Browse Topic: Electronic steering control

Items (12)
The steering system of an automobile serves as the initial point of contact for the driver and is a crucial determinant in the purchasing choice of the vehicle. The present steering system is equipped with a singular Electric Power Assisted Steering (EPAS) map, resulting in a consistent steering sensation during maneuvers conducted at both low and high velocities. Certain vehicles are equipped with a steering system that includes fixed driving modes that require manual intervention. This paper presents a proposed Machine Learning based Adaptive Steering System that aims to address the requirements and limitations of fixed mode steering systems. The system is designed to automatically transition between comfort and sports modes, providing users with the desired soft or hard steering feel. The system utilizes vehicle response to driver input in order to identify driving patterns, subsequently adjusting steering assist and torque automatically. The system consists of driving pattern
Deore, DhruvIqbal, ShoaibBhambri, MihirSheth, MalavSalunkhe, Swapnil
The steering system is to provide the driver with the possibility of lateral vehicle guidance, i.e. to influence the lateral dynamics of the vehicle; moreover, it is crucial to promptly translate the steering input to have the vehicle in high-quality directional stability. An electrical power assisted steering (EPAS) system is the sophisticated variant to meet higher requirements for vehicle safety, ride comfort, and driver-assist. This research is to investigate if a CAE methodology could be innovated to better simulate the durability of a steering system under various working scenarios; figure out the critical features of the modeling; conduct a correct analysis procedure for validating the modeling and collecting data for evaluation. With step by step in modeling and analysis, a well-established example of CAE model of EPAS is enabled to highlight the novelty of steering vehicle level CAE methodology and therefore achieve the research goal
Song, GavinWou, Jason S.Rolls, ChristopherVlademar, Michael
In electric power assisted steering system (EPAS), the steering assistance torque is provided by the electric motor. The motor rating is decided based on rack force requirement which depends on the vehicle weight, steering gear ratio, wheel angles etc. The load on the EPAS motor varies with respect to the steered angles of the road wheels. The motor experiences higher load towards the road wheel lock position. Most of the steering systems used on passenger cars has rack and pinion gear with constant gear ratio (C-factor). The constant gear ratio is decided to create right balance between vehicle handling behavior and steering effort. The constant gear ratio exerts higher steering load which the EPAS motor is required to support up to road wheel lock angles and hence EPAS motor size increases. This paper presents variable gear ratio (VGR) steering system in which gear ratio varies from center towards end lock stroke of rack & pinion. The VGR is optimized for thermal performance through
Kulkarni, Parag VijayIqbal, ShoaibSalunkhe, SwapnilJoshi, NikhilShabadi, Nischalkumar
This paper is an application of ISO 26262 functional safety standards for fail-safe design, development and validation of Electric Power Assisted Steering (EPAS) System. As part of safety feature to save lives, prevent injuries and reduce economic loss due to accidents, many research institutes are working to ensure the safety and reliability of emerging safety-critical Electronic Control Systems in automobile applications. As, Advanced Driver Assistance Systems (ADAS) and other emerging technologies are introduced in the automobile application, the overall safety of these advanced electronic systems relies on the vehicle safety systems, such as steering systems. This paper outlines the approach of performing the Hazard Analysis & Risk Assessment (HARA) and developing a Functional Safety Concept. This approach incorporates several analysis methods, including Hazard and Operability study, Functional Failure Modes and Effects Analysis. This approach is then applied to the Electric Power
Tikar, Sagar S.Ansari, Ashfaque
Many new vehicles come equipped with Advanced Driver Assistance Systems (ADAS) as standard or optional features. These technology packages frequently include Lane Departure Warning (LDW), an electronic system designed to alert the driver when the vehicle begins to depart from its lane. These systems identify lane boundaries using computer analysis of video captured by a forward-facing camera, typically mounted near the rear-view mirror. Some vehicles are also equipped with Lane Keeping Assist (LKA). Upon detecting an unintended lane departure, LKA will make electronic steering and/or braking control inputs to keep the vehicle in its original travel lane. Four vehicles equipped with LDW and LKA were tested: a 2019 Toyota Corolla, 2019 Honda Civic, 2020 Ford Explorer, and 2019 Chevrolet Tahoe. Tests were conducted on a straight, flat road with clear lane markings. Lane departures to the left and to the right were initiated by the test driver at 45 and 65 mph. Using a VBOX 3i RTK DGPS
Nguyen, BenjaminFamiglietti, NicholasKhan, OmarHoang, RyanSiddiqui, OmairLanderville, Jon
In this study, a model of Active Front wheel Steer (AFS) system are developed and tested. In addition, an Integrated Dynamics Control with Front steer (IDCF) controller is also designed to investigate the performance of AFS system when it is integrated with a brake system. The IDCF system composed of an AFS system and a DYC (Direct Yaw moment Control) system of rear wheels. The AFS controller and IDCF controller are compared under several driving and road conditions with and without braking input and steering input. A 8 degree of freedom vehicle model is also employed to test the controllers. The results show that the model of AFS system shows good kinematic steering assistance function. Steering ratio varies depends on vehicle velocity between 12 and 24. Kinematic stabilization function also shows good performance because yaw rate of AFS vehicle tracks the reference yaw rate. IDCF shows improved responses compared to AFS because body side slip angle is also reduced regardless of road
Song, Jeonghoon
Items per page:
1 – 12 of 12