Browse Topic: Electromagnetic suspension
This article proposes an electromagnetic damper (EMD) based on a ball screw mechanical structure actuator. To prove the damping effect of the new damper proposed in this paper. In this paper, the EMD suspension is validated on a quarter vehicle suspension. A mathematical model of quarter vehicle suspension is developed and a sliding mode variable structure controller is designed. This sliding mode controller enables vibration control of the suspension and improves ride comfort. To make the EMD track the ideal current effectively, a variable resistance circuit that can change the electromagnetic damping force is proposed to achieve the graded adjustment of resistance. A semi-active vehicle vibration control strategy was designed, and experiments were conducted using a quarter-vehicle test platform to verify the vibration-damping performance of this EMD suspension. The energy transfer to the road was analyzed and the higher the variable resistance, the more energy is transferred to the
The electrically interconnected suspension (EIS) is a novel suspension system that has gained attention due to its potential to improve vehicle vibration control. This article provides a comprehensive review of EIS and related technologies. It starts with an overview of the research on hydraulic interconnected suspension (HIS) and its limitations. Then, it discusses the development of the electromagnetic suspension (EMS) and its advantages in adjusting mechanical characteristics. The article focuses on the electrical network and decoupling control characteristics of EIS, demonstrating the principle of synchronous decoupling control of multiple vibration modes. A comparison of the structure and control characteristics of EIS and HIS highlights the advantages of EIS in vehicle vibration control. The article concludes by identifying some unresolved issues and potential research areas to guide future studies on EIS, such as improving the controllability and energy efficiency of EIS systems
In this paper, a nonlinear force model of an electromagnetic damper (EMD) is established and the model’s parameters are obtained by experiments. The effect of nonlinear force on vibration control of vehicle suspension system is analyzed by comparing the simulation data. Firstly, according to the mechanical and circuit structure of the EMD, a nonlinear model including electromagnetic force, friction force, and inertial force is established. Based on the EMD bench test, the mechanical parameters of the DC motor and the ball screw are obtained by the least square method. Then a quarter-car model including the electromagnetic suspension is established. By analyzing the transmission rate of the suspension response to the road excitation, the nonlinear force of the EMD shows an obvious influence on the high-frequency vibration performance of the suspension. Finally, using the linear quadratic regulator (LQR) controller combined with the control logic of the semi-active EMD, the vibration
Items per page:
50
1 – 9 of 9