot study was conducted with 3 subjects, each driving a specific route composed of a straight
A large-scale logistics transport vehicle composed of two skateboard chassis is investigated in this paper. This unmanned vehicle with dual-modular chassis (VDUC) is suitable for transporting varying size of goods. The two chassis can be used jointly or driving separately as needed, which enhancing the reconfigurability of transport vehicle. Considering the road environment uncertainty and the rollover safety problem associated with large transport vehicle, this paper proposes the path planning of VDUC using the Artificial Potential Field(APF)+Model Predictive Control(MPC) while incorporating the rollover stability index. Due to the independent operation of the two modular chassis, based on the hierarchical control approach, the path following controller of the two modular chassis are designed separately according to the vehicle’s planned path. Distributed model predictive control is applied to coordinate the front and rear modular chassis, so it can realize the path following for the
The current research landscape in path tracking control predominantly focuses on enhancing tracking accuracy, often overlooking the critical aspect of passenger comfort. To address this gap, we propose a novel path tracking control method that integrates vehicle stability indicators and road curvature variations to elevate passenger comfort. The core contributions are threefold: firstly, we conduct comprehensive vehicle dynamics modeling and analysis to identify key parameters that significantly impact ride comfort. By integrating human comfort metrics with vehicle maneuverability indices, we determine the optimal range of dynamics parameters for maximizing passenger comfort during driving. Secondly, inspired by human driving behavior, we design a path tracking controller that incorporates an anti-saturation algorithm to stabilize tracking errors and a curvature optimization algorithm to mimic human driving patterns, thereby enhancing comfort. Lastly, comparative simulations with two
The advent of autonomous vehicles (AVs) marks a revolutionizing transformation in transportation, with the potential to significantly enhance safety and efficiency through advanced trajectory planning and optimization capabilities. A crucial component in realizing these benefits is the use of optimization-based control strategies for real-time path planning. Among these, model predictive path integral (MPPI) control algorithms stand out as a sampling-based stochastic control method, offering precise control in dynamic environments through random sampling. While the MPPI control has shown promising results, there has been limited investigation into the effects of different prediction horizon times on control performance of these algorithms. This paper seeks to address this gap by proposing a multi-input MPPI control method for AVs using a single-track vehicle dynamic model. Our research focuses on the influence of various prediction horizon times on trajectory optimization during lane
This paper investigates the development of a Finite Element model of a Mixed Service Drive truck tire sized 315/80R22.5 equipped with thermal simulating properties. The physical experiments were performed at a high-speed track in Hällered, Sweden for the truck combination travelling at a constant speed of 80 km/h. For this investigation, the Gross Combination Weight is approximately 42 metric tons. In the Finite Element Analysis environment, ESI Virtual Performance Solutions, the truck tire is designed with hyperelastic Ogden solid rubber definitions. The Ogden material definition is used in this application as it is more suitable to perform thermal and wear analysis within the Finite Element environment. The Finite Element truck tire model is simulated to increase in two different temperature rates. The truck tire model simulates the thermal build-up over time for select tires on a High-Capacity transport truck combination, particularly a driven tire on the tractor. Finite element
The Distributed Drive Electric Vehicles (DDEVs) offer advantages such as independently controllable driving and braking forces at each wheel, rapid response, and precise control. These features enable effective electronic stability control (ESC) by appropriately distributing torque across each wheel. However, traditional ESC systems typically employ single-wheel hydraulic differential braking, failing to fully utilize the independent torque control capabilities of DDEVs. This study proposes a hierarchical control strategy for distributed driving and braking ESC based on particle filter (PF) and fuzzy integral sliding mode control (FISMC). First, the vehicle state estimation layer uses a three-degree-of-freedom vehicle model and the PF to estimate sideslip angle and vehicle speed. Next, the target torque decision layer includes a target speed tracking controller and a yaw moment decision controller. The yaw moment decision controller uses the FISMC to determine additional yaw moment by
The primary functions of mounts include providing structural support, sound insulation, and vibration damping. Dynamic stiffness and loss angle are critical metrics for evaluating their NVH (Noise, Vibration, and Harshness) performance. This paper examines a floating decoupler hydraulic mount featuring a long decoupler membrane track. A nonlinear lumped parameter model is developed to calculate the dynamic stiffness and loss angle. The model incorporates fluid flow in the lower chamber and variations in the support reaction force of the decoupler membrane under switching conditions. Parameters of the nonlinear lumped parameter model, including rubber stiffness, equivalent piston area, and volumetric compliance of the fluid chamber, were analyzed and calculated using the finite element method. The influence of different decoupler membrane track structures on the frequency corresponding to the minimum high-frequency dynamic stiffness was investigated based on the established model. The
Drivers sometimes operate the accelerator pedal instead of the brake pedal due to driver error, which can potentially result in serious accidents. To address this, the Acceleration Control for Pedal Error (ACPE) system has been developed. This system detects such errors and controls vehicle acceleration to prevent these incidents. The United Nations is already considering regulations for this technology. This ACPE system is designed to operate at low speeds, from vehicle standstill to creep driving. However, if the system can detect errors based on the driver's operation of the accelerator pedal at various driving speeds, the system will be even more effective in terms of safety. The activation threshold of ACPE is designed to detect operational errors, and it is necessary to prevent the system from being activated during operational operations other than operational errors, i.e., false activation. This study focuses on the pedal operation characteristics of pedal stroke speed and
Items per page:
1 – 50 of 14471