Browse Topic: Steering systems
SBW(Steer-by-wire) is a steering system that transmits the driver’s request and gives feedback to the driver through electrical signals. This system eliminates the mechanical connection of the traditional steering system, and can realize the decoupling of the steering wheel and the road wheel. In addition, this system has a perfect torque feedback system, which can accurately and delicately feedback the road surface information to the driver. However, vehicle driving deviation is one of the most common failure modes affecting vehicle performance in the automotive aftermarket, this failure mode can exacerbates tire wear, reducing their life cycle, at the same time, the driver must apply a counter torque to the steering wheel for a long time to maintain straight-line travel during driving. This increases the driver’s operational burden and poses safety hazards to the vehicle’s operation. Based on the steer-by-wire system and vehicle driving deviation characteristics, this paper proposes
The application trend of automated driving is gaining significant concern, making it increasingly crucial to validate automated driving within the stochastic simulated traffic flow environment from both time and cost perspectives. The stochastic traffic flow model attempts to encapsulate the variability inherent in traffic conditions through a stochastic process. This approach is particularly important as it accounts for the unpredictable nature of traffic, which is often not fully captured by traditional deterministic testing scenarios. However, while stochastic traffic flow models have made strides in simulating the behavior of traffic participants, there remains a significant oversight in the simulation of vehicles’ driving trajectories, leading to unrealistic portrayals of their behaviors. The trajectories of vehicles are a critical component in the overall behavior of traffic flow, and their accurate representation is essential for the simulation to reflect real-world driving
The structural integrity of the steering wheel is important for vehicle operations. It is subjected to various load conditions during the vehicle motion. It thus becomes important to understand various aspects of the same which include stiffness, natural frequency, and regulatory requirements i.e. body block test, head form impact test, etc. Simulation plays an important role in understanding the structural integrity and validation requirements of products at the design stage itself. This paper discusses the modeling and simulation of the steering wheel at both the armature level and the complete steering wheel level. As armature is critical from a structural strength and stiffness point of view, certain simulations like modal analysis are performed first at the armature level, and design iterations were done to achieve the natural frequency target. The list of simulations performed includes modal analysis, bending rigidity, static compression, bending stiffness, body block test and
Hypersonic platforms provide a challenge for flight test campaigns due to the application's flight profiles and environments. The hypersonic environment is generally classified as any speed above Mach 5, although there are finer distinctions, such as “high hypersonic” (between Mach 10 to 25) and “reentry” (above Mach 25). Hypersonic speeds are accompanied, in general, by a small shock standoff distance. As the Mach number increases, the entropy layer of the air around the platform changes rapidly, and there are accompanying vortical flows. Also, a significant amount of aerodynamic heating causes the air around the platform to disassociate and ionize. From a flight test perspective, this matters because the plasma and the ionization interfere with the radio frequency (RF) channels. This interference reduces the telemetry links' reliability and backup techniques must be employed to guarantee the reception of acquired data. Additionally, the flight test instrumentation (FTI) package needs
ABSTRACT This paper presents two techniques for autonomous convoy operations, one based on the Ranger localization system and the other a path planning technique within the Robotic Technology Kernel called Vaquerito. The first solution, Ranger, is a high-precision localization system developed by Southwest Research Institute® (SwRI®) that uses an inexpensive downward-facing camera and a simple lighting and electronics package. It is easily integrated onto vehicle platforms of almost any size, making it ideal for heterogeneous convoys. The second solution, Vaquerito, is a human-centered path planning technique that takes a hand-drawn map of a route and matches it to the perceived environment in real time to follow a route known to the operator, but not to the vehicle. Citation: N. Alton, M. Bries, J. Hernandez, “Autonomous Convoy Operations in the Robotic Technology Kernel (RTK)”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI
Items per page:
50
1 – 50 of 2080