Browse Topic: Exteriors
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes additional performance requirements and provides test methods and requirements to evaluate the suitability of materials intended for optical applications in motor vehicles. The tests are intended to determine physical and optical characteristics of the materials only. Performance expectations of finished assemblies, including plastic components, are to be based on tests for lighting devices, as specified in SAE Standards and Recommended Practices for motor vehicle lighting equipment. Glass and materials inclusive to the light source are not in scope for this method.
The objective of this study was to examine the effect of Correlated Colour Temperature (CCT) of automotive LED headlamps on driver’s visibility and comfort during night driving. The experiment was conducted on different headlamps having different correlated colour temperatures ranging from 5000K to 6500K in laboratory. Further study was conducted involving participants of different age group and genders for understanding their perception to identify objects when observed in light of different LED headlamps with different CCTs. Studies have shown that both Correlated Colour Temperature and illumination level affect driver’s alertness and performance. Further study required on headlamps with automatically varying CCT to get better solution on driver’s visibility and safety.
The present work demonstrates a transient Fluid-Structure-Interaction (FSI) based numerical methodology for estimation of aerodynamic-induced flutter of the rear bumper of a Sports Utility Vehicle (SUV). Finite Volume Method (FVM) based High-fidelity transient full vehicle aerodynamic simulations were conducted for the estimation of the transient aerodynamic load. Subsequently, by mapping this transient aero load onto the surface of the rear bumper, Finite Element Method (FEM) based dynamic structural simulations were performed to predict its response. The results obtained through simulations were then compared against experimental wind tunnel test data of a prototype car with modified bumper for the specific test-case. The pressure and the time series data of rear bumper deflection were captured at multiple probe locations from wind tunnel experiments at 140 and 200 kmph. The distribution of pressure on the rear surfaces of the car was well captured by the aerodynamic simulation at
The rising importance of sustainability in the automotive sector has led to increased interest in circular and environmentally responsible materials, particularly for plastic trims parts, both interior and exterior. This study focuses on developing textile solutions using recycled polyethylene terephthalate (r-PET) sourced from post-consumer plastic waste, along with bio-based fibres such as bamboo. These materials made into woven and knitted fabrics are studied to suit different vehicle interior applications. r-PET textiles show promising strength, aesthetic appeal, and durability performance. Bamboo fabrics are known for their natural antimicrobial properties and enhanced breathability. Extensive testing is performed to validate explored sustainable materials performance against key automotive requirements. With this study, we gain an understanding of the performance of variedly sourced sustainable raw materials for automotive specific textile applications by different manufacturing
Ambient light reflecting off internal components of the car, specifically the Head-Up Display (HUD), creates unwanted reflections on the Windshield. These reflections can obscure the driver's field of view, potentially compromising safety and reducing visual comfort. The extent of this obscuration is influenced by geometrical factors such as the angle of the HUD and the curvature of the Windshield, which need to be analyzed and managed. The primary motivation is to improve driver safety and visual comfort. This is driven by the need to address the negative impact of ambient light reflecting off Head-Up Displays (HUDs), which can impair visibility through the Windshield. There is a need for tools and methods to address this issue proactively during the vehicle design phase. This study employs a tool-based modeling method to trace the pathways of ambient light from its source, reflecting off the HUD, and onto the Windshield using a dimensional modeling tool. It focuses on: Geometrical
A mobile wireless charger is a device that charge a smartphone or other compatible gadgets without the need for physical cables. Principle of wireless mobile charger system based on inductive coupling phenomena. The main objective of this paper aims to address the challenge of packaging wireless mobile charger in peculiar door trim profile keeping overall functionality and aesthetic appearance of door trim intact. This paper deals with integration of a wireless charging system within the door trim of a vehicle to provide convenience and advanced functionality. The objective is to pack a wireless charger in door trim meeting the ergonomic target and equilibrium state stability while maintaining sleek and minimalist design of the door trim. The study focuses on innovative packaging solutions related to space optimization in door despite multiple challenges involved. Major challenge lies in packing the unit amidst complex mechanisms such as window regulators, speakers, structural
The Mahindra XUV 3XO is a compact SUV, the first-generation of which was introduced in 2018. This paper explores some of the challenges entailed in developing the subsequent generation of this successful product, maintaining exterior design cues while at the same time improving its aerodynamic efficiency. A development approach is outlined that made use of both CFD simulation and Coastdown testing at MSPT (Mahindra SUV proving track). Drag coefficient improvement of 40 counts (1 count = 0.001 Cd) can be obtained for the best vehicle exterior configuration by paying particular attention to: AGS development to limit the drag due to cooling airflow into the engine compartment Front wheel deflector optimization Mid underbody cover development (beside the LH & RH side skirting) Wheel Rim optimization In this paper we have analyzed the impact of these design changes on the aerodynamic flow field, Pressure plots and consequently drag development over the vehicle length is highlighted. An
This research analyzes the significance of air extractor on car door closing effort, especially within the context of highly sealed cabins. The goal is to measure their effectiveness in lowering pressure-induced resistance, study how the cut-out cross section and location affect performance, and its contribution to vehicle premium feel. Current vehicle design trends prioritize airtight cabin sealing for improving aerodynamic efficiency, NVH performance. This causes a problem in door closing operation. Air trapped while closing door creates transient pressure pulses. This pressure surge creates immediate discomfort to user i.e., Popping in Ears and requires high door closing force, and long-term durability problems in hinges and seals. In properly sealed cabins, air pressure resistance can contribute to 25% to 40% of total door closing force. Air extractors, usually installed in the rear quarter panels or behind rear bumpers, serve as pressure relief valves, allowing for a smoother
In today's dynamic driving environments, reliable rear wiping functionality is essential for maintaining safe rearward visibility. This study sharing the next-generation rear wiper motor assembly that seamlessly integrates the washer nozzle, delivering improved performance alongside key benefits such as better Buzz, Squeak, and Rattle (BSR) characteristics, reduced system complexity, cost savings, and enhanced perceived quality. This integrated design simplifies the hose routing which improves the compactness and the efficiency of the design. This also enhances the spray coverage and minimizes the dry wiping unlike the traditional systems that position the washer nozzle separately. A non-return valve (NRV) is incorporated to eliminate spray delays ass it maintains consistent water flow giving cleaning effectiveness. Since this makes the nonfunctional parts completely leak proof due to the advanced sealing, it increases the durability and reliability in long run. As this proposal offers
Side crashes are generally hazardous because there is no room for large deformation to protect an occupant from the crash forces. A crucial point in side impacts is the rapid intrusion of the side structure into the passenger compartment which need sufficient space between occupants and door trim to enable a proper unfolding of the side airbag. This problem can be alleviated by using the rising air pressure inside the door as an additional input for crash sensing. With improvements in the crash sensor technology, pressure sensors that detect pressure changes in door cavities have been developed recently for vehicle crash safety applications. The crash pulses recorded by the acceleration based crash sensors usually exhibit high frequency and noisy responses. The data obtained from the pressure sensors exhibit lower frequency and less noisy responses. Due to its ability to discriminate crash severities and allow the restraint devices to deploy earlier, the pressure sensor technology has
This specification covers three types of aircraft position lights.
This SAE Recommended Practice provides guidelines for the use, performance, installation, activation, and switching of marking lamps on Automated Driving System (ADS) equipped vehicles.
This SAE Standard provides test procedures, performance requirements, and guidelines for semiautomatic headlamp beam switching (SHBSD) devices.
To address the high security demands of HSR communication, this letter proposes a covert communication scheme using irregular intelligent transparent surfaces (ITSs) deployed on train windows. A joint optimization framework is developed to enhance covert rate under element constraints, involving ATS for topology design and NECE for beamforming and phase shift. Gradient descent is used to handle covert constraints. Simulations confirm that the proposed irregular ITS outperforms regular ITS in performance and robustness, offering a promising solution for future HSR covert communication.
Although lithium is highly effective to treat bipolar disorder, the chemical has a narrow therapeutic window — too high a dose can be toxic to patients, causing kidney damage, thyroid damage, or even death, while too low a dose renders the treatment ineffective.
This SAE Aerospace Standard (AS) establishes minimum performance standards for new equipment anticollision light systems. This Aerospace Standard defines minimum light intensity in terms of "effective intensity" as defined in paragraph 3.5 of this standard and specified vertical and horizontal directions about the longitudinal and vertical axis of the airplane. It will also define flash rate and color for the anticollision light system. It is not intended that this standard require the use of any particular light source such as Xenon, LED or any other specific design of lamp.
This SAE Recommended Practice provides test procedures, performance requirements, and guidelines for cargo lamps intended for use on vehicles under 5443 kg (12000 pounds) Gross Vehicle Weight Rating (GVWR).
Engineers have harnessed quantum physics to detect the presence of biomolecules without the need for an external light source, overcoming a significant obstacle to the use of optical biosensors in healthcare.
Items per page:
50
1 – 50 of 3940