Browse Topic: Steering systems
Innovators at NASA Johnson Space Center have developed a programmable steering wheel called the Tri-Rotor, which allows an astronaut the ability to easily operate a vehicle on the surface of a planet or moon despite the limited dexterity of their spacesuit. This technology was originally conceived for the operation of a lunar terrain vehicle (LTV) to improve upon previous Apollo-era hand controllers. In re-evaluating the kinematics of the spacesuit, such as the rotatable wrist joint and the constant volume shoulder joint, engineers developed an enhanced and programmable hand controller that became the Tri-Rotor.
Autonomous vehicle motion planning and control are vital components of next-generation intelligent transportation systems. Recent advances in both data- and physical model-driven methods have improved driving performance, yet current technologies still fall short of achieving human-level driving in complex, dynamic traffic scenarios. Key challenges include developing safe, efficient, and human-like motion planning strategies that can adapt to unpredictable environments. Data-driven approaches leverage deep neural networks to learn from extensive datasets, offering promising avenues for intelligent decision-making. However, these methods face issues such as covariate shift in imitation learning and difficulties in designing robust reward functions. In contrast, conventional physical model-driven techniques use rigorous mathematical formulations to generate optimal trajectories and handle dynamic constraints. Hybrid Data- and Physical Model-Driven Safe and Intelligent Motion Planning and
For mature virtual development, enlarging coverage of performances and driving conditions comparable with physical prototype is important. The subjective evaluation on various driving conditions to find abnormal or nonlinear phenomena as well as objective evaluation becomes indispensable even in virtual development stage. From the previous research, the road noise had been successfully predicted and replayed from the synthesis of system models. In this study, model based NVH simulator dedicated to virtual development have been implemented. At first, in addition to road noise, motor noise was predicted from experimental models such as blocked force and transfer function of motor, mount and body according to various vehicle conditions such as speed and torque. Next, to convert driver’s inputs such as acceleration and brake pedal, mode selection button and steering wheel to vehicle’s driving conditions, 1-D performance model was generated and calibrated. Finally, the audio and visual
Advancements in sensor technologies have led to increased interest in detecting and diagnosing “driver states”—collections of internal driver factors generally associated with negative driving performance, such as alcohol intoxication, cognitive load, stress, and fatigue. This is accomplished using imperfect behavioral and physiological indicators that are associated with those states. An example is the use of elevated heart rate variability, detected by a steering wheel sensor, as an indicator of frustration. Advances in sensor technologies, coupled with improvements in machine learning, have led to an increase in this research. However, a limitation is that it often excludes naturalistic driving environments, which may have conditions that affect detection. For example, reductions in visual scanning are often associated with cognitive load [1]; however, these reductions can also be related to novice driver inexperience [2] and alcohol intoxication [3]. Through our analysis of the
As the autonomy of ADAS features are moving from SAE level 0 autonomy to SAE level 5 autonomy of operation, reliance on AI/ML based algorithms in ADAS critical functions like perception, fusion and path planning are increasing predominantly. AI/ML based algorithms offer exceptional performance of the ADAS features, at the same time these advanced algorithms also bring in safety challenges as well. This paper explores the functional safety aspects of AI/ML based systems in ADAS functions like perception, object fusion and path planning, by discussing the safety requirements development for AI/ML systems, dataset safety life cycle, verification and validation of AI systems, and safety analysis used for AI systems. Among all the safety aspects listed above, emphasis is put on dataset safety lifecycle as that is not only the most important element for training ML based algorithms for ADAS usage, but also the most cumbersome and expensive. The safety characteristics associated with dataset
Items per page:
50
1 – 50 of 2068