Browse Topic: Rack and pinion steering
This aerospace information report (AIR) provides historical design information for various aircraft landing gear and actuation/control systems that may be useful in the design of future systems for similar applications. It presents the basic characteristics, hardware descriptions, functional schematics, and discussions of the actuation mechanisms, controls, and alternate release systems. The report is divided into two basic sections: 1 Landing gear actuation system history from 1876 to the present. This section provides an overview and the defining examples that demonstrate the evolution of landing gear actuation systems to the present day. 2 This section of the report provides an in depth review of various aircraft. A summary table of aircraft detail contained within this section is provided in paragraph 4.1. The intent is to add new and old aircraft retraction/extension systems to this AIR as the data becomes available. NOTES 1 For some aircraft, the description is incomplete, due to
The vehicle dynamics terminology presented herein pertains to passenger cars and light trucks with two axles and to those vehicles pulling single-axle trailers. The terminology presents symbols and definitions covering the following subjects: axis systems, vehicle bodies, suspension and steering systems, brakes, tires and wheels, operating states and modes, control and disturbance inputs, vehicle responses, and vehicle characterizing descriptors. The scope does not include terms relating to the human perception of vehicle response
Steering system is responsible for providing a precise directional control to the vehicle. The Hydraulic Power Assisted Steering (HPAS) system is commonly used in passenger cars and commercial vehicles due to low cost. Power steering pump develops and delivers required pressure to provide assistance while steering. It reduces the effort required to steer the vehicle. Steering pump (generally vane type) is a critical part providing hydraulic pressure assistance to rack and pinion or gear box. Basically the hydraulic pump noise can be classified as ‘Moan Noise’ and ‘Whine Noise’. The noise generated by power steering pump pressure pulsation is termed as ‘Moan’ and ‘Whine’ based on operational induce frequency. As power train becomes quieter, it becomes more perceivable at typical engine operating speed range and gives impression of poor refinement and quality. This abstract describes the experimental measurement technique to investigate, analyze and quantify the moan noise and elaborate
The purpose of this document is to provide a listing for current commercial and military aircraft landing gear systems and their types and manufacturers. Data has been provided for the following commercial aircraft types; wide body jet airliners, narrow body jet airliners, and turboprop/commuter aircraft and the following military aircraft types; fighter, bomber, cargo, attack, surveillance, tanker and helicopter categories. The aircraft that have been included in this document are in operational service either with airlines, business, cargo or military operators. No information is presented for aircraft that are currently being developed or that are not in extensive usage. This document will provide an informational reference for landing gear engineers to access when evaluating other gear and aircraft systems. Future revisions of this document will add aircraft as they enter into service
The aerodynamic effects not only directly affect the acceleration and the fuel economy of the race car, but also have a great influence on the handling of the race car. In this paper, the vehicle multibody dynamic model with “double-wishbone suspension” and “rack and pinion steering” is established, in order to obtain aerodynamic parameters, the aerodynamic model of the vehicle is established, and the aerodynamic parameters were calculated by using CFD. In order to obtain the optimal travel track, the track model is established, according to weights allocation of the smallest curvature of each curve and the shortest curve to optimize the optimal route for racing. The influence of aerodynamic effects on the stability of vehicle control is analyzed through simulation of Endurance Racing to evaluate the maximum lateral acceleration、roll angle and other performance. According to the racing speed characteristics and distribution of longitudinal acceleration and lateral acceleration, the
Rack and pinions are linear actuators that play a critical role in a wide range of linear motion control applications. While rack and pinions are commonly thought of as a timeless technology, several new developments have helped provide significant performance improvements in specific applications. One new approach, the Roller Pinion System, replaces the traditional rack and pinion with bearing-supported rollers, increasing positional accuracy, speed and durability
Target cascading methodology is applied to the optimization problem of the kinematics of a rack and pinion steering mechanism coupled to a double-wishbone suspension system of a hybrid off-road vehicle. This permits the partition of a complex problem into reduced order sub-problems in a hierarchical manner, leading to a more efficient design and optimization process. According to the nature of the problem, it is proposed a four level hierarchy organization. The uppermost level is the general vehicle design problem. The second level consists in various system-level design problems such as frame, powertrain and the set suspension-steering. The steering system design problem is proposed in a third hierarchical level. At the lowest level are the components design problems. The vehicle under study will work mainly under off-road condition at low speed. Hence, at the steering design problem, two main objectives are searched for optimization: steering performance according to the Ackerman
A landing gear system comprises the most compelling assembly of engineering skills. Its importance to the successful design of an aircraft can be favorably compared with that of the aircraft's wings and engines. A landing gear system consists of several different engineering disciplines, and is continually in the public eye especially with regard to safety. The primary objective of AIR4846 is to present a record of a variety of interesting gears, gear/aircraft systems and patents, and to discuss wherever possible the lessons learned, and the reasons for the design. Thus, the document is not only a historical account, but a means of recording technical knowledge for the practical benefit of future landing gear designers. Commendable efforts have been made over the years by several individuals to make such recordings, and AIR4846 will make continual reference to them. This applies to all books, papers, or specifications that have the approval of the SAE A-5 Committee. AIR4846 also
Students trained in classic mechanical engineering are taught to construct a system using conventional mechanical components to convert rotary into linear motion. Converting rotary to linear motion can be accomplished by several mechanical means using a rotary motor, rack and pinion, belt and pulley, and other mechanical linkages, which require many components to couple and align. Although these methods can be effective, they each carry certain limitations
The vehicle dynamics terminology presented herein pertains to passenger cars and light trucks with two axles and to those vehicles pulling single-axle trailers. The terminology presents symbols and definitions covering the following subjects: axis systems, vehicle bodies, suspension and steering systems, brakes, tires and wheels, operating states and modes, control and disturbance inputs, vehicle responses, and vehicle characterizing descriptors. The scope does not include terms relating to the human perception of vehicle response
In order to insure that the remanufactured and/or rebuilt steering gear has and maintains the reliability and performance associated with a new OEM steering gear, it is essential that the following procedures be followed; if in-house engineering capabilities are limited, it may be necessary to consult with an outside laboratory to insure all testing methods used meet with the requirements outlined in this paper
A landing gear system comprises the most compelling assembly of engineering skills. Its importance to the successful design of an aircraft can be favorably compared with that of the aircraft's wings and engines. A landing gear system consists of several different engineering disciplines, and is continually in the public eye especially with regard to safety. The primary objective of AIR4846 is to present a record of a variety of interesting gears, gear/aircraft systems and patents, and to discuss wherever possible the lessons learned, and the reasons for the design. Thus, the document is not only a historical account, but a means of recording technical knowledge for the practical benefit of future landing gear designers. Commendable efforts have been made over the years by several individuals to make such recordings, and AIR4846 will make continual reference to them. This applies to all books, papers, or specifications that have the approval of the SAE A-5 Committee. AIR4846 also
Rack and pinion steering gear being compact and light package with kinematically stiffer characteristics is commonly employed on passenger vehicle cars. Satisfactory performance of the steering system is determined by an acceptance test, which checks the composite error in the gear. The acceptance test checks the assembled gearbox for its torque characteristics instead of checking the individual components. The torque required by the pinion to rotate is the ‘Free Pinion Torque’ (FPT). FPT on Assembly varies within a range of 0.4-0.6 N-m, even if the tolerances on individual components (such as PCD run out of pinion, rack bend) are maintained within close tolerances. A virtual prototype of Rack and pinion steering gear is made in ADAMS [Automatic Dynamic Analysis of Mechanical Systems). This model will help to identify critical parameters and their effects on the assembly
In order to insure that the remanufactured and/or rebuilt steering gear has and maintains the reliability and performance associated with a new OEM steering gear, it is essential that the following procedures be followed; if in-house engineering capabilities are limited, it may be necessary to consult with an outside laboratory to insure all testing methods used meet with the requirements outlined in this paper
Items per page:
50
1 – 48 of 48