Browse Topic: Trajectory control
Semi-trailer trains are the main force of highway freight. In a complex environment with multiple vehicles, accidents are easily caused by complex structures and driver operation problems. Intelligent technology is urgently needed to improve safety. In view of the shortcomings of existing research on its dedicated models and algorithms, this paper studies the intelligent decision-making and trajectory planning of semi-trailer trains under multiple vehicles. A local trajectory planning method based on global path planning and Frenet coordinate decoupling based on the improved A* algorithm is proposed. The smooth weight transition function and B-spline curve are introduced to optimize the global path. The polynomial function is combined with the acceleration rate to optimize the local trajectory. TruckSim, Prescan and Simulink are used to build a joint simulation platform for multi-condition verification. The simulation results show that the search efficiency of the improved A* algorithm
Autonomous vehicle motion planning and control are vital components of next-generation intelligent transportation systems. Recent advances in both data- and physical model-driven methods have improved driving performance, yet current technologies still fall short of achieving human-level driving in complex, dynamic traffic scenarios. Key challenges include developing safe, efficient, and human-like motion planning strategies that can adapt to unpredictable environments. Data-driven approaches leverage deep neural networks to learn from extensive datasets, offering promising avenues for intelligent decision-making. However, these methods face issues such as covariate shift in imitation learning and difficulties in designing robust reward functions. In contrast, conventional physical model-driven techniques use rigorous mathematical formulations to generate optimal trajectories and handle dynamic constraints. Hybrid Data- and Physical Model-Driven Safe and Intelligent Motion Planning and
As the autonomy of ADAS features are moving from SAE level 0 autonomy to SAE level 5 autonomy of operation, reliance on AI/ML based algorithms in ADAS critical functions like perception, fusion and path planning are increasing predominantly. AI/ML based algorithms offer exceptional performance of the ADAS features, at the same time these advanced algorithms also bring in safety challenges as well. This paper explores the functional safety aspects of AI/ML based systems in ADAS functions like perception, object fusion and path planning, by discussing the safety requirements development for AI/ML systems, dataset safety life cycle, verification and validation of AI systems, and safety analysis used for AI systems. Among all the safety aspects listed above, emphasis is put on dataset safety lifecycle as that is not only the most important element for training ML based algorithms for ADAS usage, but also the most cumbersome and expensive. The safety characteristics associated with dataset
Items per page:
50
1 – 50 of 256