Browse Topic: Power steering

Items (546)
A power steering system helps the heavy-duty operator move the vehicle easily with the hydraulic pump that provides the fluid pressure and facilitating adequate operation. Some failures in the power steering system are due to external and internal factors that can reduce its service life. The external factors could be identified by ocular inspection but normally, due to internal failures, it is necessary to use a hydraulic pressure flow meter. However, this device makes it impossible to detect failures caused by the selected lubricant. This work aims to investigate the causes of power steering system seizure by using the tribological wear examination process and the lubricant characterization under some actual operation conditions. The lubricant characterization was carried out in a four balls tester using fresh and used samples of a re-refined oil based ATF, SAE 15 W40 and synthetic SAE 5 W30 oils at two temperatures. In general, the results showed an unsteady friction profile with
García-Maldonado, MiguelGallardo, EzequielMozqueda-Flores, LuisVite-torres, Manuel
Driving simulators allow the testing of driving functions, vehicle models and acceptance assessment at an early stage. For a real driving experience, it's necessary that all immersions are depicted as realistically as possible. When driving manually, the perceived haptic steering wheel torque plays a key role in conveying a realistic steering feel. To ensure this, complex multi-body systems are used with numerous of parameters that are difficult to identify. Therefore, this study shows a method how to generate a realistic steering feel with a nonlinear open-loop model which only contains significant parameters, particularly the friction of the steering gear. This is suitable for the steering feel in the most driving on-center area. Measurements from test benches and real test drives with an Electric Power Steering (EPS) were used for the Identification and Validation of the model. The open-loop architecture on steering rack level shows adequate results and generate a nearly delay-free
Dieing, AndreasReuss, Hans-ChristianSchlüter, Marco
This research aims presents the method classifying the noise source and evaluating the sound quality of the noise caused by operating of electric power steering wheel in an electric vehicle. The steering wheel has been operated by the motor drive by electric power and it called motor-driven electric power steering (MDPS) system. If the motor is attached to the steering column of the steering device, it is called C-MDPS system. The steering device of the C-MDPS system comprises of motor, bearings, steering column, steering wheel, and worm shaft. Among these components the motor and bearings are main noise sources of C-MDPS system. When the steering wheel is operated in an electric vehicle, the operating noise of the steering device inside the vehicle is more annoying than that in a gasoline engine vehicle since the operating noise is not masked by engine noise. Abnormal operation of the steering device worse the operating noise of the steering system. In the paper, the method
Lee, Sang KwonAn, KanghyunKim, Seong YeolKim, DoyeonPark, JonghoCho, InjePark, Kyunghwan
A redundant system refers to a system that operates identical unit systems simultaneously to enhance robustness to fault. In particular, considering system complexity, a redundant system consisting of two identical unit systems is widely used. However, dual-system redundancy can detect the presence of malfunction when the outputs of the two unit systems differ, but it is challenging to identify the normally functioning unit system. Therefore, the functionality can degrade or be interrupted even when a normally operating unit system is present. Hence, research is actively ongoing to address the challenge of identifying the normally functioning unit system. This study proposes an algorithm to identify the normally operating sensor in the event of a steering angle sensor fault in a redundant Electronic Power Steering (EPS) system. In this paper, an Extended Kalman Filter is designed based on the Bicycle model of vehicle dynamics to estimate the steering angle of the steering wheel. Real
Jeong, SangwooKim, TaegyunKim, Daesung
The steering system is a critical component for controlling a vehicle's direction. In the context of Advanced Driver Assistance Systems (ADAS) and autonomous vehicles, where drivers may not always be actively holding the steering wheel, early detection of precursor noise signals is essential to prevent serious accidents resulting from the loss of steering system functionality. It is therefore imperative to develop a device capable of early detection and notification of steering system malfunctions. Therefore, the current study aimed to quantify the noise levels generated within the Column-based Electric Power Steering (C-EPS) system of a D-segment sedan. To this end, we measured the uniaxial acceleration in nine noise-generating areas while simultaneously collecting data from three Controller Area Network (CAN) sources that are directly related to steering operation. The results indicated that we have successfully developed a meaningful machine learning model by analyzing the
Chung, Soo Sik
To reduce the harm caused by the failure of electronic and electrical system, the application of ISO 26262 functional safety standard in the automotive industry is more and more widespread. As a critical safety-related electronic and electrical system in automobile, electric power steering is very important and necessary to meet the requirements of functional safety. This paper introduces the main development activities of functional safety at software level. In order to realize the purpose of freedom from interference in memory, the safety mechanism of memory protection is proposed in software safety analysis. The memory protection is realized in AUTOSAR architecture by configuration
Ye, XiaomingYang, YandingLi, LingyangDu, JiaWang, Yongliang
The flight area of drones and other unmanned aerial vehicles (UAVs) had been highly restricted but has been relaxing, including flights beyond the scope of sight. Deregulation without aircraft-reliability improvement increases the risk of accidents. However, demanding high reliability for all aircraft leads to an increase in the price of the aircraft. Therefore, if airspace restrictions are relaxed for more reliable aircraft, the cost of higher reliability and its benefits can be balanced. This will improve efficiency and optimize cost-effectiveness. The purpose of this proposal is to balance the cost of aircraft-reliability improvement (which allows flight to continue in the event of a failure) and its advantages. Specifically, the author proposes rules that apply more relaxed airspace restrictions to UAVs with higher FCLs (Flight Continuity Possibility Levels) and stricter airspace restrictions to those with lower FCLs. The FCL does not only refer to the distance or time that can be
Kanekawa, Nobuyasu
Due to the presence of uncertain disturbances in the actual steering system, disturbances in the system may affect the handling stability of the vehicle. Therefore, this article proposes an integrated steering system control strategy with stronger anti-disturbance performance. When disturbances exist in the system, the proposed control strategy effectively reduces the attitude changes during the vehicle steering process. In the upper-level control strategy, a variable transmission ratio curve is designed to coordinate the high-speed handling stability and low-speed steering sensitivity of the vehicle. On this basis, a sideslip angle observer is proposed based on the extended state observation theory, which does not depend on an accurate system model, thus determining the intervention timing of the active front wheel steering system. In the lower-level control strategy, DR-PI/DR-PID controllers are designed for the integrated steering system. Finally, experiments are conducted in the
Wei, JinChengZheng, Zhu’AnChen, JiaLing
This SAE Information Report relates to a special class of automotive adaptive equipment which consists of modifications to the power steering system provided as original equipment on personally licensed vehicles. These modifications are generically called “modified effort steering” or “reduced effort power steering.” The purpose of the modification is to alter the amount of driver effort required to steer the vehicle. Retention of reliability, ease of use for physically disabled drivers and maintainability are of primary concern. As an Information Report, the numerical values for performance measurements presented in this report and in the test procedure in the appendices, while based upon the best knowledge available at the time, have not been validated
Adaptive Devices Standards Committee
This paper addresses the "Grunt Noise" anomaly in Hydraulic Power Assisted Steering (HPAS) systems, detailing an extensive effort to resolve this disruptive issue. HPAS, while cost-efficient, faces challenges as it adapts to customer demands for reduced steering effort and enhanced handling. Intensified HPAS intervention requires components to withstand higher pressures and tighter tolerances, leading to occasional anomalies. "Grunt Noise" arises from Torsion bar (T-bar) resonance with fluid pressure pulsations. A comprehensive study identifies load conditions, transfer paths, and frequency bands, extending from vehicle to Pinion Valve assembly levels. Root cause analysis traces the issue from Steering Wheel to T-bar, validating the approach. The T-bar's twisting operation renders torsional stiffness crucial for Grunt Noise. Lower stiffness T-bar, when overpowered by liquid force, causes microsecond imprecise valve openings, leading to cavitation-induced Rack & Pinion vibrations
Sethi, AjiteshTitave, UttamVardhanan K, Aravindha VishnuZalaki, NitinNaidu, SudhakaraSalunkhe, Swapnil
In farm tractors, the available drawbar power, and Power Take-Off (PTO) power are generally lower than the engine power due to parasitic losses. These losses are caused by engine-driven auxiliary loads such as cooling fans, hydraulic pumps for power steering, alternators, etc. Minimizing these parasitic losses can increase the available drawbar power and PTO power, resulting in direct fuel savings by reducing fuel consumption. The continuous increase in fuel costs and the environmental impact of emitted gases from burned fuel into the atmosphere have necessitated the replacement of hydraulic power steering and mechanical fans with Electric Power Steering (EPS) and electric fans, respectively, to improve efficiency. The existing battery has been replaced with a higher capacity battery to provide power to the electric fan, electric power steering, and other electrical components. Additionally, the existing alternator has been replaced with a higher capacity alternator to meet the
Arjun, P.Natarajan, SaravananChinnathambi, ManikandanA, RadhakrishnanNabar, Omkar
With rapid improvement in the road infrastructure the average turnaround time of the cargo vehicles has been reduced by 25%.New generation commercial vehicles has better power to weight ratio by integrating high horse power engines. With this latest vehicle configuration average speed of fleet is increased by 30% and more focus is provided towards vehicle safety and handling. Driver confidence on vehicle handling improves with better on Centre feel and return ability, these two parameters are easily tunable with modern electric power assisted steering system, whereas with hydraulic power assisted system these parameters optimization have adverse effect on other steering performance. This paper covers study of following parameters of hydraulic assisted steering system and its optimization on vehicle handling. 1. Steering Gearbox torsion bar stiffness 2. Steering pump flow 3. Caster angle 4. Steering Gearbox valve curve 5. Steering components compliance Base vehicle level objective
K, Arun KumarChikate, AbhishekKumar, Ganesh
This paper presents a low-speed assisted steering control approach for distributed drive electric vehicles. When the vehicle is driven at low speed, the braking of the inner-rear wheel is combined with differential drive to reduce the turning radius. A hierarchical control structure has been designed to achieve comprehensive control. The upper-level controller tracks the expected yaw rate and vehicle side-slip angle through a Linear Quadratic Regulator (LQR) algorithm. The desired yaw rate and vehicle side-slip angle are obtained according to the reference vehicle model, which can be regulated by the driver through the accelerator pedal. The lower-level controller uses a quadratic programming algorithm to distribute the yaw moment and driving moment to each wheel, aiming to minimize tire load rate variance. Simulation and real vehicle tests compare three steering modes: front-wheel steering only, front-wheel steering + differential drive assisted steering, and front-wheel steering
Wu, DongmeiWang, ChengDu, ChangqingZhang, Yichao
This study presents a novel active vibration control (AVC) system on motor driven power steering (MDPS) to reduce interior noise reduction caused by operating the MDPS in an electric vehicle. MDPS is electronic power steering (EPS). The MDPS attached to the rack gear of power steering system is called R-MDPS. Operating of the R-MDPS generates a structural vibration of R-MDPS, and the vibration is transmitted to car body through mounts of car subframe. The vibrating body of car becomes a monopole and dipole sources of vibroacoustic noise generated inside car. This vibracoustic noise is a structure borne noise and makes passenger annoyance. To reduce interior noise inside a car directly, active noise control (ANC) has been used as active method and is a useful method for active cancellation of the low frequency noises less than 400Hz. However, in this study, because the frequency range of interior noise due to operation of R-MDPS is higher than 400Hz, the AVC system is employed and is
An, KanghyunBaek, JiseonLee, Sang KwonJang, DaewonShin, Soohyun
If you accept that the oddball and odd-sized Journey never was a legit rival for the likes of the Honda CR-V, Toyota RAV4 and Ford Escape - and it wasn't - Stellantis' Dodge brand hasn't played in the compact SUV segment, one of the largest and most competitive in the U.S. That strategic gap is set to be filled by the 2023 Hornet, Dodge's performance-slanted attempt to peel out some sales volume from among the C-segment utilities that are typified by mundane and softly-tuned top-sellers. The Hornet's not just about having a little more engine power, either. Its platform is shared with the Alfa Romeo Tonale. Like Hornet, the Tonale slated to be in showrooms sometime in spring 2023 and incorporates chassis finery such as standard Koni-supplied Frequency Selective Damping (FSD) dampers. Specifically tuned, genuine by-wire braking (for the R/T trim) reduces curb weight by 9 lb. (4 kg) and improves steering feel via direct-action ratios from the electronic power steering; Stellantis claimed
Visnic, Bill
The accelerated processes in vehicle development require new technologies for function development and validation. With this motivation, Function-in-the-Loop (FiL) simulation was developed as a link between Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) simulation. The combination of real Electronic Control Unit (ECU) hardware and software in conjunction with virtual components is very well suited for function development and testing. This approach opens up new possibilities for mechatronic systems that would otherwise require special test benches. For this reason, an Electric Power Steering (EPS) was transferred to a virtual environment using FiL simulation. This enables a wide range of applications, from EPS testing to the development of connected driving functions on an integrated platform. Right from the early development phases, the technology can be used purposefully with short integration cycles. Throughout the entire development process, function development and
Achilles, FrederikSteib, FrederikNippold, ChristophHenze, Roman
The present article related to the investigation of fluid bore noise in the power steering pump which is the major source of noise generation in hydraulic power steering system due to the flow ripple and pressure pulsation. In this article, the different parameters (Pump operating speed, operating pressure, bypass hole dimensions and bypass hole orientation) has been investigated and its contribution to the fluid borne noise has been analyzed through Computational Fluid Dynamics (CFD) methods. The design optimization has been done on the power steering pump on the basis of CFD results and the physical sample was made for the same to validate the CFD results. The results show that the pump operating speed is more significant in the fluid borne noise generation followed by the operating pressure, bypass hole angle and diameter. The fluid borne noise increases as the operating speed and operating pressure increases. Conversely the fluid borne noise decreases as the bypass hole angle and
Palanisamy, PugazhenthiEthirajan, AshokSethupathi, KirubanandanVeerasamy, Prabhu Shankar
Today’s vehicles provide a wide range of functions. Some offer comfort support for driving scenarios and others offer a higher level of safety to the driver. Increasing complex systems drives the need for reliable engineering to avoid or at least detect and mitigate malfunctions which would lead to any person being injured. Following state of the art for definition, design, and implementation of any system must therefore always be the target. The need to meet stringent safety requirements of the ISO 26262 Standard is presenting new challenges. In particular, the solutions must ensure that automotive electronic systems always operate safely throughout the vehicle life cycle. Functional safety relies on the safety mechanisms within the design that monitor and verify the correct functional operation of the design while the system is in use. The ability of these safety mechanisms to cover the potential faults determines the overall diagnostic coverage of the design. As a solution that
Chiyedu Rajasimha, RashmiArjun, VishwanathGowdra Chandrashekhar, Hemanth
This SAE Standard defines the test conditions, procedures, and performance requirements for circuit breakers in ratings up to and including 200 A. The document includes automatic reset, modified reset, and manually reset types of circuit breakers for 12 VDC, 24 VDC, and 48 VDC electrical systems. Some circuit breakers may have dual voltage ratings (AC and DC); however, this document evaluates DC performance only
Truck and Bus Electrical Systems Committee
This SAE standard applies to self-propelled driver operated sweepers and scrubbers as defined in SAE J2130-1
MTC2, Sweeper, Cleaner, and Machinery
The advances in automotive technology continue to deliver safety and driving comfort benefits to society. The Automated Driving Assistance System (ADAS) technology is at the forefront of this evolution. Today, various vehicle models on the road have features like lane centering, automated emergency braking, adaptive cruise control, traffic jam assist etc. During early development, such feature algorithms often assume ideal environmental and vehicle conditions while doing performance evaluation. It is imperative that one uses realistic scenarios for production development. To demonstrate this, the lane centering ADAS feature performance is studied using a test vehicle. The feature considered here is an end-to-end feature, i.e., from camera sensor output to steering actuation. Lane centering control system often has multiple control loops within the vehicle system. The delay in steering system response has a significant effect on overall lane centering performance and driver feel. This
Awathe, ArpitVarunjikar, TejasGanguli, Subhabrata
The steering system is to provide the driver with the possibility of lateral vehicle guidance, i.e. to influence the lateral dynamics of the vehicle; moreover, it is crucial to promptly translate the steering input to have the vehicle in high-quality directional stability. An electrical power assisted steering (EPAS) system is the sophisticated variant to meet higher requirements for vehicle safety, ride comfort, and driver-assist. This research is to investigate if a CAE methodology could be innovated to better simulate the durability of a steering system under various working scenarios; figure out the critical features of the modeling; conduct a correct analysis procedure for validating the modeling and collecting data for evaluation. With step by step in modeling and analysis, a well-established example of CAE model of EPAS is enabled to highlight the novelty of steering vehicle level CAE methodology and therefore achieve the research goal
Song, GavinWou, Jason S.Rolls, ChristopherVlademar, Michael
Hardware-in-the-loop (HIL) test benches are indispensable for the development of modern vehicle dynamics controllers (VDCs). They can be regarded as a standard methodology today, because of the extremely safety critical nature of the multi-sensor and multi-actuator systems used in vehicle dynamics control. The required high quality standards can only be ensured by systematic testing within a virtual HIL environment before going into a real car. The steering system is an important aspect of the automobile from operational safety and driver enjoyment perspectives. Current Problem/Opportunity is realistic subjective steering feel prediction before vehicle build. And upfront predict the handling characteristics more accurately with subjective feel before proto build. Current Issue is difficult to convert the objective data into subjective feel and difficult to incorporate the nonlinear steering characteristics with hysterics, friction and power assist curves using virtual simulation
Anthonysamy, BaskarTK, SreerajTK, SreedeepN, BALARAMAKRISHNANAGARAJAN, NAGAPRAKASH
Steering system is responsible for providing a precise directional control to the vehicle. The Hydraulic Power Assisted Steering (HPAS) system is commonly used in passenger cars and commercial vehicles due to low cost. Power steering pump develops and delivers required pressure to provide assistance while steering. It reduces the effort required to steer the vehicle. Steering pump (generally vane type) is a critical part providing hydraulic pressure assistance to rack and pinion or gear box. Basically the hydraulic pump noise can be classified as ‘Moan Noise’ and ‘Whine Noise’. The noise generated by power steering pump pressure pulsation is termed as ‘Moan’ and ‘Whine’ based on operational induce frequency. As power train becomes quieter, it becomes more perceivable at typical engine operating speed range and gives impression of poor refinement and quality. This abstract describes the experimental measurement technique to investigate, analyze and quantify the moan noise and elaborate
Shevate, Hemant SatishGosavi, SantoshChaskar, MithunPingle, Gautam AshokPawar, Hemant
The current simulation models of EV and ICE Vehicles are well known in industry for their use in estimating the fuel economy or Range benefits because of controller calibrations and component sizing. However, there is a gap in understanding the behavior of accessories such as HVAC, power steering and other such auxiliary loads and the energy losses associated with them. Impact of thermal behavior of electronics on vehicle range also needs to be studied in detail. These kinds of studies help OEM and tier 1 manufactures in improving their design concepts significantly with minimum cost and development time. Hence, the focus of this study is on building simulation models of thermal, electrical, traction and control circuits of a typical electric vehicle. These models are then integrated, and analysis is performed to understand vehicle system level performance metrics. Individual models have been built for HVAC and thermal circuit of on EV in AMESim, HV and LV electrical power distribution
Sadaraboina, Moses Vidya SagarJoshi, ParthNegi, AdityaZulkefli PhD, Mohd Azrin
In the current customer centric automotive market, NVH is one of the prime focus for the automotive industry. Almost all light commercial vehicles in the market are with hydraulic power steering system. Hydraulic power steering pump is heart of the steering system which circulates the hydraulic oil to steering gear for assisting the driver. One of the NVH problem which is inevitable with the hydraulic vane pump is humming noise and this is perceived as an irritant by end user. This paper describes a novel technique for reducing the humming noise which is perceived at driver ear level. Base vehicle level objective measurements is carried out to set the acceptance criteria. Existing design is optimized as per CAE iterations and vehicle updated with the multiple solutions and objective measurements are recorded. Driver ear level noise reduction upto 4 dB(A) perceived which meets acceptance criteria. This technique can be used for resolving all hydraulic power steering pump related noise
K, Arun KumarTaware, GirishKumar, Ganesh
This paper is an application of ISO 26262 functional safety standards for fail-safe design, development and validation of Electric Power Assisted Steering (EPAS) System. As part of safety feature to save lives, prevent injuries and reduce economic loss due to accidents, many research institutes are working to ensure the safety and reliability of emerging safety-critical Electronic Control Systems in automobile applications. As, Advanced Driver Assistance Systems (ADAS) and other emerging technologies are introduced in the automobile application, the overall safety of these advanced electronic systems relies on the vehicle safety systems, such as steering systems. This paper outlines the approach of performing the Hazard Analysis & Risk Assessment (HARA) and developing a Functional Safety Concept. This approach incorporates several analysis methods, including Hazard and Operability study, Functional Failure Modes and Effects Analysis. This approach is then applied to the Electric Power
Tikar, Sagar S.Ansari, Ashfaque
Electric power steering (EPS) systems utilize an electric motor drive (EMD), consisting of an electric motor operated in torque control mode, to provide assistance to the driver in steering the vehicle. The torque control behavior of the EMD, which can vary widely depending on the control architecture employed, the controller tuning and on any uncertainty (or error) in estimation of motor parameters, can thus significantly affect the overall stability and performance of EPS systems. This paper presents a detailed examination of the impact of errors in the estimation of various parameters of the EMD system on the performance and stability of EPS systems, considering two different torque control architectures, namely feedback control which utilizes current measurement, and feedforward control which employs an inverse mathematical model of the motor. Both these control architectures use estimates of machine parameters, including the motor voltage (torque) constant, inductance, and
Pramod, PreritMendon, PriyankaNarayanaswamy, ChethanKlein, Fischer
As the original engine sound is usually not enough to satisfy the driver’s desire for a sporty and fascinating sound, Active Noise Control (ANC) and Active Sound Design (ASD) have been great technologies in automobiles for a long time. However, these technologies which enhance the sound of vehicles using loud speakers or electromagnetic actuators etc. lead to the increase of cost and weight due to the use of external amplifiers or actuators. This paper presents a new technology for generating a target sound by the active control of a permanent magnet synchronous motor (PMSM) of a mass-production steering system. The existing steering hardware or motor is not changed, but only additional software is added. Firstly, an algorithm of this technology, called Active Sound Generation (ASG), is introduced which is compiled and included in the ECU target code. Then the high frequency noise issue and its countermeasures are presented. Afterwards, an ASG test bench is designed using a motor
Chang, Kyoung-JinAngerpointner, LeonhardSchubert, DominikNiegl, MatthiasOrehek, MartinPfeffer, Peter
Technological advancement in the automotive industry necessities a closer focus on the functional safety for higher automated driving levels. The automotive industry is transforming from conventional driving technology, where the driver or the human is a part of the control loop, to fully autonomous development and self-driving mode. The Society of Automotive Engineers (SAE) defines the level 4 of autonomy: “Automated driving feature will not require the driver to take over driving control.” Thus, more and more safety related electronic control units (ECUs) are deployed in the control module to support the vehicle. As a result, more complexity of system architecture, software, and hardware are interacting and interfacing in the control system, which increases the risk of both systematic and random hardware failures. In order to reduce these risks and minimize any potential failure or loss of control, ISO 26262 Standard provides guidance to the automotive original equipment
Salih, SaifOlawoyin, Richard
The development of vehicles faces changes in many future flows. The vehicle’s power transfer systems are being changed from conventional types to Hybrid, Electric and Hydrogen vehicles. At this moment, the technology of EPS (Electric Power Steering) system has been expanding from a simple torque assist system to LKAS(Lane Keeping Assist System), PAP(Park Assist Pilot), ALCAS(Active Lane Change System), ADAS(Advanced Driver Assistance System). A good test bench is necessary for the evaluation of both hardware and control logics of EPS in these complexities of development process. Simultaneous Rig and HILS tests can be performed to check that the steering hardware system can perform to the concept of the development vehicle and develop EPS control logic performances. The hardware performance of the steering system might be evaluated based on measured friction and stiffness, taking into account various driving conditions. And the control logic of the EPS can be evaluated based on the
Kim, ChangsuLee, ByungrimPark, Youngdae
In recent decades, research and development in the field of autonomous vehicles have rapidly increased throughout the world, and autonomous driving technologies have begun to be applied to mass production vehicles. Especially recently, even affordable mass production vehicles have begun to be equipped with some autonomous driving systems such as a Lane Keeping Assist (LKA) system. In general, mass-produced LKA systems use a lane detection camera as a means of keeping the lane. One of the common limitations of camera-based LKA systems is that the lane keeping performance significantly decreases when the camera cannot detect lane markings for various reasons such as snow coverage or blurred lane markings. To overcome this limitation, we have developed Global Navigation Satellite System (GNSS)-based LKA systems, which are not affected by the surrounding environment such as weather and the condition of lane markings. In our latest study, we applied Model Predictive Control (MPC) to our
Tominaga, KentaTakeuchi, YuKitano, HiroakiTomoki, UnoQuirynen, RienCairano, Stefano
Automatic Lane Change (ALC) function is an important step to promote the currently popular Advanced Driver Assistance Systems (ADAS) within a single lane. The key issue for ALC is accurate steering angle and trajectory tracking during the lane changing process. In this paper, an MPC controller with a receding horizon is designed to track the desired trajectory. During the tracking process, other objectives such as safety and smoothness are considered. Considering of the practical mechanism and parameter uncertainties, an SMC controller is designed to track the target steering angle. For validation, a Hardware-in-the-Loop (HIL) experiment platform is established, and experiments of different control algorithms under different conditions are carried out successively. Comparisons of the experiment results of MPC+SMC and PID+SMC schemes indicate that both the trajectory error and the steering angle error of the former combination are smaller. Specifically, the peak trajectory error in Y
Wang, Yang YangJiang, Yuan XingLiu, Zhi GuangChen, Guang Da
Communicate the process of accurately measuring sound power levels of positive displacement hydraulic pumps commonly used in ground vehicle steering systems. This recommended practice defines the pump mounting (pulley, belt tension, isolation), operating conditions (fluid, speed, temperature, pressure), room acoustics, instrumentation, noise measurement technique and data acquisition setup to be used. Included are recommendations for test sample size, and format for data presentation/reporting
Vehicle Performance Steering Committee
A major challenge in automotive NVH engineering is to approach complex structure-borne sound and vibration problems with sufficient accuracy but reasonable experimental effort. Typical issues encountered are poor correlation between objective component performance criteria tested for during bench validation and corresponding subjective targets evaluated during system validation in the actual vehicle. Additional challenges arise from the need to impose assumptions on sophisticated physical vibration problems to reduce the complexity to a level feasible for conventional experimental test methods. This paper addresses all mentioned issues by elaborating on a system NVH engineering approach employing Virtual Acoustic Prototyping (VAP) (related to what is now often called component Transfer Path Analysis) to synthesize time domain sound and vibration responses of vibrating machinery operated in a virtual vehicle environment. One crucial step of VAP is to characterize the strength of
Wienen, KevinSturm, MichaelMoorhouse, AndyMeggitt, Joshua
This paper proposes a new evaluation method of analyzing stability and design of a controller for an electric power steering (EPS) system. The main purpose of the EPS system’s control design is to ensure a comfortable driving experience of drivers, which mainly depends on the assist torque map. However, the high level of assist gain and its nonlinearity may cause oscillation, divergence and instability to the steering systems. Therefore, an EPS system needs to have an extra stability controller to eliminate the side effect of assist gain on system stability and attenuate the unpleasant vibration. In this paper, an accurate theoretical model is built and the method for evaluating system quality are suggested. The bench tests and vehicle experiments are carried out to verify the theoretical analysis. The evaluation method proposed in this paper can not only guide the design of controller parameters, but also evaluate the control effect while the performance of several controllers are all
Fu, DuoRakheja, SubhashYan, Wen-JunShangguan, Wen-Bin
Recently, as the autonomous driving technology has been actively developed, the safety performance of EPS(Electric Power Steering) system of automobile is increasing more and more. Therefore, this paper propose a current sensorless control method that can continuously control the motor current even when the current sensor used for motor control in the EPS system fails. The current sensorless method proposed in this paper is a structure that preliminarily measures the output voltage required for motor current control and saves it as a table in SW, and it can be implemented easily without modeling of motor or parameter estimation The proposed method is implemented in EPS system of real vehicle and its performance is verified to be sufficient for steering assist
Kim, Munsu
Items per page:
1 – 50 of 546