Browse Topic: Suspension linkages

Items (28)
The SAE Formula, a national stage of the international competition, consists of a student project at universities in Brazil that seeks to encourage engineering students to apply the theoretical knowledge obtained in the classroom to practice, dealing with real problems and difficulties in order to prepare them for the job market. The SAE Formula prototype is developed with the intention of competing in the SAE national competition, where teams from various universities in Brazil meet to compete and demonstrate the projects developed during the year. Focusing on the vehicle dynamics subsystem, which can be divided into the braking, suspension, and steering systems of a prototype, the steering system includes main mechanical components such as the front axle sleeves, wheel hub, steering arm, steering column, rack, wheel, and tire. All these components work together with the suspension systems, including suspension arms, “bell crank,” and spring/shock absorber assembly. These components
Rigo, Cristiano Shuji ShimadaNeto, Antonio Dos Reis De FariaGrandinetti, Francisco JoseCastro, Thais SantosDias, Erica XimenesMartins, Marcelo Sampaio
The parametrized twist beam suspension is a pivotal component in the automotive industry, profoundly influencing the ride comfort and handling characteristics of vehicles. This study presents a novel approach to optimizing twist beam suspension systems by leveraging parametric design principles. By introducing a parameter-driven framework, this research empowers engineers to systematically iterate and fine-tune twist beam designs, ultimately enhancing both ride quality and handling performance. The paper outlines the theoretical foundation of parametrized suspension design, emphasizing its significance in addressing the intricate balance between ride comfort and dynamic stability. Through a comprehensive examination of key suspension parameters, such as twist beam profile, material properties, and attachment points, the study demonstrates the versatility of the parametric approach in tailoring suspension characteristics to meet specific performance objectives. To validate the
Pakala, Pradeep KumarGanesh, Lingadalu
Society's growing environmental awareness and increasing urbanisation require new and innovative vehicle concepts. The use of additive manufacturing (AM) expands the design freedom in component development. In this paper, these are utilised to further develop a front axle suspension for a new type of modular vehicle concept. The wheel suspension components are optimised on the basis of a new method that has already been applied in previous work. This is based on industry-standard load cases for the strength design of the components, as well as the available installation space determined for the design of the suspension components and the suitable configuration of the suspension components. The component geometries identified using numerical methods that are suitable for the force flow are optimised with regard to the integration of information, energy and material-carrying lines in the control arms and the lines are used as load-bearing structures as extensively as possible. High
Weitz, FabianDebnar, ChristianFrey, MichaelGauterin, Frank
In most farm tractors through the middle of the 20th century, a pressed steel frame chassis is used as a supporting part of the tractor on which the engine, wheels, axle assemblies, transmission, steering mechanism, brakes, and suspension members were mounted together. Farm tractors generally used in the agricultural field experiences a variation in the load and vibrations, which leads to failure/fracture in the frame/chassis. In order to reduce the failure/fractures in the chassis/frame, high strength materials are used. Therefore, the main objective of the paper is to identify the best suitable high strength material and most suitable cross section for a mini tractor chassis, so as to make it very strong to bear the heavy loads and shocks received while working in the farms in static conditions. In the present work, ladder chassis is designed and analyzed with three different types of cross sections like C, I and Rectangular box type. Considering the maximum load condition, analysis
Aruchamy, SathishkumarRanganathan, SoundararajanChithrambikai, Dharini ArumugamBABU, SANTHOSH
Front suspension frame is an integral part of automobile chassis which acts as a major load carrying structural member and connects different suspension components with body. It provides the required stiffness for achieving desired vehicle dynamics performance. Acting as a major road load path from tire to body, it also acts as a mounting base for suspension arm, steering and compression rod. Considering the competitive market conditions, increased fuel efficiency demand along with enhanced structural durability, it is important to evaluate suspension frame for stiffness and durability using Computer Aided Engineering (CAE) methodology so as to reduce product development time and First Time Right cost effective design. In this paper focus is given on CAE methodology used to design a light weight tubular kind of suspension frame for light commercial vehicle with stiffness comparable to conventional sheet metal suspension frame and similar durability performance with reduced weight
Thomas, MithunDhawan, RishabhL, DineshBabuPrakash, Anupam
In automobiles, front axle assembly is a main load bearing member and houses steering linkages. Front axle assembly has two main parts namely axle beam and axle arm, interconnected by a kingpin. This kingpin allows the rotation of axle arm during steering events. To avoid metal to metal contact between axle arm and kingpin, bushes are housed on the top and bottom half of the axle arm & in axle beam. Due to radial load and steering rotation, as a weak member, bushes will wear out faster. This affects the proper functioning of steering mechanism. Hence, the bushes need to be evaluated prior to its implementation in vehicle. In general, bushes are evaluated using Pin-On-Disc test as a comparative study, but it does not simulate exact boundary conditions as in vehicle. Next option is vehicle level validation but leads to more testing time and cost. Hence, as an optimized solution, the same vehicle operating conditions can be replicated in component level testing. Considering the boundary
Bakthavachalam, Sathish KumarN, Gopi KannanNarasimman, Obuli KarthikeyanR, Suresh
This SAE Information Report establishes a consistent procedure for measuring and analyzing the natural sway response of a particular trailer when attached to a particular vehicle under specific loading and operating conditions. This test procedure applies, but is not limited to, passenger cars, vans, light/medium-duty trucks as tow vehicles, and semitrailers with a Gross Vehicle Weight Rating (GVWR) of 11794 kg (26000 pounds) or less. Other applications include full trailers, tow dollies, tow bars, and the like. Other articulated vehicles can utilize this test procedure as long as the test does not exceed the linear behavior of the system. This test procedure does not apply to motorcycles towing trailers
Trailer Committee
Meeting various customer(s) requirements with the given automotive product portfolio within the stipulated time period is a challenge. Design of product configuration matrix is an intelligent task and it requires information about vehicle performance for different configurations which helps in deciding the level of new development. Most often the situation arises, particularly in the field of NVH, to strike the right balance between engine power and structural parameters of the body. The sensitivity of engine power on the overall NVH behavior is the key information necessary to take major business decisions. In this paper, the effect of change in torsional fluctuation of the engine on the NVH behavior of the rear wheel drive vehicle is experimentally studied. The torsional fluctuation of the driveline is given as an input with the help of an electric motor to the existing test vehicle at its differential end and the current NVH levels are measured. A test rig is built to change the
Rao, Manchi VenkateswaraFrank, JosRaghavendran, Prasath
A range of axle suspensions, comprising hydro-pneumatic struts and diverse linkage configurations, have evolved in recent years for large size mining trucks to achieve improved ride and higher operating speeds. This paper presents a comprehensive analysis of different independent front suspension linkages that have been implemented in various off-road vehicles, including a composite linkage (CL), a candle (CA), a trailing arm (TA), and a double Wishbone (DW) suspension applied to a 190 tons mining truck. Four different suspension linkages are modeled in MapleSim platform to evaluate their kinematic properties. The relative kinematic properties of the suspensions are evaluated in terms of variations in the kingpin inclination, caster, camber, toe-in and horizontal wheel center displacements considering the motion of a hydro-pneumatic strut. The results revealed the CL and DW suspensions yield superior kinematic response characteristics compared to the CA and TA suspensions. Toe-in and
Kang, YitingRakheja, SubhashZhang, Wenming
A valid human biodynamic model is very useful for studying the human body's response to whole body vibration. Whole body vibration is one of the important factors in the study of vehicle ride comfort. The environmental vibrations are transferred to the human body through floor and seat. Seated posture is the most commonly used position in automobiles. Therefore, studying the human body response in a seated position has attracted a lot of attention. Because the human body is in direct contact with the seat, its design plays a very important role in vibration transmission. In seat design, two important components are seat suspension and cushion. The mechanical properties of these components are stiffness, damping and mass. These properties can be changed by adjusting cushion material and seat suspension linkages. In this paper, three types of seat models are used. The first one is a hard seat. The second one has only cushion, and the third one is called an isolated seat which has seat
Kumbhar, PrasadXu, PeijunYang, James
The larger chassis space requirements of hybrid vehicles necessitates considerations of the suspension synthesis with limited lateral space, which may involve complex compromises among performance measures related to vehicle ride and handling. This study investigates the influences of suspension linkage geometry on the kinematic and dynamic responses of the vehicle including the wheel load in order to facilitate synthesis of suspension with constrained lateral space. A kineto-dynamic half-car model is formulated incorporating double wishbone suspensions with tire compliance, although the results are limited to kinematic responses alone. An optimal synthesis of the suspension is presented to attain a compromise among the different kinematic performance measures with considerations of lateral space constraints. In the kineto-dynamic model, the struts comprising linear springs and viscous dampers are introduced as force elements. Kinematic formulations of the proposed model are derived
Balike, Krishna PrasadRakheja, SubhashStiharu, Ion
This SAE Information Report establishes a consistent procedure for measuring and analyzing the natural sway response of a particular trailer when attached to a particular vehicle under specific loading and operating conditions. This test procedure applies, but is not limited to, passenger cars, vans, light/medium-duty trucks as tow vehicles, and semitrailers with a Gross Vehicle Weight Rating (GVWR) of 11 794 kg (26 000 pounds) or less. Other applications include full trailers, tow dollies, tow bars, and the like. Other articulated vehicles can utilize this test procedure as long as the test does not exceed the linear behavior of the system. This test procedure does not apply to motorcycles towing trailers
Trailer Committee
The Rover Analysis Modeling and Simulation (ROAMS) algorithm is to solve the kinematics of a wheeled mo- bile robot (rover) traversing on a rocky terrain. The rover is constructed using a “rocker-bogey-differential” type suspension and steering system as shown in the figure. By exploring the mechanical symmetry and the wheeled-terrain contact characteristics on a rough terrain profile, we developed a novel algorithm to carry out the rover’s configuration, including the vehicle’s wheels, steering and suspension linkages, and the position and orientation of the chassis. Because of its efficient and reliable numerical results, the ROAMS algorithm is well suited for the real-time simulation test bed, e.g., a simulation software system, of the mobile robotic vehicles in the planetary surface exploration missions. Currently, it is used to support the development of simulation and operation tools for the Mars Exploration Rover (MER) in the Mars ‘03 mission
This SAE Recommended Practice is intended to outline basic nomenclature for axle designs in common use for automotive drives. Over a period of years, there have been many different designs; however, for the purpose of this report, only the most common designs have been selected and only their general construction is illustrated to show the nomenclature of the various parts
SAE IC Powertrain Steering Committee
The test procedures describe a method to laboratory test suspension and steering system ball stud and/or socket assemblies for functional characteristics. This procedure is an extension of SAE J491b recommended practice on dimensional recommendations for ball studs towards a vehicle application. The tests are conducted either on ball studs individually or on complete integral assemblies representing the application
Materials, Processes and Parts Council
This SAE Recommended Practice is intended to outline basic nomenclature for axle designs in common use for automotive drives. Over a period of years, there have been many different designs; however, for the purpose of this report, only the most common designs have been selected and only their general construction is illustrated to show the nomenclature of the various parts
SAE IC Powertrain Steering Committee
The test procedures describe a method to laboratory test suspension and steering system ball stud and/or socket assemblies for functional characteristics. This procedure is an extension of SAE J491b recommended practice on dimensional recommendations for ball studs towards a vehicle application. The tests are conducted either on ball studs individually or on complete integral assemblies representing the application
Materials, Processes and Parts Council
Items per page:
1 – 28 of 28