Browse Topic: Steering systems

Items (2,083)
Path planning algorithms are critical technologies for intelligent ship systems, as scientifically optimized paths enable safe navigation and efficient avoidance of waterborne obstacles. To address the limitations of current ship path planning models, which often fail to adequately consider the combined effects of wind, current, and the International Regulations for Preventing Collisions at Sea (COLREGS), this study proposes an enhanced path planning method. The method integrates environmental factors, such as wind and current, and COLREGS into an improved Artificial Potential Field(APF) framework. Specifically, the influence of wind and current is modeled as "environmental forces," while the navigation constraints imposed by COLREGS are transformed into virtual obstacles, generating corresponding repulsive forces to refine the algorithm. Simulation experiments conducted under both single-ship and multi-ship scenarios validate the feasibility and effectiveness of the proposed approach
Shangqing, FengJinli, XiaoLangxiong, GanGeng, ChenHui, LiGuanliang, Zhou
Aiming at the problem of insufficient capacity of taxiways in hub airports, which combine the safety interval, conflict resolution and fair principles, a taxiway planning model is established by taking the shortest taxiway as the optimisation goal, considering fuel consumption and exhaust emissions. Dijkstra algorithm is used to transform the taxiing path into an adjacency matrix, and conflict resolution is carried out in a weighted way. Under the premise of ensuring zero conflict of taxiways, the total taxiing distance is reduced. Based on actual operational data from a hub airport in China, the results show that the proposed taxiing path planning method is feasible, shortening the aircraft taxiing distance and improving the surface taxiing efficiency.
Feng, BochengQi, XinyueZhang, Hongbin
There are various steering technologies are available in market nowadays. Hydraulic Power Steering (HPS) is one of them. As hydraulic name is linked to it the temperature role comes to play. While doing hard cornering the hydraulic oil used to assist the working in steering system get over heated, due to which oil loses its viscosity became one of the major causes of hard steer in trucks. Also, due to limited space the large heat exchanger cannot be used there. So, objective of this Thesis is to examine an effective solution which can be compact in design and at the same time should be effective to solve this problem. After going through literature analysis, we finalize that the Principal of Pulsating Heat Pipe could be a possible solution. So, for that we design different model based on previous research work in Creo and simulate them in Star CCM+ to finalize the optimality.
Saikrishna, VNLP, RudreshaYadav, SatyendraB, RuthvikaVishwasa, Viditha
In commercial vehicle, Hydraulic Power Assisted Steering (HPAS) gear plays a vital role to utilize the hydraulic force to assist the steering application. HPAS gear consists of housing, sector shaft, side cover, worm shaft, valve housing and rack piston. Side cover assembly is connected with the housing assembly through bolts which is in exposure to high pressure working hydraulic fluid. Since, some of the bolts are exposed to the fluid environment in the inner surface of the housing, during high pressure running condition, torque relaxation in the bolt is observed which leads to the loosening of bolts and tends to hydraulic fluid leakage through bolts. The current phosphate coated bolts are getting relaxed and loosened due to the bolts that exposed to the oil environment which have insufficient coefficient of friction in the bolt head and thread. To overcome the bolt failure during high pressure hydraulic application, various bolt coating analysis is experimented to withstand the
Ayyappan, RakshnaGovindarasu, AnbarasuP, RajasekarD, Senthil Kumar
Intelligent vehicles can utilize a variety of sensors, computing, and control technologies to autonomously perceive the environment and make decisions to achieve safe, efficient, and automated driving. If the speed planning of intelligent vehicles ignores the vehicle dynamics state, it leads to unreasonable planning speed and is not conducive to improving the accuracy of trajectory tracking control. Meanwhile, trajectory tracking usually does not consider the road and speed information beyond the prediction horizon, resulting in poor tracking precision that is not conducive to improving driving comfort. To solve these problems, this study proposes a new longitudinal speed planning method based on variable universe fuzzy rules and designs the piecewise preview model predictive control (PPMPC) to realize the vehicle trajectory tracking. First, the three-degrees-of-freedom vehicle dynamics model and trajectory tracking model are established and verified. Then, the variable universe fuzzy
Zhang, JieTeng, ShipengGao, JianjieZhou, XingxingZhou, Junchao
In this work, the large-angle rotational movement and vibration suppression of a flexible spacecraft are carried out based on an adjustable system. First the spacecraft model is transformed into a canonical affine control form, then two fuzzy systems are used: The first (of Takagi–Sugeno type) estimates the feedback linearization control law as a whole, while the second (of Mamdani type) adjusts and stabilizes the control parameters using the gradient descent technique and based on the minimization of the control error rather than the tracking error. Stability results are presented in terms of Lyapunov’s theory, and simulation tests illustrate the significant transient robustness of the closed-loop system against perturbations, the accurate trajectory control, and vibration suppression of the flexible spacecraft. Consequently, as will be shown later, the error will stay confined and converges quickly to zero, confirming the smoothing property of the proposed method using fuzzy logic
Bahita, Mohamed
The increased popularity of electric vehicles featuring distributed powertrains is enabling an easy and cost-effective implementation of torque vectoring. This is a renowned technique for controlling vehicle lateral dynamics having the objective of improving both vehicle handling and stability. Nevertheless, the application of torque vectoring at the front axle can increase the difficulty of usual driving tasks. This is because differential longitudinal forces at front tires generate a steering wheel torque, which can be badly perceived by the driver, up to the point of jeopardizing the benefits of having a torque vectoring control. The aim of this article is thus to study in detail the steering torque corruption caused by front axle torque vectoring for proposing some electric power steering control strategies compensating for this effect. Indeed, the electric power steering controllers developed in this study are designed based on the analytical derivation of the torque steer theory
Asperti, MicheleVignati, MicheleSabbioni, Edoardo
To address the issues of unreasonable collision avoidance path planning algorithms and inadequate safety in high-speed scenarios, a trajectory prediction-based collision avoidance path planning algorithm has been proposed. First, a trajectory prediction model is constructed using the long–short-term memory (LSTM) network, and the trajectory prediction model is trained and tested with the HighD dataset. Second, the future trajectory of the obstacle car is predicted, the future trajectory information of the two cars is combined to generate the lane-changing decision, and the three-times B-spline curves are used to generate the collision avoidance path clusters. The optimal collision avoidance paths are generated based on the multi-objective optimization function. Finally, build a MATLAB/CarSim simulation platform to verify the reasonableness and safety of the planned paths by taking the three scenarios of the continuous overtaking, preceding car pulling out, and the neighboring car
Liu, Xiao LongZhang, LeiLi, Peng KunXie, RuWang, QingLi, Ran Ran
Accurate and responsive trajectory tracking is a critical challenge in intelligent vehicle control system. To improve the adaptability and real-time performance of intelligent vehicle trajectory tracking controllers, we propose a genetic algorithm adaptive preview (GAAP) scheme that offline optimizes the preview distance based on vehicle speed and reference path curvature. The goal is to obtain the optimal preview distance that balances tracking accuracy, stability, and real-time performance. By establishing a relationship between optimal preview distance, speed, and curvature, we enhance real-time performance through online table checking during trajectory tracking. Our trajectory tracking error model takes into account not only position errors but also heading errors. A feedback–feedforward trajectory tracking controller is then designed to achieve rapid responses without compromising robustness. Simulation tests conducted under straight circular arc condition and double lane change
Cheng, KehanZhang, HuanhuanHu, ShengliNing, Qianjia
This research, path planning optimization of the deep Q-network (DQN) algorithm is enhanced through integration with the enhanced deep Q-network (EDQN) for mobile robot (MR) navigation in specific scenarios. This approach involves multiple objectives, such as minimizing path distance, energy consumption, and obstacle avoidance. The proposed algorithm has been adapted to operate MRs in both 10 × 10 and 15 × 15 grid-mapped environments, accommodating both static and dynamic settings. The main objective of the algorithm is to determine the most efficient, optimized path to the target destination. A learning-based MR was utilized to experimentally validate the EDQN methodology, confirming its effectiveness. For robot trajectory tasks, this research demonstrates that the EDQN approach enables collision avoidance, optimizes path efficiency, and achieves practical applicability. Training episodes were implemented over 3000 iterations. In comparison to traditional algorithms such as A*, GA
Arumugam, VengatesanAlagumalai, VasudevanRajendran, Sundarakannan
Autonomous driving technology has indeed become a focal point of research globally, with significant efforts directed towards enhancing its key components: environment perception, vehicle localization, path planning, and motion control. These components work together to enable autonomous vehicles to navigate complex environments safely and efficiently. Among these components, environment perception stands out as critical, as it involves the robust, real-time detection of targets on the road. This process relies heavily on the integration of various sensors, making data fusion an indispensable tool in the early stages of automation. Sensor fusion between the camera and RADAR (Radio Detection and Ranging) has advantages because they are complementary sensors, where fusion combines the high lateral resolution from the vision system with the robustness in the face of adverse weather conditions and light invulnerability of RADAR, as well as having a lower production cost compared to the
Cury, Hachid HabibTeixeira, Evandro Leonardo SilvaSilva, Rafael Rodrigues
The exponential growth of the agribusiness market in Brazil combined with the high receptivity among farmers of new technological solutions has driven the study and implementation of high technology in the field. This work aimed to apply servo-assisted driving technology to enable autonomous mobility in an off-road sugarcane truck responsible for harvesting sugarcane. The technology consists of a conventional hydraulic steering with a motor, ECU and torque and angle sensors responsible for reading input data converted from GPS signals and previously recorded tracking lines. The motor responsible for replacing 100% of the physical force generated by the driver acts in accordance with the required torque demand, and the sensors combined with the ECU correct the course to meet the follow-up line through external communication ports. The accuracy of the system depends exclusively on the accuracy of the GPS signal, in this case reaching 2,5 cm, which is considered extremely high accuracy
Oliveira Santos Neto, AntídioLara, VanderleiSilva, EvertonDestro, DanielMoura, MárcioBorges, FelipeHaegele, Timo
The SAE Formula, a national stage of the international competition, consists of a student project at universities in Brazil that seeks to encourage engineering students to apply the theoretical knowledge obtained in the classroom to practice, dealing with real problems and difficulties in order to prepare them for the job market. The SAE Formula prototype is developed with the intention of competing in the SAE national competition, where teams from various universities in Brazil meet to compete and demonstrate the projects developed during the year. Focusing on the vehicle dynamics subsystem, which can be divided into the braking, suspension, and steering systems of a prototype, the steering system includes main mechanical components such as the front axle sleeves, wheel hub, steering arm, steering column, rack, wheel, and tire. All these components work together with the suspension systems, including suspension arms, “bell crank,” and spring/shock absorber assembly. These components
Rigo, Cristiano Shuji ShimadaNeto, Antonio Dos Reis De FariaGrandinetti, Francisco JoseCastro, Thais SantosDias, Erica XimenesMartins, Marcelo Sampaio
Single lane changing is one of the typical scenarios in vehicle driving. Planning an appropriate lane change trajectory is crucial in autonomous and semi-autonomous vehicle research. Existing polynomial trajectory planning mostly uses cubic or quintic polynomials, neglecting the lateral jerk constraints during lane changes. This study uses seventh-degree polynomials for lane change trajectory planning by considering the vehicle lateral jerk constraints. Simulation results show that the utilization of the seventh-degree method results in a 41% reduction in jerk compared to the fifth-degree polynomial. Furthermore, this study also proposes lane change trajectory schemes that can cater to different driving styles (e.g., safety, efficiency, comfort, and balanced performance). Depending on the driving style, the planned lane change trajectory ensures that the vehicle achieves optimal performance in one or more aspects during the lane change process. For example, with the trajectory that
Lai, FeiHuang, Chaoqun
Path planning in parking scenarios for vehicles with Ackermann steering characteristics is a well studied problem in the literature. However, the recent emergence of four-wheel steering (4WS) chassis has brought new opportunities to the field of motion planning. Compared with front-wheel steering (2WS), 4WS vehicles offer higher flexibility and new maneuver modes such as CrabWalk. To utilize such new potential to further improve parking efficiency, this paper proposes a four-wheel steering oriented planning algorithm for parking scenarios. First, Hybrid A*-4WS is proposed to search for a coarse trajectory from the starting pose to the parking slot, with improved node expansion mechanism to incorporate four-wheel steering characteristics. Then a nonlinear programming (NLP) problem is formulated with four-wheel steering kinematic model to fully utilize the maneuver capability of 4WS vehicles, with OBCA used for collision avoidance constraints. Finally, the two algorithms are sequentially
Song, YufeiLiu, YuanzhiXiong, LuTang, Chen
SBW(Steer-by-wire) is a steering system that transmits the driver’s request and gives feedback to the driver through electrical signals. This system eliminates the mechanical connection of the traditional steering system, and can realize the decoupling of the steering wheel and the road wheel. In addition, this system has a perfect torque feedback system, which can accurately and delicately feedback the road surface information to the driver. However, vehicle driving deviation is one of the most common failure modes affecting vehicle performance in the automotive aftermarket, this failure mode can exacerbates tire wear, reducing their life cycle, at the same time, the driver must apply a counter torque to the steering wheel for a long time to maintain straight-line travel during driving. This increases the driver’s operational burden and poses safety hazards to the vehicle’s operation. Based on the steer-by-wire system and vehicle driving deviation characteristics, this paper proposes
Xiangfei, XuQu, Yuan
This paper proposes a path-tracking and direct yaw moment integrated control strategy based on linear matrix inequality (LMI) and terminal sliding mode for autonomous distributed drive electric vehicles (A-DDEVs) equipped with a steer-by-wire (SBW) system. This strategy effectively attenuates the effects of external disturbances and parameter uncertainties on path tracking, thereby enhancing vehicle safety. The control-oriented vehicle model accounts for roll effects, with the system state matrix incorporating mismatched norm bounded uncertainties. Firstly, for overall vehicle motion control, an LMI-based integral sliding mode controller (ISMC) is designed to generate desired front wheel steering angle and additional yaw moment. This aims to converge path-tracking errors and ensure vehicle stability. A sufficient condition for the existence of a sliding surface ensuring asymptotic stability of the sliding mode dynamics is provided, along with a demonstration of the attainability of the
Li, DanyangZhao, YouqunLin, FenZhang, ChenxiYu, Song
The application trend of automated driving is gaining significant concern, making it increasingly crucial to validate automated driving within the stochastic simulated traffic flow environment from both time and cost perspectives. The stochastic traffic flow model attempts to encapsulate the variability inherent in traffic conditions through a stochastic process. This approach is particularly important as it accounts for the unpredictable nature of traffic, which is often not fully captured by traditional deterministic testing scenarios. However, while stochastic traffic flow models have made strides in simulating the behavior of traffic participants, there remains a significant oversight in the simulation of vehicles’ driving trajectories, leading to unrealistic portrayals of their behaviors. The trajectories of vehicles are a critical component in the overall behavior of traffic flow, and their accurate representation is essential for the simulation to reflect real-world driving
Gao, YiboCao, PengYang, Aixi
Learning-based motion planning methods such as reinforcement learning (RL) have shown great potential of improving the performance of autonomous driving. However, comprehensively ensuring safety and efficiency remain a challenge for motion planning technology. Most current RL methods output discrete behavioral action or continuous control action, which lack an intuitive representation of the future motion and then face the problems with unstable or reckless driving behavior. To address these issues, this work proposes an interaction-aware reinforcement learning approach based on hybrid parameterized action space for autonomous driving in lane change scenario. The proposed method can output high-level feasible trajectory and low-level actuator control command to control the vehicle’s motion together. Meanwhile, the reward functions for the local traffic environment are designed to evaluate the effect of the interaction between ego vehicle and surrounding vehicles. The contributions of
Li, ZhuorenJin, GuizheYu, RanLeng, BoXiong, Lu
There is evidence to suggest that males and females respond differently in motor vehicle collisions, making it important to study how both sexes respond to vehicle safety systems. The THOR 5th-percentile female (THOR-05F) anthropomorphic test device (ATD) was developed to represent a small female occupant better than the Hybrid III 5th-percentile female (HIII-05F) ATD. However, there are few studies in which they have been directly compared. Therefore, the objective of this study was to compare the responses of the two ATDs in matched frontal sled tests simulating a realistic driver seat environment. A 7th-generation Toyota Camry driver seat test buck was used with Camry parts (i.e., 3-point belt, modified seat, steering wheel, airbag, and column). The belt was equipped with a 4-kN load limiter and pretensioner. Rigid foam (65 psi) was used to represent the knee bolster. Thirteen tests were conducted using speeds of 30 and 56 kph. Chest bands were used to measure external chest
Boyle, David M.Albert, Devon L.Hardy, Warren N.Kemper, Andrew R.
The structural integrity of the steering wheel is important for vehicle operations. It is subjected to various load conditions during the vehicle motion. It thus becomes important to understand various aspects of the same which include stiffness, natural frequency, and regulatory requirements i.e. body block test, head form impact test, etc. Simulation plays an important role in understanding the structural integrity and validation requirements of products at the design stage itself. This paper discusses the modeling and simulation of the steering wheel at both the armature level and the complete steering wheel level. As armature is critical from a structural strength and stiffness point of view, certain simulations like modal analysis are performed first at the armature level, and design iterations were done to achieve the natural frequency target. The list of simulations performed includes modal analysis, bending rigidity, static compression, bending stiffness, body block test and
Rathore, Gopal SinghKumar, AnkitChauhan, Adesh KumarDas, A.P.Sahu, Hemanta Kumar
Turning circle diameter (TCD) of vehicle is critical parameter which is used to determine the turning capability of vehicle. TCD is the smallest circular turn that a vehicle can make of given drive track. The TCD depends on vehicle wheel lock angles, wheelbase, and geometric architecture of vehicle. The Regulation certification requirement of steering system, states that the maximum TCD should be less than 24m & TCCD (Turning clearance circle diameter) 25m (M&N category Vehicle). IS 12222:2011 & UN R79 are regulation related to Steering system. This invention relates to measuring the TCD of vehicle. The conclusion of this technical paper proposes new innovative method to overcomes and address the below limitations. It provides accurate and precise results by adjusting room for error. It eliminates the approximation ambiguity. It reduces the manual intervention of human effort to carry out the entire measurement process. It improves the safety of measurement technician, since it
Yadav, SatyendraOjha, VijayChatterjee, AnupamSaikrishna, VNLKarthik, V
Investigation of clunking noise in a steering system fitted into a test vehicle indicated radial lash in sliding bushings, which are press fitted into housings, as one of the possible causes for clunk. To study the behavior of sliding bush under the influence of assembly clamp loads, manufacturing tolerances and road loads, sliding bushings are modelled in more detail in the steering system finite element models. Further for correlating the bushing measurements from test vehicle to the finite element model, a radial lash output is derived which is not directly available in finite element software. Finally, the correlated model is used to assess the updated design and check for radial lash improvement.
Badduri, JaideepPandey, Ashish
Items per page:
1 – 50 of 2083